

Holographic Superconductors ...In Helical Backgrounds & Homes' Relation

Steffen Klug (Instituut-Lorentz) in collaboration with Johanna Erdmenger, Benedikt Herwerth, René Meyer & Koenraad Schalm

Quantum Field Theory, String Theory & Condensed Matter Physics Κολυμβαρι

Motivation lotivation

Experimental puzzling results: Homes' Relation

[Dordevic, Basov, Homes '12]

- Homes relation cannot hold in "pure" holographic s-wave superconductors, where transport is related to diffusion
 - Momentum is intrinsically conserved in Holography
 - Impossible to discern an ideal metal from a superconductor
 - How to incorporate momentum relaxation?

Q-Lattice [Donos & Gauntlett '13]

Massive Gravity [Vegh '13]

Inhomogenous Background [Hartnoll & Hofman '12] [Horowitz, Santos & Tong '12]

- Thermodynamics of the Superfluid Insulator Transition
- Optical Conductivity at Finite Temperature
- Homes' Relations of high Tc Superconductors
- Zero Temperature Solutions

Part I: Holographic Setup

Holographic Setup

Action

$$S = \int \left[Re^{\Lambda 3} + \star 12 - \frac{1}{4}F \wedge \star F - \frac{1}{4}W \wedge \star W - m^2 B \wedge \star B - \int d^{4+1}\mathbf{x} \left[|\partial \chi - iqA\chi|^2 + V(|\chi|) \right] - \frac{\kappa}{2} \int B \wedge F \wedge W$$

Gauge fields

Gravity/Geometry

F = dAW = dB

 $0 = de + \Omega \wedge e$ $R = d\Omega + \Omega \wedge \Omega$ $ds^{2} = "e * e"$ Bianchi VII Ansatz for the metric

$$ds^{2} = -U(r) dt^{2} + \frac{dr^{2}}{U(r)} + e^{2v_{1}(r)} \omega_{1}^{2} + e^{2v_{2}(r)} \omega_{2}^{2} + e^{2v_{3}(r)} \omega_{3}^{2}$$

$$\omega_{1} = dx$$

$$\omega_{2} + \omega_{3} = e^{ip \cdot x} (dx + i dy)$$

► Asymptotically AdS spacetime $r \to \infty$

$$U(r) = r^2$$
 $v_i(r) = \log(r)$ for $i = 1, 2, 3$

~ *i* i i

Ansatz for the gauge fields

$$\begin{array}{l} \longleftarrow \\ A = a(r) dt \\ B = w(r)\omega_2 \end{array} \begin{array}{l} \bullet \\ w(\infty) = \mu \\ w(\infty) = \lambda \end{array} \end{array}$$

