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The Fractional Quantum Hall Effect
I In systems with 2D electron gases, at very low temperatures,

high magnetic fields, clean samples :

[Tsui+Stoermer]



The Fractional Quantum Hall Effect

I FQHE states are gapped states with quantized Hall conductvitiy

σxy =
p
q

(
e2

h

)
, p,q ∈ Z , q odd

I Physics of charged quasiparticle excitations symmetric under
Modular Group Action : σ = σxy + iσxx

σ 7→ aσ + b
cσ + d

,

(
a b
c d

)
∈ Γ0(2) ⊂ SL(2,Z) , c even

I Assumption: RG flow reduces to two-dimensional subspace

I Group action commuting with the RG flow implies that RG fixed
points are Γ0(2) fixed points, structure imprinted on σ flows in
σxx − σxy plane

[Burgess+Lutken 1997, Dolan 1999, Lutken+Ross 2009, S.S. Murzin et al 2002]



The Fractional Quantum Hall Effect



The Fractional Quantum Hall Effect

I Examples:
Selection Rule: p′q − pq′ = 1 (e.g. 1/3→ 2/5) [Dolan 1998]

Superuniversality of QH transitions

I CAN WE REPRODUCE THIS STRUCTURE (AND OTHER
UNIVERSAL TRANSPORT FEATURES) IN A SINGLE
HOLOGRAPHIC MODEL EMPLOYING THE MODULAR
GROUP ACTION?

I Holographic model based on SL(2,Z ) invariance
with GAPPED Quantum Hall states
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SL(2,Z )/SL(2,R) and Black Hole Charges
I Main idea of [1007.2490,1008.1917,1409.1369] : Use an

SL(2,Z) (or SL(2,R)) invariant Einstein-Maxwell-Axio-Dilaton
action to generate dyonic black branes by acting on known
purely electrically charged black branes.

S = M2
Pl

∫
d4x
√
−g
[
R − 1

2γ2
∂τ∂τ̄
τ2

2
+ V (τ, τ̄)− 1

4

(
τ2F 2 + τ1FF̃

)]

I Filling fraction and all other observables inherit the group action
automatically.

I SL(2,Z)/SL(2,R) acts on the fields as
τ = a + ieγφ = τ1 + iτ2 , τ → aτ+b

cτ+d , ds2 → ds2 and

F → F ′ = (cτ1 + d)F − cτ2F̃

I Dyonic black branes have charges

Q′e = aQe , Q′m = cQe

Any rational (SL(2,Z)) or real (SL(2,R)) filling fraction generated
in this way.
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SL(2,Z )/SL(2,R) and Black Hole Charges
I Dyonic domain wall solutions flow to

τ ′1∗ = a
c and τ ′2∗ = τ2∗

−1 = 0 .

The filling fraction is hence equal to the value of the transformed
axion

ν =
Q′

e
Q′

m
= a

c = τ ′1∗ ,

which can be roughly though of setting the Chern-Simons level
in the dual field theory. [1007.2490] .

I [1007.2490] used a SL(2,R) invariant model without scalar
potential (V (τ, τ̄) = 2Λ ) and with the special value γ = −1 .

Their QH states are unique due to the attractor mechanism ,
with Hall conductivity given again by a/c .

I [1008.1917] use a SL(2,R) invariant DBI action on top of a
z = 5 Lifshitz background. Besides the Hall conductivity, they
reproduce the superuniversality exponents .
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SL(2,R) and Black Hole Charges
I Two Problems:

1. No hard gap in the charged
excitations, σDC vanishes as
a power law.

2. In SL(2,R) transformations
between QH states
σDC |T =0 = 0.
This is not experimentally
observed.

[Pan etal PRL 83 1999]

I Our model improves on the first point by using dyonic black
branes in a confined phase (i.e. with a discrete and gapped
spectrum), and on the second point by using SL(2,Z ) instead of
SL(2,R). In particular the latter point is expected to allow for
real dynamical transitions between QH states. We also impose
several well-motivated physical as well as consistency
constraints.
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A Gapped Holographic FQH State
I In string theory, SL(2,R) is usually broken to SL(2,Z) by

nonperturbative effects. This typically will generate a SL(2,Z)
invariant potential for the axio-dilaton .

I A simple choice is the real-analytic Eisenstein series

V (τ, τ̄) = Es(τ, τ̄) =
∑

m,n∈Z2/0,0

(
|m+nτ |
τ2

)−s

I For large τ2 the instanton expansion is dominated by a single
exponential (τ2 = eγφ),

Es = 2ζ(2s)τ s
2 + 2

√
π Γ(s−1/2)

Γ(s) ζ(2s − 1)τ1−s
2 + instanton contributions

→ [Charmousis+Gouteraux+Kim+Kiritsis+R.M. 1005.4690]

I We tune the two parameters (γ, s) such that the ground states
are consistent and in particular confined. We then analyse the
SL(2,Z) image of the electric state and confirm that these
Quantum Hall states have a gapped and discrete spectrum.
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A Gapped Holographic FQH State
I Gubser’s constraint, existence of a (de)confinement transition,

existence of a discrete and gapped spectrum, relevancy of UV
fixed points and correct flow pattern restrict (γ, s):
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A Gapped Holographic FQH State
I Gubser’s constraint, existence of a (de)confinement transition,

existence of a discrete and gapped spectrum, relevancy of UV
fixed points and correct flow pattern restrict (γ, s):



A Gapped Holographic FQH State
I QH Plateaux? Runaway minima at τ1 = p

q , τ2 = 0 are the
images of the CDBH at τ2 =∞, with charges

Qe

Qm
=

p
q

= τ1∗ .

