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In the context of arXive

A simple holographic model of momentum
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Abstract

We consider a holographic model consisting of Einstein-Maxwell theory in d + 1

bulk spacetime dimensions with d � 1 massless scalar fields. Momentum relaxation is

realised simply through spatially dependent sources for operators dual to the neutral

scalars, which can be engineered so that the bulk stress tensor and resulting black

brane geometry are homogeneous and isotropic. We analytically calculate the DC

conductivity, which is finite. In the d = 3 case, both the black hole geometry and

shear-mode current-current correlators are those of a sector of massive gravity.
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Abstract: We study models of translational symmetry breaking in which inhomogeneous

matter field profiles can be engineered in such a way that black brane metrics remain

isotropic and homogeneous. We explore novel Lagrangians involving square root terms and

show how these are related to massive gravity models and to tensionless limits of branes.

Analytic expressions for the DC conductivity and for the low frequency scaling of the

optical conductivity are derived in phenomenological models, and the optical conductivity

is studied in detail numerically. The square root Lagrangians are associated with linear

growth in the DC resistivity with temperature and also lead to minima in the optical

conductivity at finite frequency, suggesting that our models may capture many features of

heavy fermion systems.
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Motivations: Phenomenology
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In this paper we study AdS RN and dyonic BH with the simplest possible momentum

dissipation e↵ect model.

RN black hole - DC conductivity

1/omega pole. - Intermediate momentum

- Bad metal behaviour.

Dyonic - DC

- Wiederman Franz law.

- Hall angle.

[17] [18] [4]

2 Dyonic black branes with scalar sources

Let us start with the Einstein-Maxwell action on a four dimensional manifold M with

boundary @M is

S
EM

=

Z

M

d4x
p
�g


R� 2⇤� 1

4
F 2

�
� 2

Z

@M

d3x
p
��K , (2.1)

where ⇤ = � 3

l

2 is a negative cosmological constant and we have chosen units such that

16⇡G = 1. Hereafter we set l = 1. The second term is the Gibbons-Hawking term

required for a well defined variational problem with Dirichlet boundary conditions. � is

the determinant of the induced metric �
µ⌫

at the boundary and K is the trace of the

extrinsic curvature. In order to have a momentum relaxation e↵ect, we add a free massless

scalar

S
 

=

Z

M

d4x
p
�g

"
�1

2

2X

I=1

(@ 
I

)2

#
. (2.2)

The total action

S = S
EM

+ S
 

(2.3)

implies equations of motion1

R
MN

=
1

2
g
MN

✓
R� 2⇤� 1

4
F 2

◆
+

1

2

X

I

@
M

 
I

@
N

 
I

+
1

2
F
M

PF
NP

(2.4)

r
M

FMN = 0 , (2.5)

r2 
I

= 0 . (2.6)

1
Index convention: M,N, · · · = 0, 1, 2, r, and µ, ⌫, · · · = 0, 1, 2, and i, j, · · · = 1, 2.

– 2 –

Conductivity of strongly interacting system by holography

Einstein-Maxwell system

Reissner-Nordstrom-AdS black hole  
   ~ Boundary field theory at finite temperature and density

5 The planar Reissner-Nordström-AdS black hole 13

The Maxwell potential of the solution is

A = µ

✓
1� r

r+

◆
dt . (5.5)

We have required the Maxwell potential to vanish on the horizon, At(r+) =
0. The simplest argument for this condition is that otherwise the holonomy
of the potential around the Euclidean time circle would remain nonzero when
the circle collapsed at the horizon, indicating a singular gauge connection.
The planar Reissner-Nordström-AdS solution is characterized by two scales,
the chemical potential µ = limr!0At and the horizon radius r+. From the
dual field theory perspective, it is more physical to think in terms of the
temperature than the horizon radius

T =
1

4⇡r+

✓
3�

r2+µ
2

2�2

◆
. (5.6)

The black hole is illustrated in figure 4 below. This black hole, which can

&KDUJH�
GHQVLW\(OHFWULF�IOX[�

� ��

�

Figure 4 The planar Reissner-Nordström-AdS black hole. The charge den-
sity is sourced entirely by flux emanating from the black hole horizon.

additionally carry a magnetic charge, was the starting point for holographic
approaches to finite density condensed matter [27, 28].
Because the underlying UV theory is scale invariant, the only dimension-

less quantity that we can discuss is the ratio T/µ. In order to answer our
basic question about the IR physics at low temperature, we must take the
limit T/µ ⌧ 1 of the solution. We thereby obtain the extremal Reissner-
Nordström-AdS black hole with

f(r) = 1� 4

✓
r

r+

◆3

+ 3

✓
r

r+

◆4

. (5.7)

The near-horizon extremal geometry, capturing the field theory IR, follows

Electric conductivity

Motivations: Holographic model

J
x

= �E
x

perturbation (103). Taking ⇠t̄ = ixrxT/!̄T 3 and ⇠x = 0, one obtains that after the gauge

transformation �gt̄t̄(0) = 0, �gxt̄(0) = irxT/!̄T 3 and �Ax(0) = �iµrxT/!̄T 3. Scaling back

to the original dimensionful time t, we obtain (102).

Combining (101) and (102) we can see that the the source term in the action becomes

�S =

Z
dd�1xdt

p�g(0)
�
T tx�gtx(0) + JxAx(0)

�
=

Z
dd�1xdt

p�g(0)

✓
(T tx � µJx)

�rxT

i!T
+ JxEx

i!

◆
. (105)

Thus we see that the current sourced by a thermal gradient is Qx = Ttx�µJx, as we claimed

above. Substituting (101) and (102) into (100) gives0@ hJxi
hQxi

1A =

0@ � ↵T

↵T ̄T

1A0@ i!(�Ax(0) + µ�gtx(0))

i!�gtx(0)

1A , (106)

This linear relation between a source and an expectation value makes it clear that the

conductivities are nothing other than the retarded Green’s functions

�(!) =
�iGR

JxJx
(!)

!
, ↵(!)T =

�iGR
QxJx

(!)

!
, ̄(!)T =

�iGR
QxQx

(!)

!
. (107)

From our previous discussion we know that in order to compute the response of the

theory to these small background fields via AdS/CFT we need to solve the equations of

motion of perturbations �Ax and �gtx in the bulk. These perturbations do not source any

other fields (this simplification occurs because we have set the momentum k = 0). The bulk

action we will use is the Einstein-Maxwell action (54). The background solution is given

by the 4 dimensional Reissner-Nordstrom-AdS black hole, discussed around (59). Linearis-

ing the Einstein-Maxwell equations of motion (57) about this background one obtains the

following two independent equations

�g0tx +
2

r
�gtx +

4L2

�2
A0

t�Ax = 0 , (108)

(f�A0
x)

0 +
!2

f
�Ax +

r2A0
t

L2

✓
�g0tx +

2

r
�gtx

◆
= 0 , (109)

with f,At and �2 given below (59) above. Note in particular that A0
t = �µ/r+ is a constant.

We can easily obtain a decoupled equation for �Ax

(f�A0
x)

0 +
!2

f
�Ax � 4µ2r2

�2r2+
�Ax = 0 . (110)

It is straightforward to check that solutions to this equation behave near the boundary as

�Ax = �Ax(0) +
r

L
�Ax(1) + · · · as r ! 0 . (111)

41

+

�A
x

(r,!) =
E

i!
+

J
x

(!)

r
+ · · ·

Hartnoll, 1106.4324
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As described above, we impose ingoing boundary conditions for A
x

at the
horizon of the black hole. Our goal is to determine the sub-leading fall-o↵
hJ

x

i by solving the equations of motion in the bulk.
These calculations were first performed in [18] for the Schwarzchild black

hole and in [2] for the Reissner-Nordström black hole. One can show that
sourcing A

x

in this way will also turn on the metric component g
tx

, but no
further fields. The Maxwell equation is

(f(r)A0
x

)0 +
w2

f(r)
A

x

= �A0
0

r2

L2

✓
g0
tx

+
2

r
g
tx

◆

while the Einstein equations require

g0
tx

+
2

r
g
tx

+
4L2

�2
A0

0

A
x

= 0

We can use this latter constraint to eliminate the metric, leaving us with a
single second order equation of motion for A

x

,

(fA0
x

)0 +
w2

f
A

x

=
4µ2

�2r2
h

r2A
x

(33)

Solving this equation, subject to the ingoing boundary conditions at the
horizon, allows us to determine the response hJ

x

i in terms of the source.
The ratio is the optical conductivity, which we can write as

�(!) =
1

e2
A0

x

i!A
x

����
r=0

(34)

Although (33) cannot be solved analytically, it is a simple matter to solve
it numerically. The result is plotted in Figure 5.

Let’s compare this to our expectations from the previous section. We
see that at frequencies ! � µ, there is a rise in the conductivity, before it
reaches a plateaux for higher !. This is analogous to the behaviour seen
in graphene and, as we mentioned in Section 3, is typical of any CFT in
d = 2 + 1 dimensions.

However, there is no Drude peak at small frequencies. Instead, some-
thing much more dramatic happens. In the numerical data shown, this
reveals itself as a pole in the imaginary part of the imaginary part of the
conductivity, Im� ⇠ 1/!. But the Kramers-Kronig relation (which is es-
sentially the requirement of causality imposed on response functions) means
that this pole is necessarily accompanied by a zero-frequency delta-function
in the real part of the conductivity,

Re�(!) ⇠ K�(!) (35)

, Re �(!) ⇠ �(!)

