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Lifshitz Scaling Symmetry

• Lifshitz scaling :

t → λz t , x i → λx i , i = 1, ...d . (1)

z is a dynamic exponent that measures the anisotropy.
• When z = 1 the spacetime symmetry can be enhanced to

include the Lorentz group, and when z = 2 the Galilean
group. For all other values of z, boost invariance will be
explicitly broken.

• Lifshitz scaling shows up in condensed matter systems
(quantum critical points), in gravity models that break local
Lorentz invariance (Horava- Lifshitz) and in holographic
models (Einstein gravity with matter)(N. Obers talk).
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Lifshitz Algebra

• The generators of Lifshitz symmetry are time translation
P0 = ∂t , spatial translations Pi = ∂i , the scaling
transformation D = −zt∂t − x i∂i and rotations.

• The subalgebra involving D, Pi and P0 has commutation
relations

[D,Pi ] = Pi , [D,P0] = zP0 (2)
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Lifshitz Scaling Symmetry

There are many questions concerning quantum field theories
(QFTs) and gravity with Lifshitz scaling, such as :
• What values of z are allowed ?
• Is z = 1 realized only in a CFT ?
• Do the QFTs have a consistent UV behaviour ?
• Does the gravity that breaks local Lorentz invariance have

a consistent UV behaviour ?
• Basic field theory questions : Spin-Statistics Theorem ?

Euclidean rotation ? Representations ?
• Entanglement entropy ?
• What is the structure of the hydrodynamic limit ?
• What is the structure of anomalies ?
• Supersymmetric extension ?
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Field Theory Realizations

• Free scalar field theory in d + 1 dimensions (z even) :

L =
1
2

(∂tφ)2 − κ

2z
((∇2)

z
2φ)2

φ→ λ
z−d

2 φ, κ dimensionsless (3)

• Free scalar field theory in 2 + 1 dimensions :

L =
1
2

(∂tφ)2 − κ

4
(∇2φ)2, z = 2 (4)

• The dimension of the scalar is zero as in
(1 + 1)-dimensional relativistic scalar theory. Here the
dispersion relation is p4 ∼ ω2.
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Field Theory Realizations

• Free fermion field theory in 2 + 1 dimensions :

L = −iψ†∂tψ + ψ†∇2ψ, ψ → λ−1ψ, z = 2 (5)

• ψ is a one component field.
• We can combine the scalar and fermion to a WZ-type

supersymmetric model.
• Interaction in 2 + 1 dimensions :

L = gψ†ψ∇2φ, z = 2 (6)
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Gravity Realizations

• The gravitational background (Kachru and
collaborators,Taylor...):

ds2 = −r2zdt2 +
dr2

r2 + r2δijdx idx j (7)

has the isometry

r → λ−1r , t → λz t , x i → λx i (8)

• It is a solution of Einstein gravity with matter (scalars and
massive vector fields), or Horava-Lifhshitz gravity (Horava
and collaborators).

• Lifshitz as a deformation of AdS (Skenderis and
collaborators).
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Einstein Gravity with Matter

• The action reads

L = R−
∑

j

(
Zj(φ)

4
FjABF AB

j +
1
2

m2
j VjAV A

j

)
−

∑
i

(
1
2

(∂φi)
2−V (φi)

)
(9)

• VjA are massive or massless (for mj = 0) vector fields, FjAB
their field strengths, and φi are the scalar fields. Zi(φ)
parametrize the couplings between scalar fields and vector
fields.

• In Lifshitz solutions rotational invariance is not broken, so
only the Vjr and Vjt components of the vector fields can be
non-zero.
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Einstein-aether and Horava-Lifshitz

• A generic, generally covariant model of local Lorentz
violating gravity is Einstein-aether theory (Jacobson and
collaborators). In this theory the symmetry is broken by the
aether covector vA, which is a dynamical field that is
constrained to be unit timelike vAvA = −1.

• As a consequence, the theory has in general spin-2,
spin-1, and spin-0 gravitational wave polarizations traveling
at different speeds.

