AC conductivities

in a holographic model of momentum relaxation

1409.XXXX

K-Y Kim, Kyung Kiu Kim, Yunseok Seo, and Sang-Jin Sin

Keun-Young Kim

Gwangju Institute of Science and Technology, Korea

In the context of this meeting

AC conductivities

in a holographic model of momentum relaxation

> Universal incoherent metallic transport

Sean Hartnoll (Stanford)

Holographic Lattices,
Metals and Insulators
Jerome Gauntlett

The thermoelectric properties of inhomogeneous holographic lattices

Aristomenis Donos

Charge transport with momentum relaxation
 in holography

Blaise Goutéraux

Strongly Coupled Anisotropic Fluids From Holography

Sandip Trivedi

In the context of arXive

1311.5157 A simple holographic model of momentum relaxation

Tomás Andrade ${ }^{1}$ and Benjamin Withers ${ }^{2}$

1406.4870

Inhomogeneity simplified
Marika Taylor and William Woodhead
1409.XXXX

AC conductivities
in a holographic model of momentum relaxation

K-Y Kim, Kyung Kiu Kim, Yunseok Seo, and Sang-Jin Sin

Electric DC

> Extended model
> +
> Electric AC

Electric AC
in more detail
$+$
Thermal/Thermoelectric

Outline

1. Motivations and objects
2. Methodology: RN AdS black holes

- Review
- Numerical recipe

3. RN AdS black holes + momentum relaxation
4. Summary and future plans

Motivations: Phenomenology

Anomalous conductivities of strongly interacting system

- Cuprate phase diagram

Peter Wahl, 201 2, Nature Physics

- AC conductivity $\sigma(\omega) \rightarrow(i / \omega)^{\nu}$

- DC resistivity $\quad \rho \sim T$

- Hall angle $\sigma_{x x} / \sigma_{x y} \sim T^{2}$

Mike Blake

Mackenzie, 1997

Motivations: Holographic model

Conductivity of strongly interacting system by holography

- Einstein-Maxwell system

$$
S_{\mathrm{EM}}=\int_{M} \mathrm{~d}^{4} x \sqrt{-g}\left[R-2 \Lambda-\frac{1}{4} F^{2}\right]-2 \int_{\partial M} \mathrm{~d}^{3} x \sqrt{-\gamma} K
$$

- Reissner-Nordstrom-AdS black hole
~ Boundary field theory at finite temperature and density

Hartnoll, 1106.4324

- Electric conductivity

$$
\delta A_{x}(r, \omega)=\frac{E}{i \omega}+\frac{J_{x}(\omega)}{r}+\cdots \quad J_{x}=\sigma E_{x}
$$

Motivations: Holographic model

- Conductivity

$$
A_{x}=\frac{E_{x}}{i \omega} e^{i \omega t}+\frac{J_{x}}{r}+\cdots \quad J_{x}=\sigma E_{x}
$$

- Kramers-Kronig relation

$$
\operatorname{Im} \sigma \sim 1 / \omega \quad \Leftrightarrow \quad \operatorname{Re} \sigma(\omega) \sim \delta(\omega)
$$

Motivations: Holographic model

- Conductivity

$$
A_{x}=\frac{E_{x}}{i \omega} e^{i \omega t}+\frac{J_{x}}{r}+\cdots \quad J_{x}=\sigma E_{x}
$$

- Kramers-Kronig relation

$$
\operatorname{Im} \sigma \sim 1 / \omega \quad \Leftrightarrow \quad \operatorname{Re} \sigma(\omega) \sim \delta(\omega)
$$

Motivations: Holographic model

- Momentum relaxation

$$
\begin{array}{lll}
\text { 'lonic' Lattice } & A_{t} \sim 1+A_{0} \cos \left(k_{0} x\right) & \text { Horowitz, Santos, Tong: } 1209.1098 \\
& \phi \sim A_{0} \cos \left(k_{0} x\right) & \text { Horowitz, Santos, Tong: } 1204.0512
\end{array}
$$

Low frequency

$$
\omega<T \quad \sigma(\omega)=\frac{K \tau}{1-i \omega \tau}
$$

Intermediate frequency
$T<\omega<\mu \quad|\sigma(\omega)|=\frac{B}{\omega^{2 / 3}}+C$

Motivations: Holographic model

- AC conductivity $\sigma(\omega) \rightarrow(i / \omega)^{\nu} \quad \nu \approx 2 / 3$

Wavenumber (cm^{-1})

Horowitz, Santos, Tong: 1204.0512

Main questions

Q1. No contribution from pair creation?

$$
\sigma(\omega)=\frac{K \tau}{1-i \omega \tau}+\sigma_{Q} ? \longleftarrow \text { pair creation }
$$

Q2. Drude peak without quasi particle?