Op#cal'Conduc#vity'

Herzog,'Kovtun,'Sachdev'and'Son;'Hartnoll'

D-BRANES ON ALF SPACES

ds2 =
L2

z2

�
� gtt(z, x)dt

2 + gzz(z, x)dz
2 + gxx(z, x)(dx+ a(z, x)dz)2 + gyy(z, x)dy

2
⇥

ds2 =
L2

z2

�
� gttdt

2 + gzzdz
2 + gxx(dx+ a dz)2 + gyydy

2
⇥

⇥(x, z)

A0(z, x)

⇥ ⇧⌃ O

m2
�L

2 = �1

⇥ ⌃ z⌅0 + z2⌅1 + . . .

⌅0 = A cos(kLx)

L = LCFT + µQ+ ⌅0(x, y)O

AdS2 ⇥R2

⇥ ⇤ T 2��1

�gtt, �gtz, �gtx, �gzz, �gzx, �gxx, �gyy , �At, �Az, �Ax, �⇥

j(⇧) = ⇤(⇧)E(⇧)

Gµ� =
1

M2
pl

Tµ� � �gµ�

Mpl ⌅ 1027 eV

� ⌅ (10�3 eV )4

�observed = �bare + �induced

1

j(⌅) = ⇤(⌅)E(⌅)

Re⇤(⌅) ⇥ K �(⌅)

Gµ� =
1

M2
pl

Tµ� � �gµ�

Mpl ⇤ 1027 eV

� ⇤ (10�3 eV )4

�observed = �bare + �induced

�observed ⇤ (10�3 eV )4

�induced ⇤ (1012 eV )4 (1)

= 1060 �observed

�induced ⇤ (1012 eV )4 (2)

= 10120 �observed

�induced ⇤ (1012 eV )4

�bare ⇤ �(1012 eV )4

⇧E =
e⇧̂r

4⇥r2

�induced ⇤ 1060 �observed

�bare ⇤ �1060 �observed

Energy =

�
d3r ⇧E · ⇧E

=

� ⇥

a
dr

e2

4⇥r2
=

e2

4⇥a

e2

4⇥a
< mec

2

a =
~

mec

e2

4⇥~c < 1

e2

4⇥~c ⇤ 1

137
Hi Bobby - hope you’re well. And welcome to the long-promised musings on the Alfy
project. Below I’ve concentrated on the hyper-kähler quotient construction of ALF spaces.
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m
d⌃v

dt
+

m

⇤
⌃v = q ⌃E

⇥(⇧) =

�
nq2⇤

m

⇥
1

1 + i⇧⇤

⌃j = nq⌃v

Re(⇥) =
⇥0

1 + ⇧2⇤2

Im(⇥) =
⇥0⇧⇤

1 + ⇧2⇤2

Im(⇥) ⌅ K

�⇧

ds2 =
L2

z2

⇤
� gtt(z, x)dt

2 + gzz(z, x)dz
2 + gxx(z, x)(dx+ a(z, x)dz)2 + gyy(z, x)dy

2
⌅

ds2 =
L2

z2

⇤
� gttdt

2 + gzzdz
2 + gxx(dx+ a dz)2 + gyydy

2
⌅

�(x, z)

A0(z, x)

� ⇤⌅ O

m2
�L

2 = �1

� ⌅ z⌅0 + z2⌅1 + . . .

⌅0 = A cos(kLx)

L = LCFT + µQ+ ⌅0(x, y)O

AdS2 ⇥R2

1

A
x

=
E

x

i!
ei!t +

J
x

r
+ · · ·

Motivations: Holographic model

Translation invariance + finite density

2007
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As described above, we impose ingoing boundary conditions for A
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it numerically. The result is plotted in Figure 5.
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However, there is no Drude peak at small frequencies. Instead, some-
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sentially the requirement of causality imposed on response functions) means
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Fig. 6. Holographic optical conductivity in the presence of a lattice, taken from
[20].

To do this holographically, we must solve the bulk Einstein-Maxwell equa-
tions, subject to the boundary condition A

0

! µ(x, y) as r ! 0. That’s not
possible analytically. Instead we need to turn to numerics.

Working with a general function µ(x, y) would require solving three-
dimensional PDEs with the radial direction providing the third variable.
Here we do something a little easier. We work instead with a striped chem-
ical potential of the form

µ = µ̄ (1 +A
0

cos(kx)) (37)

This now requires solving PDEs in two variables. The solutions were found
numerically in [19]. They are, as you may expect, rippled Reissner-Nordström
black holes. We refer to this as a holographic lattice.

With the solutions in hand, it is conceptually straightforward to de-
termine the conductivity using the same method described in the previous
section, running the electric field in the x-direction, against the grain of the
stripes. However, while conceptually straightforward, it is calculationally
challenging. In the case with translational invariance, sourcing A

x

turned
on only g

tx

. In the absence of translational invariance, almost everything
is sourced. One ends up with ten, coupled PDEs in two independent vari-
ables, linearised around the numerical rippled Reisnner-Nordström black
holes. These equations were solved numerically in [20, 19].

The real and imaginary parts of optical conductivity in the presence of
a holographic lattice is shown in Figure 6. (The black dotted line is the

Momentum relaxation
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Figure 6: A blow up of the low frequency optical conductivity with lattice shown in Fig. 5. The
data points in both curves are fit by the simple two-parameter Drude form (3.2).

3.1 The Drude Peak

At low frequency, both the real and imaginary parts of the conductivity can be fit by the two-
parameter Drude form

�(!) =
K⌧

1� i!⌧
(3.2)

with both the scattering time ⌧ and the overall amplitude K constants, independent of !. This is
shown in Fig. 6. It can be checked numerically that the overall amplitude K agrees (to about the
1% level) with the coe�cient of the pole (3.1) in the translationally invariant case. All interesting
physics in this regime is therefore captured by the single parameter, ⌧ . We have varied the
temperature and lattice spacing and found that this Drude form holds in all cases. Given the lack
of well-defined quasi-particles in our holographic system, it seems surprising that the low-frequency
behaviour of our system is governed so well by the exact Drude form.

3.2 DC Resistivity

The resolution of the ! = 0 delta-function leaves behind a well-defined DC resistivity, ⇢ = (K⌧)�1.
The Drude amplitude K is essentially independent of temperature T and all temperature de-
pendence in the resistivity ⇢(T ) is inherited from ⌧ . The results depend strongly on the lattice
wavenumber k

0

and are shown on the left hand side of Fig. 7.
To make sense of this complicated plot, we review some recent work in the literature. Since

the near horizon geometry of an extremal Reissner-Nordström AdS black hole is AdS
2

⇥ R2, the
dual theory is said to be “locally critical” in the sense that it is invariant under rescalings of time,
with no rescaling of space. Hartnoll and Hofman [12] have recently studied the DC conductivity
in a locally critical theory. They showed that the DC conductivity can be extracted from the two
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Figure 8: The modulus |�| and argument arg � of the conductivity. The background for both
plots has wavenumber k

0

= 2, amplitude A
0

= 1.5, chemical potential µ = 1.4 and temperature
T/µ = 0.115. The line on the right is a fit to the power law (3.5).

3.3 Power-law Optical Conductivity

The fit to the Drude peak works well for !/T . 1. However, for !/T & 1, the optical conductivity
exhibits a power-law fall-o↵ in a “mid-infrared” regime, before reverting to the continuum result. It
is convenient to use !⌧ as a dimensionless measure of the frequency in this region. This is because
the power law behavior falls roughly in the range 2 < !⌧ < 8 for all the lattices we have examined,
even those with di↵erent temperature, lattice spacing and amplitude. (For the temperature we use
in Fig. 5, ⌧T = 2.22, so !⌧ = 2 corresponds to !/T = 0.9.) In Fig. 8 we have plotted |�| and the
phase angle over this range of frequencies. The data is very well fit by

|�(!)| = B

!2/3
+ C (3.5)

Meanwhile the phase angle has only small dependence on !, but varies between 65� and 80�, as k
0

varies from 1 to 3. The slight variation in the phase angle is enough so that the real and imaginary
parts of the conductivity do not individually follow simple power laws over the range indicated in
Fig. 8.

The exponent of the power law does not depend on the particular choices we have made for the
parameters in our model. To illustrate this, and to make the power law more manifest, in Fig. 9
we show (|�|�C) vs !⌧ on a log-log plot. On the left we show three di↵erent choices for the lattice
wavenumber k

0

. On the right, we show three di↵erent temperatures. The fact that the curves all
form parallel straight lines for !⌧ > 2 shows the power law fall-o↵ with exponent �2/3 is robust.
Since the o↵set C depends on k

0

and T , in Fig. 9 we have subtracted a di↵erent constant for each
curve.

di↵erent context in [23].
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At low frequency, both the real and imaginary parts of the conductivity can be fit by the two-
parameter Drude form

�(!) =
K⌧

1� i!⌧
(3.2)

with both the scattering time ⌧ and the overall amplitude K constants, independent of !. This is
shown in Fig. 6. It can be checked numerically that the overall amplitude K agrees (to about the
1% level) with the coe�cient of the pole (3.1) in the translationally invariant case. All interesting
physics in this regime is therefore captured by the single parameter, ⌧ . We have varied the
temperature and lattice spacing and found that this Drude form holds in all cases. Given the lack
of well-defined quasi-particles in our holographic system, it seems surprising that the low-frequency
behaviour of our system is governed so well by the exact Drude form.
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The resolution of the ! = 0 delta-function leaves behind a well-defined DC resistivity, ⇢ = (K⌧)�1.
The Drude amplitude K is essentially independent of temperature T and all temperature de-
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3.3 Power-law Optical Conductivity

The fit to the Drude peak works well for !/T . 1. However, for !/T & 1, the optical conductivity
exhibits a power-law fall-o↵ in a “mid-infrared” regime, before reverting to the continuum result. It
is convenient to use !⌧ as a dimensionless measure of the frequency in this region. This is because
the power law behavior falls roughly in the range 2 < !⌧ < 8 for all the lattices we have examined,
even those with di↵erent temperature, lattice spacing and amplitude. (For the temperature we use
in Fig. 5, ⌧T = 2.22, so !⌧ = 2 corresponds to !/T = 0.9.) In Fig. 8 we have plotted |�| and the
phase angle over this range of frequencies. The data is very well fit by
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+ C (3.5)

Meanwhile the phase angle has only small dependence on !, but varies between 65� and 80�, as k
0

varies from 1 to 3. The slight variation in the phase angle is enough so that the real and imaginary
parts of the conductivity do not individually follow simple power laws over the range indicated in
Fig. 8.