• A particular choice for the aether field is to be hypersurface
orthogonal, thus determining a preferred time foliation of
space-time. In this case the Einstein-aether theory is
reduced the Horava-Lifshitz theory.
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Einstein-aether Gravity

• The action for Einstein-aether theory is given in
four-dimensional space-time by

Sae =
1

16πGae

∫
d4x
√
−gLae (10)

where Lae = R + Lvec ,

−Lvec = K AB
CD∇AvC∇BvD − λ(v2 + 1) (11)

with “kinetic" tensor defined as

K AB
CD = c1gABgCD + c2δ

A
Cδ

B
D + c3δ

A
Dδ

B
C − c4vAvBgCD

(12)

• This is the most general effective action for a timelike unit
vector field at 2nd order in derivatives.
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Horava-Lifshitz Gravity

• When the aether field is hypersurface orthogonal

v[A∇BvC] = 0 (13)

• Hypersurface orthogonality implies the co-vector is the
gradient of a scalar

vA =
−∂Aφ√

gCD∂Cφ∂Dφ
(14)

• Geometrically the aether field determines a foliation of
space-time.
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Horava-Lifshitz Gravity

• Choosing coordinates such that φ = τ , where τ is the
preferred foliation of time, the Einstein-aether action
reduces to the generic 3+1 form of the Horava-Lifshitz
action (Griffin).

• In Horava-Lifshitz the spin-1 mode is non-propagating.
• The black holes have a space-like hypersurface called the

universal horizon and it is the causal boundary of
space-time (and not the null hypersurface Killing horizon).

• The black hole thermodynamics is associated with the
universal horizon.
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Lifshitz Stress-Energy Tensor

• Since boost invariance is explicitly broken in Lifshitz field
theories, the conserved stress-energy tensor is not
necessarily symmetric. The Lorentz current is
Jµαβ = xαTµβ − xβTµα, and

∂µJµαβ = Tαβ − T βα (15)

• In order to see its asymmetric part, we have to construct it
not as a response of the action S to a change in a
background metric hµν , but rather as a response to a
change in the vielbein eµa (by a we denote tangent space
indices)

T a
µ =

1
e
δS
δeµa

(16)
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Stress-Energy Tensor

• The vielbein encodes both the metric data hµν = ea
µeb

νηab,
and the foliation data vµ = ea

µva, where va = (1,0..,0).
• Using (16) one has

Tµν = Θµν + Jµvν (17)

where
Θµν =

2√
−h

δS
δhµν

, Jµ =
1√
−h

δS
δvµ

(18)

• We see from (17) that the asymmetric part of the
stress-energy tensor arises from Jµvν and is directly
connected to the foliation data.
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Lifshitz Ward Identity
• The relativistic z = 1 (CFT) Ward identity is

Tµ
µ = 0 (19)

• The Lifshitz Ward identity is

zT 0
0 + T i

i = 0 (20)

• Quantum anomalies modify the CFT Ward identity in D
space-time dimensions

〈Tµ
µ 〉g = −(−)

D
2 aED +

∑
i

ci Ii (21)

where ED is the Euler density (A-type anomaly) and Ii are
Weyl invariant terms (B-type Anomaly).

• Lifshitz anomalies seem to be all of B-type.
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Experimental Setups: Strange Metals

• Heavy fermion compounds and other materials including
high Tc superconductors have a metallic phase (dubbed as
‘strange metal’) whose properties cannot be explained
within the ordinary Landau-Fermi liquid theory.

• In this phase some quantities exhibit universal behaviour
such as the resistivity, which is linear in the temperature
ρ ∼ T .

• Such universal properties are believed to be the
consequence of quantum criticality
(Coleman:2005,Sachdev:2011).

• At the quantum critical point there is a Lifshitz scaling
(Hornreich:1975,Grinstein:1981) symmetry.
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Quantum Critical Points
• Phase transitions at zero temperature are driven by

quantum fluctuations.
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Quantum Critical Points

• Systems with ordinary critical points have a hydrodynamic
description with transport coefficients whose temperature
dependence is determined by the scaling at the critical
point (Hohenberg:1977).