Homogenous charged scalar field

$$\chi = \chi(r)$$

Equation of Motion

$$\begin{split} 0 &= a'' + a' \left(v_1' + v_2' + v_3' \right) - \frac{2aq^2\rho^2}{U} + \kappa \rho e^{-v_1 - v_2 - v_3} ww', \\ 0 &= w'' + w' \left(\frac{U'}{U} + v_1' - v_2' + v_3' \right) + \frac{w}{U} \left(\kappa \rho e^{-v_1 + v_2 - v_3} a' - m^2 - \rho^2 e^{-2(v_1 - v_2 + v_3)} \right), \\ 0 &= 2\rho^2 \left(m_\rho^2 - \frac{a^2q^2}{U} \right) + a'^2 + w^2 \left(m^2 e^{-2v_2} + \rho^2 e^{-2(v_1 + v_3)} \right) + 4\rho^2 e^{-2v_1} \sinh^2 \left(v_2 - v_3 + 2U' \left(v_1' + v_2' + v_3' \right) - U \left(2\rho'^2 + e^{-2v_2} w'^2 - 4v_1' v_2' - 4v_1' v_3' - 4v_2' v_3' \right) - 24, \\ 0 &= 2\rho^2 \left(\frac{m_\rho^2}{U} - \frac{a^2q^2}{U^2} \right) - \frac{a'^2}{U} + \frac{w^2}{U} \left(m^2 e^{-2v_2} - \rho^2 e^{-2(v_1 + v_3)} \right) \\ &+ \frac{\rho^2}{U} \left(-2e^{-2v_1} + 3e^{-2(v_1 + v_2 - v_3)} - e^{-2(v_1 - v_2 + v_3)} \right) + 2\rho'^2 + \frac{2U''}{U} \\ &+ 4 \left(\frac{U'}{U} \left(v_1' + v_2' \right) + v_1'^2 + v_2' v_1' + v_2'^2 \right) - \frac{24}{U} + e^{-2v_2} w'^2 + 4 \left(v_1'' + v_2'' \right), \\ 0 &= \frac{2w^2}{U} \left(\rho^2 e^{-2(v_1 + v_3)} - m^2 e^{-2v_2} \right) + \frac{4p^2}{U} \left(e^{-2(v_1 - v_2 + v_3)} - e^{-2(v_1 + v_2 - v_3)} \right) \\ &+ \frac{4U'}{U} \left(v_3' - v_2' \right) - 2e^{-2v_2} w'^2 + 4 \left(-v_2'^2 - v_1' v_2' + v_3'^2 + v_1' v_3' \right) + 4 \left(v_3'' - v_2'' \right), \\ 0 &= \frac{\rho''}{U} \left(e^{-2v_1} - e^{-2(v_1 + v_2 - v_3)} \right) + \frac{U'}{U} \left(v_3' - v_1' \right) - v_1'^2 + v_3'^2 - v_1' v_2' + v_2' v_3' - v_1'' + v_3'' \right), \\ 0 &= \rho'' + \rho' \left(\frac{U'}{U} + v_1' + v_2' + v_3' \right) + \rho \left(\frac{a^2q^2}{U^2} - \frac{m^2}{U} \right) \end{split}$$

Only ODEs as promised by Bianchi VII

Expansion at black hole horizon

$$a = a_{1}^{h} (r - r_{h}) + a_{2}^{h} (r - r_{h})^{2} + \dots, w = w_{0}^{h} + w_{1}^{h} (r - r_{h}) + \dots, U = U_{1}^{h} (r - r_{h}) + U_{2}^{h} (r - r_{h})^{2} + \dots, v_{i} = v_{(i,0)}^{h} + v_{(i,1)}^{h} (r - r_{h}) + \dots, \rho = \rho_{0}^{h} + \rho_{1}^{h} (r - r_{h}) + \dots,$$

$$T = \frac{U_{1}^{h}}{4\pi} \int \mathcal{K}$$

Expansion at AdS boundary

$$a = \mu + \frac{\nu}{r^2} + \dots,$$

$$w = \lambda + \frac{\beta - p^2 \lambda \log(r)/2}{r^2} + \dots,$$

$$\rho = \frac{\rho_b}{r^4} - \frac{q^2 \mu^2 \rho_b}{12r^6} + \dots,$$

$$U = r^2 - \frac{\epsilon/3 + p^2 \lambda^2 \log(r)/6}{r^2} + \dots,$$

$$v_i = \log(r) + \frac{g_i - (-1)^i p^2 \lambda^2 \log(r)/24}{r^4} + \dots$$

 $(\epsilon, g_1, g_2, \mu, \nu, \lambda, \beta, \rho_b)$

 \boldsymbol{q}

Part I: Superfluid Phase Transition

Thermodynamics

► Free energy density evaluated at the boundary

Physical parameters we can freely tune

 $(\kappa, q, T/\mu, p/\mu, \lambda/\mu)$

Phase Transition ase I ransition

Mean field insulator-superfluid transition

Тс

Phase Diagram

(

Minimal Tc @ Fixed p

 p-value increases with decreasing q $\stackrel{\lambda}{\longrightarrow} = 0. \qquad \stackrel{\lambda}{\longrightarrow} = 0.9 \qquad \stackrel{\lambda}{\longrightarrow} = 1.8 \qquad \stackrel{\lambda}{\longrightarrow} = 2.7$ $\stackrel{\lambda}{\longrightarrow} = 0.3 \qquad \stackrel{\lambda}{\longrightarrow} = 1.2 \qquad \stackrel{\lambda}{\longrightarrow} = 2.1 \qquad \stackrel{\lambda}{\longrightarrow} = 3.$ $\stackrel{\lambda}{\longrightarrow} = 0.6 \qquad \stackrel{\lambda}{\longrightarrow} = 1.5 \qquad \stackrel{\lambda}{\longrightarrow} = 2.4$