The exponent of the power law does not depend on the particular choices we have made for the
parameters in our model. To illustrate this, and to make the power law more manifest, in Fig. 9
we show (|�|�C) vs !⌧ on a log-log plot. On the left we show three di↵erent choices for the lattice
wavenumber k

0

. On the right, we show three di↵erent temperatures. The fact that the curves all
form parallel straight lines for !⌧ > 2 shows the power law fall-o↵ with exponent �2/3 is robust.
Since the o↵set C depends on k
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and T , in Fig. 9 we have subtracted a di↵erent constant for each
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di↵erent context in [23].
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Fig. 8. The intermediate conductivity, taken from [19].

Notably, both the exponent and the independence of B on temperature
coincide with the optical conductivity seen in the cuprates that we described
in Section 3.3. We do not know if this is coincidence, or if it points towards
something deeper. It’s worth stressing that the powerlaw in the cuprates
extends over several orders of magnitude and does not require a significant
o↵-set C.

Similar powerlaws are seen in other observables in the same region, in-
cluding thermoelectric conductivity in d = 2 + 1 and optical conductivity
in d = 3 + 1 dimensions [19] (with di↵erent exponents). For all of these
powerlaws, there is currently only numerical evidence.

4.4. Summary

The purpose of these lectures is to explain how one can use holography
to compute the conductivity of certain strongly interacting field theories.
As we have seen, the holographic dictionary allows us to extract some fa-
miliar condensed matter physics out of these gravitational systems, while
providing quantitative information about charge transport in this class of
field theories.
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Figure 10: The optical conductivity of optimally doped Bi
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Sr
2

Ca
0.92Y0.08Cu
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cuprates, Anderson suggested a power-law fall-o↵ �(!) ⇠ !�� on the basis of a Luttinger liquid
model, with � = 2/3 arising from a coupling to a gauge field [21].

Perhaps more pertinent for the present discussion, the universal power law observed in the
optical conductivity, together with a !/T scaling, was associated to an underlying quantum critical
point in [11]. Of course the starting point of our holographic model is a strongly interacting critical
point, albeit with a scale introduced by the finite density. Moreover, for small temperatures, T ⌧ µ,
our model exhibits an emergent locally critical point, reflected by the near horizon AdS

2

⇥ R2

regime.
However, a second explanation was put forward in [22] where it was argued that the � ⇠ !��

behavior with � ⇡ 0.65 was a generic prediction of electrons interacting with a broad spectrum of
bosons. Our holographic model is certainly not short of such bosonic modes and it is possible that
these are responsible for our observed behavior.

Finally, within the holographic framework, a �(!) ⇠ !�2/3 power-law was shown to arise from
probe charged matter interacting with a strongly coupled soup with dynamical exponent z = 3
[10].

4 Future Directions

The introduction of a gravitational lattice in the simplest holographic model of a conductor has
allowed us to explore the low-frequency optical conductivity in these models. At very low frequen-
cies, �(!) follows a simple Drude form. However, for intermediate frequencies, |�(!)| has a power
law fall o↵ (with constant o↵set) and its phase is approximately constant. Remarkably, both the
exponent of the power law and the phase are consistent with data taken on some cuprates and
are robust against changing all parameters of our model. We do not have a deep understanding
of why this is happening and it would clearly be of interest to find an analytic derivation of this
result.

To get more insight into this result, there are a few generalizations that should be investigated.
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Figure 8: The modulus |�| and argument arg � of the conductivity. The background for both
plots has wavenumber k

0

= 2, amplitude A
0

= 1.5, chemical potential µ = 1.4 and temperature
T/µ = 0.115. The line on the right is a fit to the power law (3.5).

3.3 Power-law Optical Conductivity

The fit to the Drude peak works well for !/T . 1. However, for !/T & 1, the optical conductivity
exhibits a power-law fall-o↵ in a “mid-infrared” regime, before reverting to the continuum result. It
is convenient to use !⌧ as a dimensionless measure of the frequency in this region. This is because
the power law behavior falls roughly in the range 2 < !⌧ < 8 for all the lattices we have examined,
even those with di↵erent temperature, lattice spacing and amplitude. (For the temperature we use
in Fig. 5, ⌧T = 2.22, so !⌧ = 2 corresponds to !/T = 0.9.) In Fig. 8 we have plotted |�| and the
phase angle over this range of frequencies. The data is very well fit by

|�(!)| = B

!2/3
+ C (3.5)

Meanwhile the phase angle has only small dependence on !, but varies between 65� and 80�, as k
0

varies from 1 to 3. The slight variation in the phase angle is enough so that the real and imaginary
parts of the conductivity do not individually follow simple power laws over the range indicated in
Fig. 8.

The exponent of the power law does not depend on the particular choices we have made for the
parameters in our model. To illustrate this, and to make the power law more manifest, in Fig. 9
we show (|�|�C) vs !⌧ on a log-log plot. On the left we show three di↵erent choices for the lattice
wavenumber k

0

. On the right, we show three di↵erent temperatures. The fact that the curves all
form parallel straight lines for !⌧ > 2 shows the power law fall-o↵ with exponent �2/3 is robust.
Since the o↵set C depends on k

0

and T , in Fig. 9 we have subtracted a di↵erent constant for each
curve.

di↵erent context in [23].
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Figure 6: A blow up of the low frequency optical conductivity with lattice shown in Fig. 5. The
data points in both curves are fit by the simple two-parameter Drude form (3.2).

3.1 The Drude Peak

At low frequency, both the real and imaginary parts of the conductivity can be fit by the two-
parameter Drude form

�(!) =
K⌧

1� i!⌧
(3.2)

with both the scattering time ⌧ and the overall amplitude K constants, independent of !. This is
shown in Fig. 6. It can be checked numerically that the overall amplitude K agrees (to about the
1% level) with the coe�cient of the pole (3.1) in the translationally invariant case. All interesting
physics in this regime is therefore captured by the single parameter, ⌧ . We have varied the
temperature and lattice spacing and found that this Drude form holds in all cases. Given the lack
of well-defined quasi-particles in our holographic system, it seems surprising that the low-frequency
behaviour of our system is governed so well by the exact Drude form.

3.2 DC Resistivity

The resolution of the ! = 0 delta-function leaves behind a well-defined DC resistivity, ⇢ = (K⌧)�1.
The Drude amplitude K is essentially independent of temperature T and all temperature de-
pendence in the resistivity ⇢(T ) is inherited from ⌧ . The results depend strongly on the lattice
wavenumber k

0

and are shown on the left hand side of Fig. 7.
To make sense of this complicated plot, we review some recent work in the literature. Since

the near horizon geometry of an extremal Reissner-Nordström AdS black hole is AdS
2

⇥ R2, the
dual theory is said to be “locally critical” in the sense that it is invariant under rescalings of time,
with no rescaling of space. Hartnoll and Hofman [12] have recently studied the DC conductivity
in a locally critical theory. They showed that the DC conductivity can be extracted from the two
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3.3 Power-law Optical Conductivity

The fit to the Drude peak works well for !/T . 1. However, for !/T & 1, the optical conductivity
exhibits a power-law fall-o↵ in a “mid-infrared” regime, before reverting to the continuum result. It
is convenient to use !⌧ as a dimensionless measure of the frequency in this region. This is because
the power law behavior falls roughly in the range 2 < !⌧ < 8 for all the lattices we have examined,
even those with di↵erent temperature, lattice spacing and amplitude. (For the temperature we use
in Fig. 5, ⌧T = 2.22, so !⌧ = 2 corresponds to !/T = 0.9.) In Fig. 8 we have plotted |�| and the
phase angle over this range of frequencies. The data is very well fit by

|�(!)| = B

!2/3
+ C (3.5)

Meanwhile the phase angle has only small dependence on !, but varies between 65� and 80�, as k
0

varies from 1 to 3. The slight variation in the phase angle is enough so that the real and imaginary
parts of the conductivity do not individually follow simple power laws over the range indicated in
Fig. 8.