• Quantum critical systems also have a hydrodynamic
description, e.g. conformal field theories at finite
temperature, fermions at unitarity and graphene.

• At quantum critical regime the hydrodynamic description
will be appropriate if the characteristic length of thermal
fluctuations `T ∼ 1/T is much smaller than the size of the
system L� `T and both are smaller than the correlation
length of quantum fluctuations ξ � L� `T .
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QCP Hydrodynamics

• The hydrodynamic description should take into account the
effects due to the lack of boost invariance.

• The results that I will present are universal up to the value
of the coefficients in the hydrodynamic expansion, which
depend on the details of the critical point.
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New Transport

• Our main new result is the discovery of a single new
transport coefficient in the neutral case, allowed by the
absence of boost invariance. The effect of the new
coefficient is a production of dissipation when the fluid
accelerates.

• The result applies to any system with Lifshitz scaling, but
also more generally to any system where boost invariance
is explicitly broken. For instance, fluids moving through a
porous medium or electrons in a dirty metal.

• New transport coefficients appear in charged/superfluid
Lifshitz hydrodynamics.

• We relate the flux of the spin zero perturbation across the
universal horizon of Horava-Lifshitz gravity to the new
dissipative transport in Lifshitz field theory hydrodynamics.



Lifshitz Scaling Symmetry Lifshitz Hydrodynamics Strange Metals Scale Anomalies Open Problems

QCP Hydrodynamics
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Conductivity

• We study the effects of the new coefficient on the
conductivity of a strange metal using the Drude model and
find a non-linear dependence on the electric field.

• Interestingly, we also find that scaling arguments fix the
resistivity to be linear in the temperature, under the
reasonable assumption that the dependence on the mass
density is linear. This behaviour is universal: it is
independent of the number of dimensions and the value of
the dynamical exponent.
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Equation of State

• In a field theory the scaling symmetry is manifested as a
Ward identity involving the components of the
energy-momentum tensor

zT 0
0 + δj

iT
i
j = 0 (22)

• At finite temperature T 0
0 = −ε, T i

j = pδi
j , leading to the

equation of state
zε = dp (23)

• This fixes the temperature dependence of energy and
pressure. Taking the dimension of spatial momentum to be
one, the scaling dimensions are

[T ] = z , [ε] = [p] = z + d (24)
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Equation of State
• The Lifshitz algebra can be generalized for constant

velocities uµ, uµuµ = ηµνuµuν = −1 (µ, ν = 0,1, · · · ,d),
with scaling dimension [uµ] = 0.

• We define the generators

P‖ = uµ∂µ, P⊥µ = P ν
µ ∂ν , D = zxµuµP‖ − xµP⊥µ . (25)

Where P ν
µ = δ νµ + uµuν . Then, the momentum operators

commute among themselves and

[D,P‖] = zP‖ , [D,P⊥µ ] = P⊥µ . (26)

• The Ward identity associated to D becomes

zTµ
νuµuν − Tµ

νP ν
µ = 0 . (27)

It coincides with (22) only when z = 1, but leads to the
equation of state (23) for any velocity.
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Hydrodynamics

• The conservation of the energy-momentum tensor
determines the hydrodynamic equations ∂µTµν = 0.

• Lorentz symmetry forces the energy-momentum tensor to
be symmetric. If boost or rotational symmetries are broken
this condition can be relaxed.

• This allows many new terms in the hydrodynamic
energy-momentum tensor, but as usual there are
ambiguities in the definition of the hydrodynamic variables
in the constitutive relations. In order to fix them, we impose
the Landau frame condition

Tµνuν = −εuµ . (28)
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Hydrodynamics

• Then, the generalized form of the energy-momentum
tensor is

Tµν =(ε+ p)uµuν + pηµν

+ π
(µν)
S + π

[µν]
A + (uµπ[νσ]A + uνπ[µσ]A )uσ . (29)

• The first line is the ideal part of the energy-momentum
tensor, πS contains symmetric dissipative contributions and
must satisfy the constraint π(µν)S uν = 0. πA contains all
possible antisymmetric terms.