1) Weak translation symmetry breaking(coherent metal) Yes by Hartnoll and Hofman(1201.3917)
2) Strong translation symmetry breaking(incoherent metal)
?

Q3. Origin of scaling?
Q4. B and C ?

$$
|\sigma(\omega)|=\frac{B}{\omega^{2 / 3}}+C
$$

Q5. Thermoelectric and thermal conductivity?
Q0. Easier model capturing essential physics?

Models

- Momentum relaxation
'lonic' Lattice $A_{t} \sim 1+A_{0} \cos \left(k_{0} x\right)$ Horowitz, Santos, Tong: 1209.1098

$$
\phi \sim A_{0} \cos \left(k_{0} x\right) \quad \text { Horowitz, Santos, Tong: } 1204.0512
$$

- Background: 7 PDEs in two variables

$$
\begin{aligned}
& \mathrm{d} s^{2}=\frac{L^{2}}{z^{2}}\left[-(1-z) P(z) Q_{t t} \mathrm{~d} t^{2}+\frac{Q_{z z} \mathrm{~d} z^{2}}{P(z)(1-z)}+Q_{x x}\left(\mathrm{~d} x+z^{2} Q_{x z} \mathrm{~d} z\right)^{2}+Q_{y y} \mathrm{~d} y^{2}\right] \\
& A=(1-z) \psi(x, z) \mathrm{d} t \quad \Phi=z \phi(x, z)
\end{aligned}
$$

- Fluctuations: 11 PDEs in two variables

$$
\left\{\tilde{h}_{t t}, \tilde{h}_{t z}, \tilde{h}_{t x}, \tilde{h}_{z z}, \tilde{h}_{z x}, \tilde{h}_{x x}, \tilde{h}_{y y}, \tilde{b}_{t}, \tilde{b}_{z}, \tilde{b}_{x}, \tilde{\eta}\right\}
$$

- Momentum relaxation simplified (ODE)

$$
\begin{array}{lrl}
\psi_{I}=\beta_{I i} x^{i}=\beta \delta_{I i} x^{i} & \text { Andrade and Withers } 1311.5157 \text { Sandip Trivedi } \\
\sigma_{D C}=1+\frac{\mu^{2}}{\beta^{2}} & \text { Other methods }
\end{array}
$$

Massive gravity model: Vegh(1301), Davison(1306)
Q-lattice model: Donos and Gauntlett (1311)

Outline

1. Motivations and objects
2. Methodology: RN AdS black holes

- Review
- Numerical recipe

3. RN AdS black holes + momentum relaxation
4. Summary and future plans

RN AdS black holes

- Einstein-Maxwell system

$$
S_{\mathrm{EM}}=\int_{M} \mathrm{~d}^{4} x \sqrt{-g}\left[R-2 \Lambda-\frac{1}{4} F^{2}\right]-2 \int_{\partial M} \mathrm{~d}^{3} x \sqrt{-\gamma} K
$$

- Reissner-Nordstrom-AdS black hole
~ Boundary field theory at finite temperature and density

$$
\begin{aligned}
& \mathrm{d} s^{2}=-f(r) \mathrm{d} t^{2}+\frac{\mathrm{d} r^{2}}{f(r)}+r^{2} \delta_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}, \\
& \quad f(r)=r^{2}-\frac{r_{0}^{3}}{r}\left(1+\frac{\mu^{2}}{4 r_{0}^{2}}\right)+\frac{\mu^{2} r_{0}^{2}}{4 r^{2}}, \\
& A=\mu\left(1-\frac{r_{0}}{r}\right) \mathrm{d} t \\
& T=\frac{f^{\prime}\left(r_{0}\right)}{4 \pi}=\frac{1}{4 \pi}\left(3 r_{0}-\frac{\mu^{2}}{4 r_{0}}\right)
\end{aligned}
$$