Phase Diagram

Variation of Tc with q

Tc is reduced when increasing backreaction controlled by q

matches known behavior of holographic s-wave superconductor in pure AdS-RN background

Part II: Optical Conductivity

Eluctuation Eduations of Motion

	h _{tt}	h _{rr}	h_{11}	h ₂₂	h ₃₃	h _{tr}	h_{t1}	h_{t2}	h_{t3}	h_{r1}	h_{r2}	h _{r3}	h_{12}	h_{13}	h ₂₃	A_t^f	A_r^f	A_1^f	A_2^f	A_3^f	B_t^f	B_r^f	B_1^f	B_2^f	B_3^f	$ ho^{f}$	$\left(\rho^{f}\right)^{*}$
h _{tt}	٠	•	•	•	•	•										•	•							•		•	•
h_{rr} h_{11}		•	•	•	•	•										•	•							•		•	•
h ₂₂				•	٠	٠										٠	٠							٠		٠	•
h ₃₃ h+-					•	•										•	•							•		•	•
h_{t1}						•	•			•					•		•	•						•	•	•	-
h_{t2}								٠			٠			٠					٠		٠	٠					
n_{t3} h_{r1}									•	•		•	•		•			•		•			•		•		
h_{r2}											٠			٠					٠			٠					
h _{r3}												•	•							٠			•				
h_{13}^{112}													•	•									•				
h ₂₃															•										•		
A'_t A^f_n																•	•							•		•	•
$\begin{array}{c} A_1^f \\ A_2^f \\ A_2^f \end{array}$			δ,	A =	= .	4(t, I	r)u	\prime_1									•	•		•	•			•		
$egin{array}{c} A_3' \ B_t^f \ B_r^f \end{array}$			δΙ	B =	= <i>L</i>	3(t	:, r	-)ω	3											•	•	•	•				
B_1^f B_2^f B_2^f	δ	(c	s^2) =	= /	r_{t1}	(t,	r)	d <i>t</i>	\otimes	ω_1												•	•	•		
$ \begin{array}{c} \rho^{f} \\ \left(\rho^{f}\right)^{*} \end{array} $						+	h_{23}	3(t	, r)	ω_2	\underline{b} \otimes	ω	3 +	- h	r1(t,	r)	d <i>r</i>	\otimes	ω_1							•
		-	_	_	_			_	_			_	_	_	_												15

Transport Properties Lusport Broberties

Horizon expansion of fluctuation equations

$$\mathcal{A} = (r - r_h)^{\pm i\omega/(4\pi T)} \left(A_0^h + A_1^h (r - r_h) + \ldots \right)$$
$$\mathcal{A} = A_0^b + \frac{A_2^b + A_0^b \,\omega^2 \,\log(r)/2}{r^2} + \ldots$$

Photon propagator at zero momentum

$$\sigma_{x}(\omega) = \lim_{\mathbf{k}\to 0} \frac{G_{xx}^{R}(\omega, \mathbf{k})}{i\omega} \qquad G_{xx}^{R}(\omega, 0) = 2\left(\frac{A_{2}^{b}(\omega)}{A_{0}^{b}(\omega)} - \frac{\omega^{2}}{4}\right)$$

Optical Conductivity

Optical conductivity in normal and condensed phase

Optical Conductivity

Optical conductivity in normal and condensed phase

Drude Model

Drude model

Optical Conductivity Superfluid/Insulator

F-Sum Rule E-Sum Kule

Plasma frequency ~ Superfluid strength

$$\omega_{\rm Ps}^2 = 8 \int_0^\infty d\omega \, \operatorname{Re} \sigma_{\rm s}(\omega)$$
$$= 4\pi \frac{n_{\rm s} e^2}{m} = \lambda_{\rm L}^{-2} \equiv \rho_{\rm s}$$