IR Geometry: Magnetically charged DBH w. τ2 = e−γφ

I RG Flows: Es is stationary in the fundamental domain at the
SL(2,Z) fixed points:



A Gapped Holographic FQH State
I Since SL(2,Z) commutes with the RG flow it suffices to construct

the RG flows inside the fundamental domain:



A Gapped Holographic FQH State
I By SL(2,Z) we can generate flows to any QH plateaux τ1 = p/q.

E.g. ν = 1 :



A Gapped Holographic FQH State
I Conductivity in el. Frame: At low enough temperatures the

electric state is in a confined phase. The conductivity at small ω
is dominated by the contribution from translation invariance:

σxx (ω) ' iC′′µ
ω

+ C′′δ(ω) + ...

We found by numerically solving the fluctuation equations

C′′ = O(1)

I Using SL(2,Z ) we find the correct Hall conductivity

σdyon
xy = Re

(
aσ + b
cσ + d

)
=

(aσxy + b)(cσxy + d)+acσ2
xx

(cσxy + d)2 + c2σ2
xx

=
a
c

+O(ω2)

I Consistent with direct small ω calculation of σxy in dyonic frame.

I But are the dyonic domain walls really gapped?



A Gapped Holographic FQH State
I In general dyonic solutions with running scalars the vector

fluctuation equations can be decoupled into a single second
order equation by

Ez = ω(δAx + iδAy ) + hgrr (δgx
t − iδgy

t ) . [0910.0645]

E ′′z + F (r , ω)E ′z + G(rω)Ez = 0

With Ψ(r) = Ez(r)e
1
2

∫
drF (z) this is equivalent to

−Ψ′′ + V (r , ω)Ψ = 0 V (r , ω) = 1
4

(
F 2 − 4G + 2∂r F

)
I For our choice of γ, s and at low frequencies:

V ∼ r−|α| → +∞ in the IR

V ∼ 1
4L2 in the UV .

The spectrum is hence gapped in EVERY QH state!



A Gapped Holographic FQH State
I E.g. Flow to filling fraction one from τ = 1 + i :

1 2 3 4 5
r

5

10

15

20

25

30

35

Vsr

(solid: smaller w , dashed: bigger w)

I N.B.: The singularity in the potential is an accessory singularity,
i.e. there is no monodromy, and the singularity is traversable by
the wavefunctions. This was not appreciated in e.g. [0910.0645]]
.



A Gapped Holographic FQH State
I For larger frequencies bound states appear

E.g. Ground state:
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A Gapped Holographic FQH State
I For larger frequencies bound states appear

E.g. First excited state:
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A Gapped Holographic FQH State
I The first bound state defines the charge gap.

We find numerically that the gap and spectrum are
approximately independent of the SL(2,Z) frame:

n
B

=
a
c
, B = cQel.

We scanned (a, c) ∈ [−20, . . . ,20] , i.e. filling fractions of∣∣ n
B

∣∣ ∈ [1/20,20] , with ω0 varying less than 1% .
I A better analytic understanding is clearly needed.

I N.B.: Excitations are not Landau levels, but rather
"charged mesons" (as in holographic QCD).

I Our flows also show an anomalous Hall effect:
σAHE

xy = τUV
1

At least two UV completions for each QH state.
IR physics universal.
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Conclusions
I We improved on [1007.2490(,1008.1917)] by constructing holographic

fractional Quantum Hall states with a gapped and discrete
charge spectrum. We use a SL(2,Z) invariant Eisenstein
potential , and showed that the QH states have the correct Hall
conductivity , and a real gap (no δ(ω) pole). The charged
quasiparticle spectrum is independent of filling fraction and
applied magnetic field.

I Future Directions/Open Questions:

1. Interpretation of the two UV fixed points?
2. Role of other IR fixed points (AdS2 and running τ1)?

Transitions between QH Plateaux as a QPT? Universal
Phenomenology?

3. Why gap nearly SL(2,Z ) invariant?
4. How to break SL(2,Z)? B and n/B dependent gap? How to

include impurities? How to get plateaux?
5. Subgroups – Γ0(2)/Γθ(2)?
6. Top-down constructions? [G. Semenoff et.al.]

I STAY TUNED!



Backup Slides



QH Plateaux Transition

Transition is a 2nd order QPT : [Fisher ’90]

I Simple scaling⇒ σ(T ,∆B,n, ...) = σ(∆B/T κ,n/T κ′ , ...)