• In a theory with rotational invariance π[ij]A = 0.
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First Viscous Order

• To first dissipative order

π
(µν)
S = −ηµναβ∂αuβ = −ηPµαPνβ∆αβ −

ζ

d
Pµν∂αuα (30)

• η and ζ are the shear and bulk viscosities respectively. The
shear tensor is defined as

∆αβ = 2∂(αuβ) −
2
d

Pαβ(∂σuσ) (31)
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The Entropy Current

• The new terms from π
[µν]
A should be compatible with the

laws of thermodynamics, in particular with the second law.
Its local form in terms of the divergence of the entropy
current is ∂µjµs ≥ 0.

• The divergence of the entropy current can be derived from
the conservation equation

0 = ∂µTµνuν = −T∂µ(suµ)

− π[µσ]A (∂[µuσ] − u[µuα∂αuσ]) + · · · . (32)

• In the Landau frame we can define the entropy current as
jµs = suµ to first dissipative order.
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The Local Second Law

• The dots denote contributions originating in symmetric
terms in the energy-momentum tensor. To first order in
derivative corrections they will simply be the shear and
bulk viscosity contributions, which are manifestly positive
for positive values of the transport coefficients.

• The new terms are possible only if

π
[µν]
A = −αµνσρ(∂[σuρ] − u[σuα∂αuρ]) (33)

where αµνσρ contains all possible transport coefficients to
first dissipative order and must satisfy the condition that,
for an arbitrary real tensor τµν ,

τµνα
µνσρτσρ ≥ 0 (34)
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Transport Coefficients

• If only boost invariance is broken, there is a single possible
transport coefficient α ≥ 0

π
[µν]
A = −αu[µuα∂αuν] (35)

• For a theory with Lifshitz symmetry the scaling dimension
of the transport coefficients is [η] = [ζ] = [α] = d , which
determines their temperature dependence to be

η ∼ ζ ∼ α ∼ T
d
z (36)
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Charged Lifshitz Hydrodynamics

• There can be other new transport coefficients in a theory
with conserved charges.

• With a single conserved global current have

T [µν] = π
[µν]
A = −αu[µaν] − α′Tu[µPν]σ∂σ

( µ
T

)
(37)

and
Jµ = ρuµ − σPµν∂ν

( µ
T

)
− α′aµ (38)

• We imposed Onsager relation.
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Kubo Formulas
• The first order transport coefficient is given by the Kubo

formulas

α = lim
ω→0

1
iωB

〈
T0iT i

0

〉
(ω,k = 0), (39)

α = lim
ω→0

1
iωA

〈
T0iT 0

i

〉
(ω,k = 0), (40)

α′ = − lim
ω→0

1
iB

∂

∂ω

〈
j iT i

0

〉
(ω,k = 0), (41)

α′ = − lim
ω→0

1
iA

∂

∂ω

〈
j iT 0

i

〉
(ω,k = 0). (42)

Where we have defined the coefficients

A =
1
2
− t00

ε0 + p0
, B =

t00

ε0 + p0
, (43)

and t00, t00 are the zero frequency two-point functions〈
T 0

i T
0
j

〉
= t00δij ,

〈
T i

0T 0
j

〉
= t0

0 δ
i
j ,
〈

T i
0T j

0

〉
= t00δ

ij . (44)
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Novel Transport in Horava-Lifshitz Gravity

• The new transport contributes to the divergence of the
entropy current sµ = suµ

∂µsµ =
2η
T
σµνσ

µν +
ξ

T
(∂µuµ)2 +

α

T
aµaµ (45)

• In gravity this is the focusing equation

(GAB − T ae
AB + vAEB)`A`B = 0 (46)

where EA is the variation of the action with respect to vA
and `A is the normal to the horizon. It measures the flux of
matter-energy across the horizon.