The exponent of the power law does not depend on the particular choices we have made for the
parameters in our model. To illustrate this, and to make the power law more manifest, in Fig. 9
we show (|�|�C) vs !⌧ on a log-log plot. On the left we show three di↵erent choices for the lattice
wavenumber k

0

. On the right, we show three di↵erent temperatures. The fact that the curves all
form parallel straight lines for !⌧ > 2 shows the power law fall-o↵ with exponent �2/3 is robust.
Since the o↵set C depends on k

0

and T , in Fig. 9 we have subtracted a di↵erent constant for each
curve.

di↵erent context in [23].
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Figure 6: A blow up of the low frequency optical conductivity with lattice shown in Fig. 5. The
data points in both curves are fit by the simple two-parameter Drude form (3.2).

3.1 The Drude Peak

At low frequency, both the real and imaginary parts of the conductivity can be fit by the two-
parameter Drude form

�(!) =
K⌧

1� i!⌧
(3.2)

with both the scattering time ⌧ and the overall amplitude K constants, independent of !. This is
shown in Fig. 6. It can be checked numerically that the overall amplitude K agrees (to about the
1% level) with the coe�cient of the pole (3.1) in the translationally invariant case. All interesting
physics in this regime is therefore captured by the single parameter, ⌧ . We have varied the
temperature and lattice spacing and found that this Drude form holds in all cases. Given the lack
of well-defined quasi-particles in our holographic system, it seems surprising that the low-frequency
behaviour of our system is governed so well by the exact Drude form.

3.2 DC Resistivity

The resolution of the ! = 0 delta-function leaves behind a well-defined DC resistivity, ⇢ = (K⌧)�1.
The Drude amplitude K is essentially independent of temperature T and all temperature de-
pendence in the resistivity ⇢(T ) is inherited from ⌧ . The results depend strongly on the lattice
wavenumber k

0

and are shown on the left hand side of Fig. 7.
To make sense of this complicated plot, we review some recent work in the literature. Since

the near horizon geometry of an extremal Reissner-Nordström AdS black hole is AdS
2

⇥ R2, the
dual theory is said to be “locally critical” in the sense that it is invariant under rescalings of time,
with no rescaling of space. Hartnoll and Hofman [12] have recently studied the DC conductivity
in a locally critical theory. They showed that the DC conductivity can be extracted from the two
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+ 2f c
(a

bFb)c � bFac
bFbdh

cd � hab

4
bF cd bFcd � bgab

2
fcd bF cd +

bgab
2
hcd bFcp

bF p
d (2.17a)

b⇤ba � bRacb
c � bra(brcbc)� brch̄

cd bFda � hcd brc
bFda � bF cd brchda = 0 (2.17b)

b⇤⌘ � brah̄
ab brb

b�� hab bra
brb�̂� V 00(b�)⌘ = 0, (2.17c)

where f = db, h̄ab = hab � h bgab/2 is the so called trace-reversed metric perturbation, and curved
brackets acting on indices indicate symmetrization.

The above system of equations is invariant under the following set of linear transformations

ba ! ba + bra�
hab ! hab

(2.18)

and
ba ! ba + �c brc

bAa + bAd brd�a

hab ! hab + 2br
(a�b),

(2.19)

where � is an arbitrary scalar function and �a the components of an arbitrary four-dimensional
vector.

The first set of transformations reflects the U(1) gauge freedom associated with electromag-
netism, whereas the second reflects di↵eomorphism invariance. We shall fix these gauge freedoms
by selecting the Lorentz and the de Donder gauge, respectively

brah̄ab = 0, braba = 0. (2.20)

A few words about these gauge choices are in order. One can achieve any of these gauges by starting
with an arbitrary metric and vector perturbations and then choosing � and � conveniently. This
can always be done, because one can show that these two gauge conditions imply a wave-like
equation for � and �.

So far, our discussion about perturbation theory can be applied to any solution of (2.3): we
now specialize to (2.7). We want to study the changes in the transport properties induced by
our lattice. Because our background is invariant under a time translation Killing field @t, we can
Fourier decompose our perturbations,

hab(t, x, y, z) = h̃ab(x, y, z)e
�i!t, ba(t, x, y, z) = b̃a(x, y, z)e

�i!t, ⌘(t, x, y, z) = ⌘̃(x, y, z) e�i!t.
(2.21)

Given that the lattice extends along the x-direction, and leaves the y-direction unchanged, we will
also assume translational symmetry along y. This in turn means that we will focus on perturbations
with vanishing b̃y, h̃ty, h̃zy and h̃xy, and that the remaining variables do not depend on y. We are
left with 11 unknown functions, {h̃tt, h̃tz, h̃tx, h̃zz, h̃zx, h̃xx, h̃yy, b̃t, b̃z, b̃x, ⌘̃} in two variables, x and
z.

It seems that the resulting system of equations governing perturbations about our lattice
is overdetermined, because we have 15 non-trivial di↵erential equations to solve, namely the
{tt, tz, tx, zz, zx, xx, yy} components of Eq. (2.17a), the {t, z, x} components of Eq. (2.17b), the
scalar equation (2.17c), the {t, z, x} components of the first equation in (2.20) and the last equation
of (2.20). However, due to gauge invariance, the {tt, tz, yy} components of Eq. (2.17a) and the {t}
component of Eq. (2.17b) are automatically satisfied if the remaining equations are satisfied. We
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- Fluctuations:11 PDEs in two variables

2 A Holographic Lattice

The minimal ingredients necessary to compute conductivity in a holographic framework are pro-
vided by Einstein-Maxwell theory in AdS

4

. To this we add a neutral scalar field � which we will
use to source the lattice. We work with the Lagrangian,

S =
1

16⇡GN

Z
d4x

p�g


R +

6

L2

� 1

2
FabF

ab � 2ra�ra�� 4V (�)

�
, (2.1)

where L is the AdS length scale and F = dA. Our choice of potential corresponds to a massive
scalar field with mass m2 = �2/L2,

V (�) = ��2

L2

. (2.2)

The equations of motion derived from the action (2.1) take the following form

Gab ⌘ Rab +
3

L2

gab � 2[ra�rb�� V (�)gab]�
⇣
FacF

c
b � gab

4
FcdF

cd
⌘
= 0, (2.3a)

raF
a
b = 0, (2.3b)

⇤�� V 0(�) = 0. (2.3c)

Throughout the paper we shall only consider solutions that live in the Poincaré patch of
AdS. We parametrize the holographic radial direction by the coordinate z and impose boundary
conditions which fix a conformal boundary metric at z = 0 to be of the form,

ds2@ = �dt2 + dx2 + dy2. (2.4)

We will introduce the gravitational lattice background by providing a spatially inhomogeneous
source for the neutral scalar field. Near the boundary, � takes the form

� ! z�
1

+ z2�
2

+O(z3) (2.5)

According to the AdS/CFT correspondence, �
1

should be regarded as the source for the dimension
two operator dual to �, say O�, while �

2

represents the expectation value hO�i. A general,
inhomogeneous static solution is sourced by �

1

(x, y). However, here we will consider solutions that
preserve translational invariance in the y direction, with the lattice varying only in the x direction.
We choose the source �

1

to be
�
1

(x) = A
0

cos(k
0

x) . (2.6)

We will refer to k
0

as the lattice wavenumber and A
0

as its amplitude. k
0

is related to the lattice
size l in the usual way, k

0

= 2⇡/l. In the rest of this section, we describe these gravitational
lattices in more detail.

2.1 The Lattice

Since our background is both static and translationally invariant in the y direction, the solution
is co-homogeneity two: it depends only on the coordinates x and z. The most general static,
electrically charged, black hole solution compatible with our symmetries can be written as

ds2 =
L2

z2


�(1� z)P (z)Qttdt

2 +
Qzzdz2

P (z)(1� z)
+Qxx(dx+ z2Qxzdz)

2 +Qyydy
2

�
, (2.7a)

4

with
� = z �(x, z) (2.7b)

and
A = (1� z) (x, z) dt (2.7c)

where Qij, for i j 2 {t, x, y, z}, � and  are arbitrary functions of x and z, to be determined by
solving Eqs. (2.3). The line element shown above is invariant under reparametrizations of x and
z, i.e. we have not yet fully specified our coordinate system. We shall address this issue later.
The factor (1� z) that appears both in the metric and gauge field ensures that Eqs. (2.7) have a
smooth non-extremal horizon located at z = 1, provided that Qtt(x, 1) = Qzz(x, 1) and Qxx, Qyy,
Qxz,  and � are smooth functions at z = 1. Finally, the factor P (z) is chosen to be

P (z) = 1 + z + z2 � µ2

1

z3

2
(2.8)

and controls the black hole temperature

T =
P (1)

4⇡ L
=

6� µ2

1

8⇡ L
. (2.9)

Note that if Qtt = Qzz = Qxx = Qyy = 1, Qxz = � = 0,  = µ = µ
1

, we recover the familiar planar
Reissner-Nordström black hole.

Finding solutions to the system of equations (2.3), together with the ansatz (2.7), is not a well
defined problem. The reason being that the Einstein equations do not have a definite character,
in the PDE sense, if a gauge is not chosen. To overcome this di�culty we will use the DeTurck
method, which was first outlined in [13]. In this method we change the equations of motion by
introducing suitable “kinetic terms” for Qzz, Qxx and Qxz, and ensure that any solution to this
new set of equations is a solution to our initial problem, in a specific gauge.