Electric, Thermoelectric, Thermal conductivity

- Fluctuations

- EOMs

$$
\begin{aligned}
& \delta g_{t i}(t, r)=\int_{-\infty}^{\infty} \frac{\mathrm{d} \omega}{2 \pi} e^{-i \omega t} r^{2} h_{t i}(\omega, r), \\
& \delta A_{i}(t, r)=\int_{-\infty}^{\infty} \frac{\mathrm{d} \omega}{2 \pi} e^{-i \omega t} a_{i}(\omega, r),
\end{aligned}
$$

$$
\begin{aligned}
-\frac{\mu a_{x}^{\prime}}{r^{4}}-\frac{4 h_{t x}^{\prime}}{r}-h_{t x}^{\prime \prime} & =0 \\
\frac{\mu a_{x}}{r^{4}}+h_{t x}^{\prime} & =0 \\
\frac{f^{\prime} a_{x}^{\prime}}{f}+\frac{\mu h_{t x}^{\prime}}{f}+\frac{\omega^{2} a_{x}}{f^{2}}+a_{x}^{\prime \prime} & =0
\end{aligned}
$$

- Boundary action

$$
\begin{aligned}
& S_{\mathrm{ren}}^{(2)}=\lim _{r \rightarrow \infty} V_{2} \frac{1}{2} \int \mathrm{du}\left(-m_{0} h_{t x} h_{t x}-\mu a_{t x} h_{t x}-f(r) a_{t x} a_{t x}^{\prime}+r^{4} h_{t x} h_{t x}^{\prime}\right] \quad m_{0}=\left(1+\frac{\mu^{2}}{4}\right) \\
& \left(\begin{array}{cc}
G_{J_{x} J_{x}}^{R} & G_{J x}^{R} T_{t x} \\
G_{T_{t x} J_{x}}^{R} & G_{T_{t x}}^{R} T_{t x}
\end{array}\right)=\left(\begin{array}{cc}
\frac{a_{x}^{(1)}}{a_{x}^{(0)}} & -\mu \\
-\mu & -m_{0}
\end{array}\right)
\end{aligned}
$$

$$
\left.\begin{array}{ll}
=:\left(\begin{array}{ll}
G_{11} & G_{12} \\
G_{21} & G_{22}
\end{array}\right) & \begin{array}{c}
\text { Linear response } \\
\binom{\left\langle J_{x}\right\rangle}{\left\langle T_{t x}\right\rangle}
\end{array} \begin{array}{l}
\downarrow \\
\text { ssues for generalisation }
\end{array} \\
G_{11} G_{12} \\
G_{21} & G_{22}
\end{array}\right)\binom{\delta a_{x}^{s}}{\delta h_{t x}^{s}}
$$

- Two issues for generalisation

1. more than one equation
2. identify the sources and currents

Linear response

$$
\binom{\left\langle J_{x}\right\rangle}{\left\langle Q_{x}\right\rangle}=\left(\begin{array}{cc}
\sigma & \alpha T \\
\bar{\alpha} T & \bar{\kappa} T
\end{array}\right)\binom{E_{x}}{-\left(\nabla_{x} T\right) / T}
$$

Systematic numerical methods

- Fluctuations
$\Phi^{a}(x, r)=\int \frac{\mathrm{d}^{d} k}{(2 \pi)^{d}} \Phi_{k}^{a}(r) e^{-i k x}$
- Boundary action
$S_{B}=\lim _{r \rightarrow \infty} \frac{1}{2} \int \frac{\mathrm{~d}^{d} k}{(2 \pi)^{d}}\left[\Phi_{-k}^{a}(r) A_{a b}(r, k) \Phi_{k}^{b}(r)+\Phi_{-k}^{a}(r) B_{a b}(r, k) \partial_{r} \Phi_{k}^{b}(r)\right]$
- Solutions near boundary

$$
\begin{gathered}
\Phi_{k}^{a}(r)=\Phi_{k, i}^{a}(r) c^{i} \rightarrow\left(\Phi_{k, i}^{\mathrm{s}, a}+\frac{\Phi_{k, i}^{\mathrm{o}, a}}{r^{\delta_{a}}}+\cdots\right) c^{i} \quad \text { (near boundary) } \\
J_{k}^{a}=\Phi_{k, i}^{\mathrm{s}, a} c^{i} \quad c^{i}=\Phi_{k, a}^{\mathrm{s}, i} J_{k}^{a} \\
B_{a c}(r, k) \partial_{r} \Phi_{k}^{c}(r)=\left[-B_{a c}(r, k)\left(\delta_{c} r^{-\delta_{c}-1} \Phi_{k, i}^{\mathrm{o}, c}\right) \Phi_{k, b}^{\mathrm{s}, i}\right] J_{k}^{b}+\cdots=\left[C_{a b}(r, k)\right] J_{k}^{b}+\cdots
\end{gathered}
$$

