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Quantum entanglement 
A quantum system: divide into  A+B

Hilbert space:  H = HA ⊗HB

Ψ =
�

n

ψn(A)⊗ χn(B)Wave function: 

ρA = TrB |Ψ��Ψ|

SA = −TrρA log ρA

Simplest measure: entanglement entropy 



Entanglement and phases of Matter 
Traditional (Landau) paradigm of phases: 

Different orders characterized by different symmetries 
       Phase transitions: symmetry breaking  

crystals, superconductors, magnets, ……  

Such a classification not adequate: 

FQH, spin liquids …  gapped phases:  

topological order 

gapless systems: Non-Fermi liquids,  
gapless spin liquids,  
novel quantum critical points     
….. 

Long range 
Quantum  
Entanglement  
      (???) 



Gapless systems:  

S =
L

�
− γIn (2+1)-dimension: 

long range entanglement 
Short-range  

Gapped phase:   provides a diagnostic of topological order.   γ

A 
Lorentz invariant QFTs  

provides a measure of number of  
degrees of freedom and decreases along RG 

γ

+ ……… 

A 

C-theorem or F-theorem 



Geometry = Entanglement  

SB =
Area of M

4GN

M 

Ryu and Takayanagi 



Quantum 
gravity 

Quantum 
Matter 

Quantum 
information 

Entanglement 

A new paradigm ? 



In this talk I discuss  our recent exploration 
of  evolution of quantum entanglement in  
equilibration processes.   

•   Equilibration provides a dynamical setting to study the 
   generation of entanglement 

How a system equilibrates: 

foundation of quantum statistical physics, condensed matter,  
QCD, …….  

•   Entanglement: nonlocal probes of equilibration processes 



Entanglement generation 

A B 

How fast can entanglement be generated? 

In most physical systems: Local Hamiltonian  

ψ(t = 0) = ψA ⊗ ψB

ψ(t) = e−iHtψ(0)

H = HA +HB +HAB

HAB = HCD

C D 

δ

: UV cutoff δ



Small incremental entangling 
conjecture/theorem 

A B 
C D 

δ
For spin systems:  

dSA

dt
≤ c||H|| log d, d = min(dC , dD)

dC  : dimension of Hilbert space of C 

Dur, Vidal  et al, Bravyi, Kitaev 
Bennett et al, Van Acoleyen, Marien, 
Verstraete 

H = HA +HB +HCD



A B 
C D 

δ

For more general quantum systems ????  

dSA

dt
≤ c||H|| log d

SIE: 

•  Finite dimensional Hilbert space: not applicable in 
continuum  limit. 

•  Gapped systems  

Neither ||H|| nor d can be precisely defined  

How do we compare systems of different number of dof,  
different  shapes, sizes of A etc ? 



Equilibration processes in quantum field  
theories provide a good laboratory for studying  
such question. 



A simple setup: global quenches 
1.  Start with a QFT in the  
    ground state.  

2. At t=0 in a very short time  
interval inject a uniform energy  
density  

•  initial state homogeneous, isotropic,  
 entanglement properties as vacuum 

3. The system evolves to (thermal) equilibrium 

A 

SA(t)?

The system is in a pure state throughout. 



Entanglement in the vacuum 

A 
δ

Σ

short-range entanglement  
near Σ, cutoff dependent 

Sshort
A :

Slong
A : long range entanglement, insensitive to 

UV physics near Σ  

Vacuum: R: characteristic  
size of A 

Long ranged entangled  d.o.f. are measure zero. 

Slong
A = const or logR

SA = Sshort
A + Slong

A



Entanglement in equilibrium state 
The system behaves macroscopically as a thermal state,  
with entanglement entropy disguised as thermal entropy: 

Essentially all d.o.f. inside A becomes long ranged  
entangled with those outside  A. 

Slong,eq
A = seqVA

seq : equilibrium entropy density

VA : volume of region A 



A A 

          t=0 
no entanglement 

Equilibrium 
all entangled 

∆SA(t) = SA(t)− SA(t = 0)

How? at what rate is entanglement generated? 



Previous results in (1+1)-d CFTs  
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tS 

1. Linear growth with time 

Calabrese and Cardy 

(not too early and too late) 

2R 

2. Slope = 1 

3. Can be reproduced by  
free particles 



Special techniques in one spatial dimension do not  
apply to higher dimensions:   

•  Equilibration processes: complicated non-
equilibrium many-body dynamics, generally 
out of theoretical control. 

•  Entanglement entropy is notoriously difficult to 
calculate even for simple regions in the vacuum of 
a free theory, not to mention for general regions in 
interacting theories far from equilibrium.  



String theory to the rescue! 