2.1.1 DeTurck method

The DeTurck method is based on the so called Einstein-DeTurck equation, which can be obtained
from Eq. (2.3a), by adding the following new term

GH
ab ⌘ Gab �r

(a⇠b) = 0, (2.10)

where ⇠a = gcd[�a
cd(g)� �̄a

cd(ḡ)] and �̄(ḡ) is the Levi-Civita connection associated with a reference
metric ḡ. The reference metric is chosen to be such that it has the same asymptotics and horizon
structure as g. For the case at hand, we choose ḡ to be given by the line element (2.7a) with
Qtt = Qzz = Qxx = Qyy = 1 and Qxz = 0. The DeTurck equation can be shown to be elliptic for a
line element of the form (2.7a) [13].

It is easy to show that any solution to Gab = 0 with ⇠ = 0 is a solution to GH
ab = 0. However,

the converse is not necessarily true. In certain circumstances one can show that solutions with
⇠ 6= 0, coined Ricci solitons, cannot exist [14]. Since the above equations are elliptic, they can be
solved as a boundary value problem for well-posed boundary conditions and the solutions should
be locally unique. This means that an Einstein solution cannot be arbitrarily close to a soliton
solution and one should easily be able to distinguish the Einstein solutions of interest from solitons

5
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- Background: 7 PDEs in two variables

At ⇠ 1 +A0 cos(k0x)‘Ionic’ Lattice

� ⇠ A0 cos(k0x) Horowitz, Santos, Tong: 1204.0512

Horowitz, Santos, Tong: 1209.1098

Momentum relaxation

Momentum relaxation simplified (ODE)

ds2 = �f(r)dt2 +
dr2

f(r)
+ r2�

ij

dxidxj , (2.7)

f(r) = r2 � r3
0

r

✓
1 +

µ2

4r2
0

◆
+

µ2r2
0

4r2
, (2.8)

A = µ
⇣
1� r

0

r

⌘
dt (2.9)

m
0

= r3
0

✓
1 +

µ2

4r2
0

◆
. (2.10)

T =
f 0(r

0

)

4⇡
=
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4⇡

✓
3r

0

� µ2

4r
0

◆
(2.11)

ds2 = �f(r)dt2 +
dr2

f(r)
+ r2�

ij

dxidxj , (2.12)

f(r) = r2 � �2

2
� m

0

r
+

(µ2 + q2
m

)

4

r2
0

r2
, (2.13)

A = µ
⇣
1� r

0

r

⌘
dt+

q
m
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0

2
(x1dx2 � x2dx1) , (2.14)

 
I
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Ii
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Ii
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0
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0
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+
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0
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0
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dt+

q
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0

2
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where m
0

is determined by the condition f(r
0

) = 0:

m
0

= r3
0

✓
1 +

µ2 + q2
m

4r2
0

� �2

2r2
0

◆
. (2.22)

The solutions is characterised by four parameters: µ, q
m

, �, and r
0

. µ is the chemical

potential and q
m

is the magnetic field in the dual field theory. � is the parameter which
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RN AdS black holes

In this paper we study AdS RN and dyonic BH with the simplest possible momentum

dissipation e↵ect model.

RN black hole - DC conductivity

1/omega pole. - Intermediate momentum

- Bad metal behaviour.

Dyonic - DC

- Wiederman Franz law.

- Hall angle.

[17] [18] [4]

2 Dyonic black branes with scalar sources

Let us start with the Einstein-Maxwell action on a four dimensional manifold M with

boundary @M is

S
EM

=

Z

M

d4x
p
�g


R� 2⇤� 1

4
F 2

�
� 2

Z

@M

d3x
p
��K , (2.1)

where ⇤ = � 3

l

2 is a negative cosmological constant and we have chosen units such that

16⇡G = 1. Hereafter we set l = 1. The second term is the Gibbons-Hawking term

required for a well defined variational problem with Dirichlet boundary conditions. � is

the determinant of the induced metric �
µ⌫

at the boundary and K is the trace of the

extrinsic curvature. In order to have a momentum relaxation e↵ect, we add a free massless

scalar

S
 

=

Z

M

d4x
p
�g

"
�1

2

2X

I=1

(@ 
I

)2

#
. (2.2)

The total action

S = S
EM

+ S
 

(2.3)

implies equations of motion1
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NP

(2.4)

r
M

FMN = 0 , (2.5)

r2 
I

= 0 . (2.6)

1
Index convention: M,N, · · · = 0, 1, 2, r, and µ, ⌫, · · · = 0, 1, 2, and i, j, · · · = 1, 2.
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Einstein-Maxwell system

Reissner-Nordstrom-AdS black hole  
   ~ Boundary field theory at finite temperature and density
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The solutions is characterised by four parameters: µ, q
m
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0
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potential and q
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is the magnetic field in the dual field theory. � is the parameter which
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The solutions is characterised by four parameters: µ, q
m

, �, and r
0

. µ is the chemical

potential and q
m

is the magnetic field in the dual field theory. � is the parameter which
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5 The planar Reissner-Nordström-AdS black hole 13

The Maxwell potential of the solution is

A = µ

✓
1� r

r+

◆
dt . (5.5)

We have required the Maxwell potential to vanish on the horizon, At(r+) =
0. The simplest argument for this condition is that otherwise the holonomy
of the potential around the Euclidean time circle would remain nonzero when
the circle collapsed at the horizon, indicating a singular gauge connection.
The planar Reissner-Nordström-AdS solution is characterized by two scales,
the chemical potential µ = limr!0At and the horizon radius r+. From the
dual field theory perspective, it is more physical to think in terms of the
temperature than the horizon radius

T =
1
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. (5.6)

The black hole is illustrated in figure 4 below. This black hole, which can

&KDUJH�
GHQVLW\(OHFWULF�IOX[�

� ��

�

Figure 4 The planar Reissner-Nordström-AdS black hole. The charge den-
sity is sourced entirely by flux emanating from the black hole horizon.

additionally carry a magnetic charge, was the starting point for holographic
approaches to finite density condensed matter [27, 28].
Because the underlying UV theory is scale invariant, the only dimension-

less quantity that we can discuss is the ratio T/µ. In order to answer our
basic question about the IR physics at low temperature, we must take the
limit T/µ ⌧ 1 of the solution. We thereby obtain the extremal Reissner-
Nordström-AdS black hole with

f(r) = 1� 4

✓
r

r+

◆3

+ 3

✓
r

r+

◆4

. (5.7)

The near-horizon extremal geometry, capturing the field theory IR, follows

Hartnoll, 1106.4324
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2.3 Quadratic boundary action

Not a general configuration but a specific one: no k-dependence.
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Not a general configuration but a specific one: no k-dependence.
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Linear response
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⌫ = ⌫+. Near the boundary (r ! 1) the asymptotic solutions read
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With incoming boundary condition and initial values (3.6) at horizon we numerically in-

tegrate the equations from the horizon. For our equations there is one subtlety though.

Analysing the equations near the horizon with the expansion (4.7) we find that only a
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(I)
tx

are functions of them. Therefore, we don’t have a complete basis
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where h0
tx

are arbitrary constants. This kind of solutions has been introduced in [41] and

our solution here generalise it to the case with � 6= 0.
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where we introduced the second term for notational simplicity. We want to relate the

Green’s functions (4.10) to phenomenological transport coe�cients. Our goal is to study

the electric and/or thermal conductivities defined as
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where � is the electric conductivity, ↵, ↵̄ are the thermoelectric conductivities, and ̄ is the

thermal conductivity. By taking into account a di↵eomorphism invariance [2, 42], (4.11)

can be expressed as
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From the linear response theory, we have the following relation between the response func-
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where the temperature T was defined in (63) above. Substituting into (110) we obtain a

di↵erential equation for S. Ingoing boundary conditions now amount to the requirement

that near the horizon: S = 1 + ↵1(r � r+) + ↵2(r � r+)2 + · · · . The overall normalisation

is not important as the equation is linear. Indeed we see in (115) that the conductivity is

a ratio of two coe�cients in the near-boundary expansion, so the overall normalisation will
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Figure 6: The real (left) and imaginary (right) parts of the electrical conductivity computed

via AdS/CFT as described in the text. The conductivity is shown as a function of frequency.

Di↵erent curves correspond to di↵erent values of the chemical potential at fixed temperature.

The gap becomes deeper at larger chemical potential. We have set g = 1 in (115).
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With (3.9) and (3.11) the final boundary action yields
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where we reinserted the subscript k. The retarded Green’s function is

GR

ab

= A
ab

(1, k) + C
ab

(1, k) . (3.13)

In summary, to compute the retarded Green’s function we need four square matrices of

order N(the number of fields): A,B, S,O. A and B are readily read o↵ from the boundary

action (3.4). S and O are read o↵ from the solution of a set of di↵erential equations. We

have to solve N times with N independent initial conditions to construct regular matrices

of order N . The retarded Green’s function is schematically A+ B ·O · S�1 ⌘ A+C . The

precise form of C is shown in (3.11).

In order to check the validity of our numerical method and code, we computed AC

electric conductivity when � = 0. Our numerical plot is shown in Figure 1, which agrees to

the Figure 6 of [2]. It is a nontrivial consistency check of our method since the plot in [2]

has been obtained by solving a single equation of the gauge field a
x

, while we have solved

coupled equations of a
x

and g
tx

. Of course if the coupled equations can be decoupled

as shown in [2] there is no point of solving coupled equations. However, because this

decoupling is not always possible it is important to develop a systematic and e�cient

method for coupled fields cases. In addition to the agreement of Figure 1 with Figure 6 of

[2] our results match the analytic values when ! ! 0 [39]
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and r0 is defined in (2.19) and evaluated when � = 0. The red dots at ! = 0 in Figure
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In this paper we study AdS RN and dyonic BH with the simplest possible momentum

dissipation e↵ect model.