• Both the spin 2 and spin 0 helicity fluxes contribute to η
and ζ. The spin 0 helicity flux contributes to α.
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Lifshitz Transport in Einstein Gravity With Matter

• We computed the bulk viscosity in holographic models dual
to theories with Lifshitz scaling (and/or hyperscaling
violation), using a generalization of the bulk viscosity
formula (Eling-Oz) derived from the null focusing equation.

• We found that models with massive vector fields have a
vanishing bulk viscosity.

• For other holographic models with scalars and/or massless
vector fields we find a universal formula in terms of the
dynamical exponent and the hyperscaling violation
exponent

ζ

η
= −2

θ

d(d − θ)
+ 2

z − 1
d − θ

(47)

• zε = (d − θ)p.
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Non-relativistic Limit

• We now study fluids with broken Galilean boost invariance.
In the relativistic fluid the maximal velocity c appears in
uµ = (1, β i)/

√
1− β2, where β i = v i/c.

• In the non-relativistic limit c →∞, the pressure is not
affected while the relativistic energy is expanded in terms
of the mass density ρ and the internal energy U as

ε = c2ρ− ρv2

2
+ U . (48)
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Non-relativistic Limit

• The relativistic hydrodynamic equations reduce to the
non-relativistic form

∂tρ+ ∂i(ρv i) = 0 , (49)

∂tU + ∂i

(
Uv i

)
+ p∂iv i =

η

2
σijσij +

ζ

d
(∂iv i)2 + α(V i

A)2 ,

(50)

∂t (ρv i) + ∂j(ρv jv i) + ∂ ip

= ∂j

(
ησij +

ζ

d
δij∂kvk

)
+ ∂t (αV i

A) + ∂j

(
αv jV i

A

)
.

(51)

• The shear tensor is σij = ∂ivj + ∂jvi − (2/d)δij∂kvk .
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Non-relativistic Limit

• While taking the limit, we have absorbed factors of 1/c in
the shear and bulk viscosities η and ζ and a factor 1/c2 in
α.

• The vector V i
A is the acceleration of the fluid

V i
A = Dtv i = (∂t + vk∂k )v i (52)

• Similarly to the viscosities, the coefficient α determines the
dissipation that is produced in the fluid when the motion is
not inertial.
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Non-relativistic Lifshitz Scaling

• In a fluid with Lifshitz symmetry the scaling dimensions of
the hydrodynamic variables are

[v i ] = z − 1, [p] = [U] = z + d , [ρ] = d + 2− z, (53)

while the temperature has scaling dimension [T ] = z.
• We can determine the scaling dimensions of the transport

coefficients by imposing that all the terms in the
hydrodynamic equations have the same scaling. We find

[η] = [ζ] = d , [α] = d − 2(z − 1) . (54)



Lifshitz Scaling Symmetry Lifshitz Hydrodynamics Strange Metals Scale Anomalies Open Problems

Drude Model of a Strange Metal

• We model the collective motion of electrons in the strange
metal as a charged fluid moving through a static medium,
that produces a drag on the fluid.

• We are interested in describing a steady state where the
fluid has been accelerated by the electric field, increasing
the current until the drag force is large enough to
compensate for it.

• In order to simplify the calculation we will consider an
incompressible fluid ∂iv i = 0.
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Drude Model of a Strange Metal
• The fluid motion is described by the Navier-Stokes

equations

ρvk∂kv i + ∂ ip = ρE i − λρv i + η∇2v i + α∂j

(
v jvk∂kv i

)
.

(55)

• We have added two new terms: the force produced by the
electric field E i , and a drag term, whose coefficient λ has
scaling dimension [λ] = z.

• We can solve this equation order by order in derivatives,
keeping the pressure constant ∂ ip = 0. To leading order
the current satisfies Ohm’s law

J i = ρv i ' ρ

λ
E i , (56)

and the conductivity is simply σij = ρ/λδij .
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Conductivity

• At higher orders in derivatives the conductivity depends on
the electric field and its gradients.