I Superuniversality: κ and κ′ are same for all transitions
I Experimentally: κ = κ′ = 0.42± 0.01 [Wanli et al 2009]



The Fractional Quantum Hall Effect

I Semicircle law: Conductivity sweeps out a semicircle in σ plane
during QH transitions [e.g. Burgess etal 1008.1917]



SL(2,R) invariant probe branes [1008.1917]
I [Burgess etal 1008.1917] realized that the DC conductivity in the QH state

of [1007.2490] vanishes due to the momentum-conservation pole in
=σxx of the purely electric solution.

I They introduce dissipation by separating the sector that
generates the gravity background of [1007.2490] from the sector of
charge carriers, which they model using a SL(2,R) invariant
probe brane

S = M2
Pl

∫
d4x
√
−g
[
R − 2Λ− 1

2
(
(∂φ)2 + e2φ(∂a)2)]+

+M2
PlSLifshitz + Sgauge

The first two terms are assumed to be separately SL(2,R)
invariant, and SLifshitz to be chosen such as to generate the
metric of the z = 5 Lifshitz black hole of [1007.2490] , together with
an appropriate axio-dilaton profile.
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SL(2,R) invariant probe branes [1008.1917]
I Sgauge is taken to be a SL(2,R) invariant version of the DBI

action, treated in the probe limit:

Sgauge = −T
∫

d4x
[√
−det

(
gµν + `2e−φ/2Fµν

)
−
√
−g
]

−1
4

∫
d4x
√
−gaFµν F̃µν

I This describes self-interacting charge carriers coupled to a large
reservoir of quantum critical excitations into which they can
loose energy via dissipation:
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SL(2,R) invariant probe branes [1008.1917]
I The method of [Karch, O’Bannon ’07] is used to calculate the

(nonlinear) DC conductivity in the purely electric background
solution

I The QH state conductivity is then inferred by a SL(2,R) (or a
subgroup such as Γ0(2)) transformation

σxx =
σ0

d2 + c2σ2
0
, σxy =

acσ2
0 + bd

d2 + c2σ2
0
,

with σ0(T/µ) the DC conductivity of the probe brane in the
purely electric state (with σyx = 0). For probe branes in Lifshitz
backgrounds like

ds2
z = L2

[
−h(r)

dt2

r2z +
dr2

r2h(r)
+

dx2 + dy2

r2

]
σ0 grows monotonically with falling temperature ∝ T−2/z , and
parametrizes the RG flow of the conductivity in the QH state.

I This temperature flow commutes with SL(2,R) or any subgroup.



SL(2,R) invariant probe branes [1008.1917]
I The method of [Karch, O’Bannon ’07] is used to calculate the

(nonlinear) DC conductivity in the purely electric background
solution

I The QH state conductivity is then inferred by a SL(2,R) (or a
subgroup such as Γ0(2)) transformation

σxx =
σ0

d2 + c2σ2
0
, σxy =

acσ2
0 + bd

d2 + c2σ2
0
,

with σ0(T/µ) the DC conductivity of the probe brane in the
purely electric state (with σyx = 0). For probe branes in Lifshitz
backgrounds like

ds2
z = L2

[
−h(r)

dt2

r2z +
dr2

r2h(r)
+

dx2 + dy2

r2

]
σ0 grows monotonically with falling temperature ∝ T−2/z , and
parametrizes the RG flow of the conductivity in the QH state.

I This temperature flow commutes with SL(2,R) or any subgroup.



SL(2,R) invariant probe branes [1008.1917]
I The method of [Karch, O’Bannon ’07] is used to calculate the

(nonlinear) DC conductivity in the purely electric background
solution

I The QH state conductivity is then inferred by a SL(2,R) (or a
subgroup such as Γ0(2)) transformation

σxx =
σ0

d2 + c2σ2
0
, σxy =

acσ2
0 + bd

d2 + c2σ2
0
,

with σ0(T/µ) the DC conductivity of the probe brane in the
purely electric state (with σyx = 0). For probe branes in Lifshitz
backgrounds like

ds2
z = L2

[
−h(r)

dt2

r2z +
dr2

r2h(r)
+

dx2 + dy2

r2

]
σ0 grows monotonically with falling temperature ∝ T−2/z , and
parametrizes the RG flow of the conductivity in the QH state.

I This temperature flow commutes with SL(2,R) or any subgroup.



SL(2,R) invariant probe branes [1008.1917]
I The four parameters of the necessary SL(2,R) transformation

are fixed by the data of the endpoint (Q′e,Q′m,a,e−φ). The
temperature flow of the conductivities then trace out semi-circles
in the σ plane, and for small T asymptote to (in linear response)

σxx ∼ ρT 2/z

B2 → 0
σxy = ν = a

c

This also predicts the superuniversality exponents κ ≈ 2
z = κ′

close to the measured value if z = 5 as in [1007.2490] .
However there is still no hard gap. .
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