RN black hole - DC conductivity

1/omega pole. - Intermediate momentum

- Bad metal behaviour.

Dyonic - DC

- Wiederman Franz law.

- Hall angle.

[17] [18] [4]

2 Dyonic black branes with scalar sources

Let us start with the Einstein-Maxwell action on a four dimensional manifold M with

boundary @M is

S
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=
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4
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where ⇤ = � 3

l

2 is a negative cosmological constant and we have chosen units such that

16⇡G = 1. Hereafter we set l = 1. The second term is the Gibbons-Hawking term

required for a well defined variational problem with Dirichlet boundary conditions. � is

the determinant of the induced metric �
µ⌫

at the boundary and K is the trace of the

extrinsic curvature. In order to have a momentum relaxation e↵ect, we add a free massless

scalar
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= 0 . (2.6)

1
Index convention: M,N, · · · = 0, 1, 2, r, and µ, ⌫, · · · = 0, 1, 2, and i, j, · · · = 1, 2.
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RN AdS black holes + scalar

The solutions is characterised by four parameters: µ, q
m

, �, and r
0

. µ is the chemical

potential and q
m

is the magnetic field in the dual field theory. � is the parameter which

controls momentum relaxation. r
0

is the black brane horizon position which can be replaced

by the dual field theory temperature T :

T =
f 0(r

0
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2.1 Thermodynamics

The Holographically renormalised action is obtained by plugging the solution of equations

of motion into
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The linear fluctuations:
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where (the canonical momenta+boundary variation) have following forms.
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The boundary energy-momentum tensor is
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For our background, the energy momentum tensor is given by
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Bardoux, Caldarelli, Charmousis (2012), Andrade, Withers(2013)

RN-AdS solution + two scalars

dual field theory:
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f 0(r0)

4⇡
=

1

4⇡

✓
3r0 �

µ2 + 2�2

4r0

◆
, (2.18)

from which, r0 yields

r0 =
2⇡

3

⇣
T +

p
T 2 + 3(µ/4⇡)2 + 6(�/4⇡)2

⌘
. (2.19)

The parameter µ is the boundary value of A
t

identified with the chemical potential in

the dual field theory and µr0 corresponds to the charge density according to (2.11). � is

the parameter which controls momentum relaxation. The parameter m0 obtained by the

condition, f(r0) = 0, is a function of µ, T,� and turns out to be proportional to the energy

density. In summary, for solutions (2.14) - (2.17), one point function (2.11) is

hT tti = 2m0 , hT xxi = hT yyi = m0 , hJ ti = µr0 , hO1i = 0 , (2.20)

with all others vanishing.

Now we want to study the responses of this system for small perturbations. In par-

ticular we are interested in the electric conductivity, which is related to the boundary

current operators ~J . Because of rotational symmetry in x-y space, it is enough to consider

J
x

. Since this operator is dual to the bulk gauge fields A
x

, we consider a following linear

fluctuation around the background

�A
x

(t, r) =

Z 1

�1

d!

2⇡
e�i!ta

x

(!, r) . (2.21)

The fluctuation is chosen to be independent of x and y. It is allowed since all the back-

ground fields entering the equations of motion are independent of x and y. The gauge

field fluctuation(�A
x

(t, r)) turns out to source metric(�g
tx

(t, r)) and scalar field(� 1(t, r))

fluctuation

�g
tx

(t, r) =

Z 1

�1

d!

2⇡
e�i!t

r2

r20
h
tx

(!, r), (2.22)

� 1(t, r) =

Z 1

�1

d!

2⇡
e�i!t�(!, r) , (2.23)

and all the other fluctuations can be decoupled. Since we will work in momentum space,

we defined the momentum space functions a
x

, h
tx

, and �5, where h
tx

(!, r) is defined so

that it goes to constant as r goes to infinity.

5
� here is the same as ↵

�1
� in [15].
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With small fluctuations, the renormalisation on shell action up to linear order in fluc-

tuations reads

S(1)
ren =

Z

@M

dx3
q

�g(0)
✓
3

2
g(3)µ⌫�g(0)

µ⌫

+ 3 (3)
I

� 
(0)
I

+A(1)µ�A(0)
µ

◆
, (2.10)

where the leading terms �g(0)
µ⌫

, �A
(0)
µ

and � 
(0)
I

are interpreted as sources for dual field

theory operators: the stress energy tensor Tµ⌫ , a U(1) current Jµ, and a scalar operator

O
I

respectively. Their expectation values are

hTµ⌫i = 3g(3)µ⌫ , hJµi = A(1)µ , hO
I

i = 3 (3)
I

. (2.11)

The constraint (2.9) in terms of the one point function (2.11) yields the Ward identities

r
µ

hJµi = 0 , hTµ

µ

i = 0 , (2.12)

r⌫hT
µ⌫

i = hO
I

ir
µ

 
(0)
I

+ F (0)
µ⌫

hJ⌫i , (2.13)

which correspond to the invariance of the renormalised action under a U(1) transformation

(�A(0)
µ

), a constant Weyl transformation(⇠µ = �µ
⇢

�
⇢

), and the coordinate transformation

generated by a vector field ⇠µ = ⇠µ(x⌫), ⇠⇢ = 0.

2.2 AdS-RN black brane

We want to study the field theory at finite charge density and finite temperature with

momentum dissipation. A gravity dual will be a charged black brane solution with broken

translation symmetry. Indeed the equations (2.3) - (2.4) admit the following solutions [16]

ds2 = G
MN

dxMdxN = �f(r)dt2 +
dr2

f(r)
+ r2�

ij

dxidxj , (2.14)

f(r) = r2 � �2

2
� m0

r
+

µ2

4

r20
r2

, m0 = r30

✓
1 +

µ2

4r20
� �2

2r20

◆
(2.15)

A = µ
⇣
1� r0

r

⌘
dt , (2.16)

 
I

= �
Ii

xi = ��
Ii

xi , (2.17)

which is reduced to AdS-Reissner-Nordstrom(AdS-RN) black brane solutions for � = 0.

Here we have taken special �
Ii

, which satisfies 1
2

P2
I=1

~�
I

· ~�
I

= �2 for general cases4.

These analytic solutions have been reported in [16] and explored further in the context of

momentum relaxation in [15]. Even though two scalar fields( 
I

) are spatially dependent

functions, metric and gauge field are not, thanks to equal contributions from two scalars for

two spatial coordinates. However, with only one scalar field, the solutions are anisotopic

and this case has been studied in [19, 20].

The solutions (2.14) - (2.17) are characterised by three parameters: r0, µ, and �. r0 is

the black brane horizon position(f(r0) = 0) and can be replaced by temperature T for the

4One can easily obtain the general case by spatial rotation in the x1 � x2 plane
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If the fields depend on time only:

s
B

⌘ S
B

V
2

=
1

2

Z
d!

(2⇡)

h
Ja

�!

[A
ab

(1,!) + C
ab

(1,!)] Jb

!

i
, (3.9)

where V
2

is the spatial volume.

4 B=0

s
B

⌘ S
B

V
= lim

r!1

Z
d!

2⇡

h
�a

�!

(r)A
ab

(r,!)�b

!

(r) + �a

�!

(r)B
ab

(r,!)@
r

�b

!

(r)
i
, (4.1)

where V is the spatial volume.

Not a general configuration but a specific one: no k-dependence.
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⇤
(4.9)
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AC electric conductivity
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Figure 1. Electric conductivity without momentum relaxation

Not a general configuration but a specific one: no k-dependence.
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Fig. 2. The real and imaginary parts of the Drude conductivity.

The coe�cient ⌧ is known as the scattering time. It can be thought
of as the average time that the particle travels unimpeded before it hits
something.

The current is ~j = nq~v where n is the density of charge carriers. For an
AC electric field, with frequency !, we need only solve (21) to determine the
steady-state current ~j(!). The definition (20) then tells us the conductivity:
it is

�(!) =
�
0

1� i!⌧
(22)

where the ! ! 0 DC conductivity is

�
0

=
nq2⌧

m

We plot the real and imaginary parts of the conductivity in Figure 2. The
real part exhibits a peak at frequencies ! < 1/⌧ ; this will be referred to
below as the Drude peak. At high frequencies, !⌧ � 1, the conductivity
is dominated by the imaginary part, � ⇠ �1/i!. This is the conductivity
of a free particle. You can think about this as shaking the particle so fast
that it turns around and goes the other way before it’s had the chance to
hit something.

3.2. Particle-Hole Creation

At high frequencies, there is another simple e↵ect that can contribute
to conductivity. This isn’t captured by the Drude model, but is instead a
quantum field-theoretic e↵ect, namely particle-anti-particle creation. Or, in
a condensed matter context, particle-hole creation. It’s perhaps simplest to
illustrate by showing some data.