- Boundary action

$$
\begin{array}{r}
S_{B}=\frac{1}{2} \int \frac{\mathrm{~d}^{d} k}{(2 \pi)^{d}}\left[J_{-k}^{a}\left[A_{a b}(\infty, k)+C_{a b}(\infty, k)\right] J_{k}^{b}\right] \\
G_{a b}=A_{a b}(\infty, k)+C_{a b}(\infty, k)
\end{array}
$$

Checking numerical methods

Hartnoll 0903.3234

Our results

$\omega \operatorname{Im}[\sigma] / \mathrm{T}$

$\sigma=\sigma_{Q}+i \frac{K}{\omega}$

$$
\begin{aligned}
\sigma_{Q} & =\left(\frac{3-\frac{\mu^{2}}{4 r_{0}^{2}}}{3+\frac{3 \mu^{2}}{4 r_{0}^{2}}}\right)^{2} \quad K=r_{0} \frac{\frac{\mu^{2}}{r_{0}^{2}}}{3+\frac{3 \mu^{2}}{4 r_{0}^{2}}} \\
r_{0} & =\frac{2 \pi}{3}\left(T+\sqrt{T^{2}+3(\mu / 4 \pi)^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
\left(\begin{array}{cc}
G_{J_{x} J_{x}}^{R} & G_{J_{x} T_{t x}}^{R} \\
G_{T_{t x} J_{x}}^{R} & G_{T_{t x} T_{t x}}^{R}
\end{array}\right) & =\left(\begin{array}{cc}
\frac{a_{x}^{(1)}}{a_{x}^{(0)}} & -\mu \\
-\mu & -m_{0}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{a_{x}^{(1)}}{a_{x}^{(0)}} & -\frac{\mu}{2}-\frac{h_{t x}^{(1)}}{a_{x}^{(0)}} \\
-\frac{\mu}{2}-\frac{h_{t x}^{(1)}}{a_{x}^{(0)}} & -m_{0}
\end{array}\right)
\end{aligned}
$$

Ge, Jo, and Sin, 1012.2515

Outline

1. Motivations and objects
2. Methodology: RN AdS black holes

- Review
- Numerical recipe

3. RN AdS black holes + momentum relaxation
4. Summary and future plans

- Actions

$$
\begin{aligned}
S_{\mathrm{EM}} & =\int_{M} \mathrm{~d}^{4} x \sqrt{-g}\left[R-2 \Lambda-\frac{1}{4} F^{2}\right]-2 \int_{\partial M} \mathrm{~d}^{3} x \sqrt{-\gamma} K \\
S_{\psi} & =\int_{M} \mathrm{~d}^{4} x \sqrt{-g}\left[-\frac{1}{2} \sum_{I=1}^{2}\left(\partial \psi_{I}\right)^{2}\right] \\
S_{\mathrm{c}} & =\int_{\partial M} \mathrm{~d} x^{3} \sqrt{-\gamma}\left(-4-R[\gamma]+\frac{1}{2} \sum_{I=1}^{2} \gamma^{\mu \nu} \partial_{\mu} \psi_{I} \partial_{\nu} \psi_{I}\right)
\end{aligned}
$$

- EOMs

$$
\begin{aligned}
R_{M N} & =\frac{1}{2} g_{M N}\left(R-2 \Lambda-\frac{1}{4} F^{2}\right)+\frac{1}{2} \sum_{I} \partial_{M} \psi_{I} \partial_{N} \psi_{I}+\frac{1}{2} F_{M}^{P} F_{N P} \\
\nabla_{M} F^{M N} & =0 \\
\nabla^{2} \psi_{I} & =0 .
\end{aligned}
$$

- RN-AdS solution + two scalars

$$
\begin{array}{rlr}
\mathrm{d} s^{2}=-f(r) \mathrm{d} t^{2}+\frac{\mathrm{d} r^{2}}{f(r)}+r^{2} \delta_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}, & m_{0}=r_{0}^{3}\left(1+\frac{\mu^{2}}{4 r_{0}^{2}}-\frac{\beta^{2}}{2 r_{0}^{2}}\right) \\
& f(r)=r^{2}-\frac{\beta^{2}}{2}-\frac{m_{0}}{r}+\frac{\mu^{2}}{4} \frac{r_{0}^{2}}{r^{2}}, & T=\frac{f^{\prime}\left(r_{0}\right)}{4 \pi}=\frac{1}{4 \pi}\left(3 r_{0}-\frac{\mu^{2}+2 \beta^{2}}{4 r_{0}}\right) \\
A=\mu\left(1-\frac{r_{0}}{r}\right) \mathrm{d} t, & r_{0}=\frac{2 \pi}{3}\left(T+\sqrt{T^{2}+3(\mu / 4 \pi)^{2}+6(\beta / 4 \pi)^{2}}\right) \\
\psi_{I}=\beta_{I i} x^{i}=\beta \delta_{I i} x^{i}, &
\end{array}
$$