Two Fluid Model

Two fluid model

$$\operatorname{Re}\sigma(\omega) = \frac{e}{m^*} \left(\chi_{n}(\tau) \frac{\tau}{1+\omega^2\tau^2} + \frac{\pi}{2} \chi_{s}(\tau) \delta(\omega) \right)$$

regular metallic part

superfluid part

Part IV: Homes' & Uemura's Relation

Homes Relation Homes Belation

Homes' relation

$$\rho_{\rm s} = C\sigma_{\rm DC}(T_c)T_c$$

Insert Drude model:

$$\rho_{\rm s} = C \frac{e}{m^*} n_{\rm n}(T_c) \tau(T_c) T_c$$

[[]Dordevic,Basov,Homes '12]

Perfect fluids / "Planckian Dissipators

$$au_{\hbar}(T) \sim rac{\hbar}{k_{\rm B}T} \qquad rac{\eta}{Ts} = rac{1}{4\pi} rac{\hbar}{k_{\rm B}T} = rac{\tau_{\hbar}}{4\pi} \qquad \begin{array}{c} {
m holographic superconductors} \\ {
m are} \\ {
m Planckian dissipators} \end{array}$$

Homes Relation Homes Belation

Holographic Version of Homes' Relation

$$\rho_{s} = C \frac{e}{m^{*}} n_{n}(T_{c})\tau(T_{c})T_{c}$$

$$all charge carrier condense in zero mode
$$\rho_{s}(T \to 0) \approx n_{s}(T \to 0)$$

$$quantum crictical system
$$\tau(T_{c})T_{c} \sim 1$$

$$\Rightarrow n_{s}(T \approx 0) = C' \frac{e}{m^{*}} n_{n}(T_{c}) \qquad \Rightarrow \frac{n_{s}(T \approx 0)}{n_{n}(T_{c})} = \text{const.}$$$$$$

Part V: Zero Temperature Solutions

Zero Temperature Solution

Scaling solution in the deep IR (no horizon!)

$$a_{0} = \frac{9 \kappa |p|p e^{-2v_{10}}}{5 (6\kappa^{2} + q^{2}\rho_{0}^{2} - 4)} \qquad w_{0} = \sqrt{3} \left(\frac{|p|}{2}\right)^{-2} e^{2v_{10} + v_{20}}$$

$$\rho_{1} = -\left(\frac{|p|}{2}\right)^{4} \frac{\kappa^{2} q^{2} \rho_{0} e^{-4v_{10}}}{(6\kappa^{2} + q^{2}\rho_{0}^{2} - 4)^{2}} \qquad w_{1} = \left(\frac{|p|}{2}\right)^{2} \frac{\sqrt{3} (q^{2}\rho_{0}^{2} - 4) e^{v_{20} - 2v_{10}}}{2 (6\kappa^{2} + q^{2}\rho_{0}^{2} - 4)}$$

$$e^{v_{30}} = \frac{2}{|p|} e^{v_{10} + v_{20}}$$

Expansion about IR geometry

$$w = w_0 + w_1 r^{4/3} (1 + c_w r^{\delta}) \qquad \rho = \rho_0 + \rho_1 r^{4/3} (1 + c_\rho r^{\delta}) \qquad a = a_0 r^{5/4} (1 + c_a r^{\delta})$$
$$v_1 = v_{10} + \log(r^{-1/3}) + c_1 r^{\delta} \qquad v_2 = v_{20} + \log(r^{2/3}) + c_2 r^{\delta} \qquad U = \frac{18}{5} r^2 (1 + c_U r^{\delta})$$
$$v_3 = v_{30} + \log(r^{1/3}) + c_3 r^{\delta}$$

Zero Temperature Thermodynamics

- Check other relations such as Uemura's or Tanner's relation
- Scaling behavior of optical conductivity with temperature and frequency
- Zero temperature solutions deserve closer investigation
 - \smile Determine zero temperature quantities e.g. ρ , ns, σ ,...
 - Compute zero temperature normal phase diagram

Thank You! for listening...