Drude like?
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Figure 2. Electric conductivity � with momentum relaxation at fixed µ/T = 6. For larger � the
Drude-like peak at small ! becomes broader.
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Figure 3. Electric conductivity � with momentum relaxation at fixe �/T = 3. By comparing
with Figure 1 we may also see how � changes conductivity curves since all parameters are the same
except �.

fluctuation the Ward identity (2.13) is

@
t

h�p
x

i = �h�Oi+ hJ ti�E
x

. (4.16)

Comparing with the Drude model

dp

dt
= �1

⌧
p+ qE . (4.17)

We see that, if h�Oi is proportional to �h�p
x

i without any parameter dependence, it is

possible to have a Drude peak ⌧ ⇠ 1/�. Since, however, in our case h�Oi may depend on

� and µ, we would not expect such a simple relation in general. (comment: Indeed we will

show later h�Oi ⇠ ��

µ

h�p
x

i or h�Oi ⇠ � �

T

h�p
x

i numerically in certain limit. See (4.27)

and (4.28).) Furthermore, a peak may be di↵erent from the Drude form in the regime of

strong coupling. (comment: However, If we break translation symmetry weakly, then we

have Drude.(Check Hartnoll’s umklapp paper))

With these warnings in mind, as an e↵ective simple model of peak, let us consider the
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Fig. 2. The real and imaginary parts of the Drude conductivity.

The coe�cient ⌧ is known as the scattering time. It can be thought
of as the average time that the particle travels unimpeded before it hits
something.

The current is ~j = nq~v where n is the density of charge carriers. For an
AC electric field, with frequency !, we need only solve (21) to determine the
steady-state current ~j(!). The definition (20) then tells us the conductivity:
it is
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where the ! ! 0 DC conductivity is
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We plot the real and imaginary parts of the conductivity in Figure 2. The
real part exhibits a peak at frequencies ! < 1/⌧ ; this will be referred to
below as the Drude peak. At high frequencies, !⌧ � 1, the conductivity
is dominated by the imaginary part, � ⇠ �1/i!. This is the conductivity
of a free particle. You can think about this as shaking the particle so fast
that it turns around and goes the other way before it’s had the chance to
hit something.

3.2. Particle-Hole Creation

At high frequencies, there is another simple e↵ect that can contribute
to conductivity. This isn’t captured by the Drude model, but is instead a
quantum field-theoretic e↵ect, namely particle-anti-particle creation. Or, in
a condensed matter context, particle-hole creation. It’s perhaps simplest to
illustrate by showing some data.
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we make use of information from the Ward identity. At the level of fluctuation the Ward

identity (2.13) is

@
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i = �h�Oi+ hJ ti�E
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. (4.16)

Comparing with the Drude model

dp

dt
= �1

⌧
p+ qE . (4.17)

We see that, if h�Oi is proportional to �h�p
x

i without any parameter dependence, we

will have a Drude peak with ⌧ ⇠ 1/�. However, in our case h�Oi may depend on � and

µ, we would not expect such a simple relation in general. Indeed it turns out that

h�Oi ⇠ ��

µ

h�p
x

i or h�Oi ⇠ � �

T

h�p
x

i in certain limit, which will be discussed in (4.25)

- (4.27). Of course, in certain parameter regime, a peak may be very di↵erent from the

Drude form because we are in strong coupling regime.

With these warnings in mind, as an e↵ective simple model of peak, let us consider the
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The expression (4.24) is not very illuminating and we make a plot of the relaxation

time as a function of µ̃ and �̃ in Figure 4. We choose the small �̃ and wider range of µ̃

because it turns out that in those range the Drude model (4.19) works well(See Figure

5 and related discussion). There is a tendancy that a smaller �̃ and larger µ̃ make the
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The expression (4.24) is not very illuminating and we make a plot of the relaxation

time as a function of µ̃ and �̃ in Figure 4. We choose the small �̃ and wider range of µ̃

because it turns out that in those range the Drude model (4.19) works well(See Figure

5 and related discussion). There is a tendancy that a smaller �̃ and larger µ̃ make the
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Figure 4. Relaxation time ⌧ at small ! as a function of µ̃ = µ/(4⇡T ) and �̃ = �/(4⇡T ).

relaxation time longer. Analytically, if we focus on the case, �̃ ⌧ 1, we have

⌧ ⇡ 1

K

µ2

�2
(4.26)

since, in this limit, �
Q

and K are � independent. The e↵ect of K can be analysed in two

limits: µ̃ ⌧ 1 and µ̃ � 1. For µ̃ ⌧ 1, we have

⌧ ⇡ T

�2
. (4.27)

which is reasonable because we can interpret � as impurity e↵ect. Linear-T dependence is

property of Fermi-liquid. (comment: We heard it from Prof. Bang, but can we confirm in

the literature?) For µ̃ � 1 we have

⌧ ⇡ µ

�2
, (4.28)

where µ substitutes for T in (4.27). Because of strong coupling e↵ect, chemical poten-

tial(charge density) play a dominant role rather than thermal excitation. The transition

between these two behaviours (T/�2 ! µ/�2) at small �̃ are also confirmed numerically in

Figure 4.

To see the validity of our analytic expression of the Drude model, we have made

numerical plots for a wide range of parameters and compared with (4.19). Figure 5 are

examples showing a good agreement of numerical data to (4.19) and deviation from (4.19).

Blue dotted lines are numerical data and red solid curves are the analytic expression (4.19).

In these examples, when �̃  2/(4⇡) or µ/� � 2 the numerical data agree well to the Drude

model. In general, we found that, for small �/T and large �/µ, numerical data agrees well

to a Drude model (4.19). (comment: If we break translation symmetry weakly, then we

have Drude.(Hartnoll))

Next, we want to investigate the scaling property in the intermediate frequency regime.

In the range T < ! < µ, It was shown experimentally that certain high temperature

superconductors in the normal phase exhibits scaling law

� =
B

!�

ei
⇡

2 � , (4.29)

– 15 –

0.1
0.2

0.3
0.4

bêH4pTL

0 1 2 3 4mêH4pTL

0

500

1000

tH4pTL

Figure 4. Relaxation time ⌧ at small ! as a function of µ̃ = µ/(4⇡T ) and �̃ = �/(4⇡T ).

relaxation time longer. Analytically, if we focus on the case, �̃ ⌧ 1, we have

⌧ ⇡ 1

K

µ2

�2
(4.26)

since, in this limit, �
Q

and K are � independent. The e↵ect of K can be analysed in two

limits: µ̃ ⌧ 1 and µ̃ � 1. For µ̃ ⌧ 1, we have

⌧ ⇡ T

�2
. (4.27)

which is reasonable because we can interpret � as impurity e↵ect. Linear-T dependence is

property of Fermi-liquid. (comment: We heard it from Prof. Bang, but can we confirm in

the literature?) For µ̃ � 1 we have

⌧ ⇡ µ

�2
, (4.28)

where µ substitutes for T in (4.27). Because of strong coupling e↵ect, chemical poten-

tial(charge density) play a dominant role rather than thermal excitation. The transition

between these two behaviours (T/�2 ! µ/�2) at small �̃ are also confirmed numerically in

Figure 4.

To see the validity of our analytic expression of the Drude model, we have made

numerical plots for a wide range of parameters and compared with (4.19). Figure 5 are

examples showing a good agreement of numerical data to (4.19) and deviation from (4.19).

Blue dotted lines are numerical data and red solid curves are the analytic expression (4.19).

In these examples, when �̃  2/(4⇡) or µ/� � 2 the numerical data agree well to the Drude

model. In general, we found that, for small �/T and large �/µ, numerical data agrees well

to a Drude model (4.19). (comment: If we break translation symmetry weakly, then we

have Drude.(Hartnoll))

Next, we want to investigate the scaling property in the intermediate frequency regime.

In the range T < ! < µ, It was shown experimentally that certain high temperature

superconductors in the normal phase exhibits scaling law

� =
B

!�

ei
⇡

2 � , (4.29)

– 15 –

Drude form shifted by �
Q

�(!) =
K⌧

1� i!⌧
+ �

Q

(4.18)

we see that, if h�Oi is proportional to �h�p
x

i without any parameter dependence, it is

possible to have a Drude peak ⌧ ⇠ 1/�. However, since in our case h�Oi may depend on �

and µ, we would not expect such a simple relation in general. Furthermore, since we are in
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is added to take into account the conductivity at � = 0. Once we assume (4.19),

three parameters K, ⌧ , and �
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can be fixed by considering two limits. First, in the limit
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The expression (4.24) is not very illuminating and we make a plot of the relaxation

time as a function of µ̃ and �̃ in Figure 4. We choose the small �̃ and wider range of µ̃

because it turns out that in those range the Drude model (4.19) works well(See Figure

5 and related discussion). There is a tendancy that a smaller �̃ and larger µ̃ make the
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Figure 5. Comparison of numerical data(blue dotted lines) with a Drude model(red solid
curves)(4.18) of which parameters are fixed analytically in (4.19) and (4.22). µ/T = 4. When
�/T  2 or µ/� � 2 the numerical data agree well to the Drude model.
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Figure 6. Search for scaling behaviour at intermediate !(T < ! < µ). Four curves are for
T/µ = 0.005, 0.01, 0.02, 0.03. The slope of red dotted lines in (a) and (b) is �1, which is a signal of
Drude model at large !.

slopes are �1. This scaling can be understood as a tail of Drude form, because in this

regime the Drude form is dominant as shown in Figure 2 and 5. As � increases the scaling

of Drude tail becomes weaken (Figure 6(b)) and disappears at bigger !(Figure 6(c))).

Now we want to investigate if there is a modified scaling law motivated by previous

holographic models [4, 5, 7, 10].
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limits: µ̃ ⌧ 1 and µ̃ � 1. For µ̃ ⌧ 1, we have
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. (4.27)

which is reasonable because we can interpret � as impurity e↵ect. Linear-T dependence is

property of Fermi-liquid. (comment: We heard it from Prof. Bang, but can we confirm in

the literature?) For µ̃ � 1 we have

⌧ ⇡ µ
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, (4.28)

where µ substitutes for T in (4.27). Because of strong coupling e↵ect, chemical poten-

tial(charge density) play a dominant role rather than thermal excitation. The transition

between these two behaviours (T/�2 ! µ/�2) at small �̃ are also confirmed numerically in

Figure 4.