RN AdS black holes + scalar

- Fluctuations

$$
\begin{aligned}
& \delta g_{t x}(t, r)=\int_{-\infty}^{\infty} \frac{\mathrm{d} \omega}{2 \pi} e^{-i \omega t} r^{2} h_{t x}(\omega, r), \\
& \delta A_{x}(t, r)=\int_{-\infty}^{\infty} \frac{\mathrm{d} \omega}{2 \pi} e^{-i \omega t} a_{x}(\omega, r), \\
& \delta \psi_{x}(t, r)=\int_{-\infty}^{\infty} \frac{\mathrm{d} \omega}{2 \pi} e^{-i \omega t} \chi_{x}(\omega, r)
\end{aligned}
$$

- EOMs

$$
\begin{array}{r}
\frac{\beta^{2} h_{t x}}{r^{2} f}+\frac{i \beta \omega \chi_{x}}{r^{2} f}-\frac{\mu a_{x}^{\prime}}{r^{4}}-\frac{4 h_{t x}^{\prime}}{r}-h_{t x}^{\prime \prime}=0 \\
\frac{i \beta f \chi_{x}^{\prime}}{r^{2} \omega}+\frac{\mu a_{x}}{r^{4}}+h_{t x}^{\prime}=0 \\
\frac{f^{\prime} a_{x}^{\prime}}{f}+\frac{\mu h_{t x}^{\prime}}{f}+\frac{\omega^{2} a_{x}}{f^{2}}+a_{x}^{\prime \prime}=0 \\
\frac{f^{\prime} \chi_{x}^{\prime}}{f}-\frac{i \beta \omega h_{t x}}{f^{2}}+\frac{\omega^{2} \chi_{x}}{f^{2}}+\frac{2 \chi_{x}^{\prime}}{r}+\chi_{x}^{\prime \prime}=0
\end{array}
$$

- Boundary action

$$
S_{\mathrm{ren}}^{(2)}=\lim _{r \rightarrow \infty} V_{2} \frac{1}{2} \int \mathrm{~d} \omega\left[-m_{0} h_{t x} h_{t x}-\mu a_{t x} h_{t x}-f(r) a_{t x} a_{t x}^{\prime}+r^{4} h_{t x} h_{t x}^{\prime}-r^{2} f(r) \chi_{x} \chi_{x}^{\prime}\right]
$$

AC electric conductivity

DC limit

$$
\sigma=1+\frac{\mu^{2}}{\beta^{2}}
$$

Andrade and Withers 1311.5157

Drude like?
$\sigma(\omega)=\frac{\sigma_{0}}{1-i \omega \tau}$

Drude peak

- Drude model

$$
\begin{aligned}
& \frac{d p}{d t}=-\frac{1}{\tau} p+q E \\
& \sigma(\omega)=\frac{\sigma_{0}}{1-i \omega \tau}
\end{aligned}
$$

Ward identity Andrade and Withers 1311.5157

$$
\begin{aligned}
\nabla^{\nu}\left\langle T_{\nu \mu}\right\rangle & =\partial_{\mu} \phi\langle\mathcal{O}\rangle+F_{\mu \nu}\left\langle J^{\nu}\right\rangle \\
\partial_{t}\left\langle\delta p_{x}\right\rangle & =\beta\langle\delta \mathcal{O}\rangle+\left\langle J^{t}\right\rangle \delta E_{x}
\end{aligned}
$$