• When the electric field takes the form Ex = E0 cos(y/L),
the contribution of α to the conductivity is y dependent

σxx (Ex ,Ey ) =
ρ

λ

[
1− 1

ρλ

(
η +

[α
λ

+
ρ

λ3

]
E2

y

) 1
L2 −

1
λ2

Ey∂yEx

Ex

]
(57)
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Conductivity

• If we average on the y direction, we find that the
conductivity decreases with the magnitude of the
transverse electric field

σxx (Ex ,Ey ) =
ρ

λ

[
1− 1

ρλ

(
η +

[α
λ

+
ρ

λ3

]
E2

y

) 1
L2

]
(58)

• In the case where the electric field is linear in y ,
Ex = E0y/L, the conductivity is simplified to

σxx =
ρ

λ

[
1 +

αE2
0

ρL2λ3

]
(59)

The contribution from the shear viscosity drops. This gives
a way to identify the new transport coefficient α.
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Lifshitz Scaling

• In contrast with a relativistic fluid, the density is
approximately independent of the temperature. This
introduces an additional scale, and in general the transport
coefficients can be non-trivial functions of the ratio
τ = T

d+2−z
z /ρ.

• The conductivity will have the following temperature
dependence

σxx = T
d−2(z−1)

z σ̂(τ) ' ρ

T
, (60)

where we assumed a linear dependence on the density as
obtained from the calculation with the drag term.

• This predicts a resistivity linear in the temperature and
independent of the dynamical exponent and the number of
dimensions.
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Dissipative Effects

• Consider the heat production due to the introduction of
external forces and the drag (Kiritsis). An electric field or
temperature gradient will induce an acceleration

ai = −∂ ip/ρ+ E i = (s/ρ)∂ iT + E i (61)

• We impose ∂tai = 0, ∂jai = 0. The Navier-Stokes
equations for homogeneous configurations takes the form

∂tv i − (α/ρ)∂2
t v i + λv i = ai (62)
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Heat Production

• If the forces are suddenly switched on at t = 0, the
evolution of the velocity is determined by this equation with
the initial conditions v i(t = 0) = 0,
∂tv i(t = 0) = ρai

2αλ

(√
4αλ
ρ + 1− 1

)
.

∂tv i(t = 0) =
ρai

2αλ

(√
4αλ
ρ

+ 1− 1

)
(63)

• At late times the system evolves to a steady state
configuration with constant velocity, so the heat production
rate becomes constant v i = ai/λ. Subtracting this
contribution for all times, the total heat produced is

∆Q = −ρa2

2λ2

(√
4λα/ρ+ 1 + 2

)
(64)
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Geometrical Structure

• Since time scales differently than space, one has to
consider the time direction separately, by foliating
spacetime into equal-time slices.

• When considering a theory defined over a general curved
manifold, this structure is generalized to a
codimension-one foliation defined over the manifold.

• The foliation structure over a manifold can be locally
represented by a 1-form tα.

• A vector Vα is tangent to the foliation if and only if
tαVα = 0. By the Frobenius theorem, such a 1-form
(locally) defines a codimension-1 foliation if and only if it
satisfies the condition:

t[α∂βtγ] = 0 (65)
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Geometrical Structure

• The background fields of a Lifshitz field theory can be
taken to be the metric gµν and the foliation 1-form tα.

• On a curved manifold the lack of boost invariance
translates into foliation preserving diffeomorphisms
Lξtα ∼ tα, or

t → f (t), x → g(x , t) (66)

• In addition there is an anisotropic Weyl symmetry.



Lifshitz Scaling Symmetry Lifshitz Hydrodynamics Strange Metals Scale Anomalies Open Problems

Scale Anomalies

• It is given by the relative cohomology of the scaling
operator modulo foliation preserving diffeomorphisms.

• The cohomology depends on z and d .
• The z = 1 cohomology differs from the trace anomaly.
• Anomalies are B-type : scale invariant objects.
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Open Problems

• Theoretical : As listed in the beginning of the talk and more
• Experimental verifications
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