To see the validity of our analytic expression of the Drude model, we have made

numerical plots for a wide range of parameters and compared with (4.19). Figure 5 are

examples showing a good agreement of numerical data to (4.19) and deviation from (4.19).

Blue dotted lines are numerical data and red solid curves are the analytic expression (4.19).

In these examples, when �̃  2/(4⇡) or µ/� � 2 the numerical data agree well to the Drude

model. In general, we found that, for small �/T and large �/µ, numerical data agrees well

to a Drude model (4.19). (comment: If we break translation symmetry weakly, then we

have Drude.(Hartnoll))

Next, we want to investigate the scaling property in the intermediate frequency regime.

In the range T < ! < µ, It was shown experimentally that certain high temperature

superconductors in the normal phase exhibits scaling law
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Figure 10: The optical conductivity of optimally doped Bi2Sr2Ca0.92Y0.08Cu2O8+⇥. This plot is
taken from [11].

cuprates, Anderson suggested a power-law fall-o� ⇥(⇤) ⇥ ⇤�� on the basis of a Luttinger liquid
model, with � = 2/3 arising from a coupling to a gauge field [21].

Perhaps more pertinent for the present discussion, the universal power law observed in the
optical conductivity, together with a ⇤/T scaling, was associated to an underlying quantum critical
point in [11]. Of course the starting point of our holographic model is a strongly interacting critical
point, albeit with a scale introduced by the finite density. Moreover, for small temperatures, T ⌅ µ,
our model exhibits an emergent locally critical point, reflected by the near horizon AdS2 � R2

regime.
However, a second explanation was put forward in [22] where it was argued that the ⇥ ⇥ ⇤��

behavior with � ⇤ 0.65 was a generic prediction of electrons interacting with a broad spectrum of
bosons. Our holographic model is certainly not short of such bosonic modes and it is possible that
these are responsible for our observed behavior.

Finally, within the holographic framework, a ⇥(⇤) ⇥ ⇤�2/3 power-law was shown to arise from
probe charged matter interacting with a strongly coupled soup with dynamical exponent z = 3
[10].

4 Future Directions

The introduction of a gravitational lattice in the simplest holographic model of a conductor has
allowed us to explore the low-frequency optical conductivity in these models. At very low frequen-
cies, ⇥(⇤) follows a simple Drude form. However, for intermediate frequencies, |⇥(⇤)| has a power
law fall o� (with constant o�set) and its phase is approximately constant. Remarkably, both the
exponent of the power law and the phase are consistent with data taken on some cuprates and
are robust against changing all parameters of our model. We do not have a deep understanding
of why this is happening and it would clearly be of interest to find an analytic derivation of this
result.

To get more insight into this result, there are a few generalizations that should be investigated.
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Figure 4. Relaxation time ⌧ at small ! as a function of µ̃ = µ/(4⇡T ) and �̃ = �/(4⇡T ).

relaxation time longer. Analytically, if we focus on the case, �̃ ⌧ 1, we have

⌧ ⇡ 1

K

µ2

�2
(4.26)

since, in this limit, �
Q

and K are � independent. The e↵ect of K can be analysed in two

limits: µ̃ ⌧ 1 and µ̃ � 1. For µ̃ ⌧ 1, we have

⌧ ⇡ T

�2
. (4.27)

which is reasonable because we can interpret � as impurity e↵ect. Linear-T dependence is

property of Fermi-liquid. (comment: We heard it from Prof. Bang, but can we confirm in

the literature?) For µ̃ � 1 we have

⌧ ⇡ µ

�2
, (4.28)

where µ substitutes for T in (4.27). Because of strong coupling e↵ect, chemical poten-

tial(charge density) play a dominant role rather than thermal excitation. The transition

between these two behaviours (T/�2 ! µ/�2) at small �̃ are also confirmed numerically in

Figure 4.

To see the validity of our analytic expression of the Drude model, we have made

numerical plots for a wide range of parameters and compared with (4.19). Figure 5 are

examples showing a good agreement of numerical data to (4.19) and deviation from (4.19).

Blue dotted lines are numerical data and red solid curves are the analytic expression (4.19).

In these examples, when �̃  2/(4⇡) or µ/� � 2 the numerical data agree well to the Drude

model. In general, we found that, for small �/T and large �/µ, numerical data agrees well

to a Drude model (4.19). (comment: If we break translation symmetry weakly, then we

have Drude.(Hartnoll))

Next, we want to investigate the scaling property in the intermediate frequency regime.

In the range T < ! < µ, It was shown experimentally that certain high temperature

superconductors in the normal phase exhibits scaling law

� =
B

!�

ei
⇡

2 � , (4.29)
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Figure 5. Comparison of numerical data(blue dotted lines) with a Drude model(red solid
curves)(4.18) of which parameters are fixed analytically in (4.19) and (4.22). µ̃ = 4/(4⇡). When
�̃  2/(4⇡) or µ/� � 2 the numerical data agree well to the Drude model.
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Figure 6. Search for scaling behaviour at intermediate !(T < ! < µ). Four curves are for
T/µ = 0.005, 0.01, 0.02, 0.03. The slope of red dotted lines in (a) and (b) is �1, which is a signal of
Drude model at large !.

slopes are �1. This scaling can be understood as a tail of Drude form, because in this

regime the Drude form is dominant as shown in Figure 2 and 5. As � increases the scaling

of Drude tail becomes weaken (Figure 6(b)) and disappears at bigger !(Figure 6(c))).

Now we want to investigate if there is a modified scaling law motivated by previous

holographic models [4, 5, 7, 10].
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Figure 7. Approximate scaling behaviour (�/r0 = 1.5)

slopes are �1. This scaling can be understood as a tail of Drude form, because in this

regime the Drude form is dominant as shown in Figure 2 and 5. As � increases the scaling

of Drude tail becomes weaken (Figure 6(b)) and disappears at bigger !(Figure 6(c))).

Now we want to investigate if there is a modified scaling law motivated by previous

holographic models [4, 5, 7, 10].
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where B and C are constants and �̃ may be di↵erent from �. We find that the Figure 6(c)

can be approximately fitted by a modified scaling law, with � ⇡ 0.24

� =
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K

(!/µ)�
+ �

DC

◆
ei⇡� , (4.31)

which is shown in Figure 7. Interestingly, in this case, the constants B and C in (4.30)

are fixed by analytic K and �
DC

, while in other models, they are numerically determined.

However, this approximate scaling behaviour seems not very robust under change of pa-

rameters.

4.2 Thermoelectric and thermal conductivity

Finally we plot the thermoelectric(↵) and thermal(̄) conductivity in Figure 8. Qualitative

feature is similar to electric conductivity. The red dots at ! = 0 is the DC conductivities

analytically computed in [26]

↵ =
4⇡µ

�2
r0 , ̄ =

(4⇡)2

�2
Tr20 , (4.32)

At large ! it can be shown from Ward identity (comment: cite our future paper)

↵ ⇠ �µ�

T
, ̄ ⇠ �µ↵+

�2

T
(4.33)
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Figure 8. Thermal and thermoelectric conductivity with momentum relaxation at fixe µ/T = 6.

law is supposed to be valid at low temperature. Now we may consider two cases where

one parameter is much lager than the other. In these limits, the ratio becomes constant as

follows

L̄ =

(
4⇡2

3 (µ̃ � �̃)
8⇡2

3 (�̃ � µ̃)
(4.33)

This shows the violation of the Wiedemann-Franz law which is expected in a non-Fermi

liquid, see e.g. [43].

We suspect that there would be a similar Drude form to electric conductivity for small

�̃ or small µ/�. For a massive gravity model thermoelectric conductivities have been

studied in [29, 30]

5 Conclusions

Summary:

Future work: magnetic field [work in progress], other massless form fields [16]
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Summary and plan

Thermoelectric conductivity

AC electric conductivity
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+ r2�
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⇣
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=
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4⇡
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0
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0

� µ2 + q2
m
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0
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(2.17)

ds2 = �f(r)dt2 +
dr2

f(r)
+ r2�

ij

dxidxj , (2.18)

f(r) = r2 � �2

2
� m

0

r
+

(µ2 + q2
m

)

4
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0
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, (2.19)

A = µ
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dt+

q
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0
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I

= �
Ii

xi = ��
Ii

xi , (2.21)

where m
0

is determined by the condition f(r
0

) = 0:

m
0

= r3
0

✓
1 +

µ2 + q2
m

4r2
0

� �2

2r2
0

◆
. (2.22)

The solutions is characterised by four parameters: µ, q
m

, �, and r
0

. µ is the chemical

potential and q
m

is the magnetic field in the dual field theory. � is the parameter which
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By using Andrade and Withers model

Magnetic field: Dyonic black hole
Holographic superconductor

Other models: Anisotropic case, Einstein-Maxwell-Dilaton, etc

- Coherent metal regime vs Incoherent metal regime

Future plan

Systematic numerical recipe 

Summary

- No intermediate scaling yet

⌧ ⇡ µ

�2

Ongoing work

�(!) =
K⌧

1� i!⌧
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Hall conductivity
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