- Fitting $\quad \sigma(\omega)=\frac{B \tau}{1-i \omega \tau}+A$

Drude peak

$$
\begin{aligned}
& \begin{array}{l}
\sigma_{Q}=\left(\frac{3-\frac{\mu^{2}}{4 r_{0}^{2}}}{3+\frac{3 \mu^{2}}{4 r_{0}^{2}}}\right)^{2} \\
K=r_{0} \frac{\frac{\mu^{2}}{r_{0}^{2}}}{3+\frac{3 \mu^{2}}{4 r_{0}^{2}}}
\end{array} \\
& r_{0}=\frac{2 \pi}{3}\left(T+\sqrt{T^{2}+3(\mu / 4 \pi)^{2}+6(\beta / 4 \pi)^{2}}\right) \\
& \sigma(\omega)=\frac{K \tau}{1-i \omega \tau}+\sigma_{Q} \\
& \sigma \rightarrow \sigma_{Q}+i \frac{K}{\omega} \\
& \tau=\frac{1+\frac{\mu^{2}}{\beta^{2}}-\sigma_{Q}}{K} \\
& =\frac{1}{4 \pi T} \cdot \frac{45 \tilde{\beta}^{4}+36 \tilde{\mu}^{4}+2(1+\Delta)+6 \tilde{\beta}^{2}\left(4+12 \tilde{\mu}^{2}+3 \Delta\right)+3 \tilde{\mu}^{2}(5+4 \Delta)}{\tilde{\beta}^{2}(1+\Delta)\left(1+3 \tilde{\beta}^{2}+6 \tilde{\mu}^{2}+\Delta\right)} \\
& \Delta \equiv \sqrt{1+3 \tilde{\mu}^{2}+6 \tilde{\beta}^{2}}, \quad \tilde{\mu} \equiv \frac{\mu}{4 \pi T}, \quad \tilde{\beta} \equiv \frac{\beta}{4 \pi T}
\end{aligned}
$$

Relaxation time

$$
\tau=\frac{1+\frac{\mu^{2}}{\beta^{2}}-\sigma_{Q}}{K}=\frac{1}{4 \pi T} \cdot \frac{45 \tilde{\beta}^{4}+36 \tilde{\mu}^{4}+2(1+\Delta)+6 \tilde{\beta}^{2}\left(4+12 \tilde{\mu}^{2}+3 \Delta\right)+3 \tilde{\mu}^{2}(5+4 \Delta)}{\tilde{\beta}^{2}(1+\Delta)\left(1+3 \tilde{\beta}^{2}+6 \tilde{\mu}^{2}+\Delta\right)}
$$

$$
\Delta \equiv \sqrt{1+3 \tilde{\mu}^{2}+6 \tilde{\beta}^{2}}, \quad \tilde{\mu} \equiv \frac{\mu}{4 \pi T}, \quad \tilde{\beta} \equiv \frac{\beta}{4 \pi T}
$$

Drude peak

Low $T<\beta, \mu$

$$
\begin{array}{lllll}
\beta / \mu<1 & \text { 'Clean' region } & \text { Drude } & \text { Coherent metal } & \tau \approx \frac{\mu}{\beta^{2}} \\
\beta / \mu>1 & \text { 'Dirty' region } & \text { Dryde } & \text { Incoherent metal } &
\end{array}
$$

Motivations: Phenomenology

- AC conductivity $\sigma(\omega) \rightarrow(i / \omega)^{\nu}$

Van der Marel et al., 2003

Intermediate frequency scaling

General feature

$$
\sigma=\frac{B}{\omega \gamma} e^{i \frac{\pi}{2} \gamma}
$$

(a) $\beta / r_{0}=0.1$

(b) $\beta / r_{0}=1$

(c) $\beta / r_{0}=1.5$

The best we've found so far

$$
\begin{aligned}
& \sigma=\left(\frac{B}{\omega^{\gamma}}+C\right) e^{i \frac{\pi}{2} \tilde{\gamma}} \\
& \sigma=\left(\frac{K}{(\omega / \mu)^{\gamma}}+\sigma_{D C}\right)
\end{aligned}
$$

See also 1406.4870 , Taylor and Woodhead

Thermal and thermoelectric conductivity

Outline

1. Motivations and objects
2. Methodology: RN AdS black holes

- Review
- Numerical recipe

3. RN AdS black holes + momentum relaxation
4. Summary and future plans

Summary and plan

Summary
By using Andrade and Withers model $\psi_{I}=\beta_{I i} x^{i}=\beta \delta_{I i} x^{i}$

- AC electric conductivity
- Coherent metal regime vs Incoherent metal regime

$$
\sigma(\omega)=\frac{K \tau}{1-i \omega \tau}+\sigma_{Q} \quad \tau \approx \frac{\mu}{\beta^{2}}
$$

- No intermediate scaling yet
- Thermoelectric conductivity
- Systematic numerical recipe

Ongoing work

- Magnetic field: Dyonic black hole
- Holographic superconductor

Future plan
Other models: Anisotropic case, Einstein-Maxwell-Dilaton, etc

Appendix

Hall conductivity