Important earlier work:  

Hubeny, Rangamani, Takayanagi: arXiv:0705.0016 

Abajo-Arrastia, Aparicio and Lopez, arXiv:1006.4090 

Albash and Johnson, arXiv:1008.3027 

Balasubramanian, Bernamonti, de Boer, Copland, Craps, 
Keski-Vakkuri, Muller and Schafer, Shigemori, Staessens  
arXiv:1012.4753, arXiv:1103.2683 

Aparicio and Lopez, arXiv:1109.3571 

Caceres and A. Kundu, arXiv:1205.2354 

…………… 



Holographic description of quench 

←

AdS

black hole
ho

riz
on

(v < 0)

(v > 0)

null shell (v =
0)

boundary
(z

=
0)

t = 0

quench: thin shell collapse to form a black hole. 



Holographic Entanglement entropy 
Ryu, Takayanagi 
Hubeny, Rangamani, Takayanagi 

A 

SA =
Area of M

4GN

Extremal surface: M 



A 

Σ

R: characteristic size of the region 

Interested in long-distance physics: R → ∞

AΣArea: 

Volume:  VA

SA(t)?



Gravity description 

·A·B

Each extremal surface can also be specified by 
conditions at the tip. 



Large size and critical extremal 
surfaces 

Critical extremal  
surfaces determine 
large R, large time  
behavior   

In general a rather 
complicated problem 
to determine time 
evolution of extremal  
surfaces 



Four scaling regimes in general 
dimensions 

ts
t

S

Late time 
memory loss 

Linear growth 

In the large size R limit: 

Saturation 

Early quadratic growth 

R � 1/T



Linear growth 

For  

independent of shape, holographic theories under  
consideration, the nature of equilibrium state, also likely 
thermalization processes 

vE: dimensionless number characterizing final eq state. 

See also  
Hartman, Maldacena 

∆SA(t) = vE seq AΣt+ · · ·
seq : Equilibrium entropy density 

R � t � 1/T



Critical extremal surface for linear 
growth 

zm : minimumof
h(z)

z2D

vE = (zh/zm)D
�

−h(zm) zh : horizon size 

The critical extremal surface  
runs along a constant  
radial slice inside the horizon 

ds2 =
L2

z2

�
−hdt2 +

1

f
dz2 + d�x2

�

D: # of spatial dimensions 



Entanglement Tsunami 
∆SA(t) = vE seq AΣ t = seq (VA − VA−vEt)

suggests a picture of 
tsunami wave of 
entanglement, with a 
sharp wave front.  

natural with evolution from a local Hamiltonian  

vE 

A - vEt 

d.o.f. in the region covered  
by the wave is now entangled  
with those outside A 



A B 

δ



Tsunami velocity  

Neutral system (AdS Schwarzschild ): 

Turning on chemical potential reduces vE. 

∆SA(t) = vE seq AΣt+ · · ·

=






1 D = 1
√
3

2
4
3
= 0.687 D = 2

√
2

3
3
4
= 0.620 D = 3

1
2 D = ∞

v(S)E =
(η − 1)

1
2 (η−1)

η
1
2η

η ≡ 2D

D + 1



Upper bound on vE ? 

η ≡ 2D

D + 1
v(S)E =

(η − 1)
1
2 (η−1)

η
1
2η

vE ≤

Null energy condition important 

vE should be constrained by causality.  

In all gravity examples: 



Comparing with free particle 
streaming 

Assume:  

•   At t=0, there is a uniform  
density of “photons” with only 
local entanglement correlations. 

•  Entanglement spreads when 
photons propagate. 

Leading to shape independent linear growth, 

∆SΣ(t) = vEseqAΣt+ · · ·



In strongly coupled systems, entanglement tsunami  
propagates faster than those from free particles  
traveling at speed of light ! 

vstreaming =
Γ(D2 )√
πΓ(D+1

2 )
< < 1

D ≥ 2

v(S)
E

For D=1: 

vstreaming = vCFT = vgravity = 1

D → ∞ : v(S)
E → 1

2
, vstreaming →

�
2

π(D + 1)
→ 0



Bound on entanglement growth? 

For any non-equilibrium processes: 

RA(t) ≡
1

seqAΣ

dSA

dt

Indications from gravity: after local equilibration (t >>1/T)  

dimensionless, can be compared among region A of  
different shapes, sizes, and systems of different  
number of d.o.f.  

RA(t) ≤ v(S)
E



Comparing with small incremental entangling 
conjecture/theorem:  

dSA

dt
≤ v(S)

E seq AΣ

dSA

dt
≤ c||H|| log d, d = min(dC , dD)

A B 
C D 

δ



Future directions 

•  More examples:  

Both holographic and field theoretical  

•  Continuum limit of small incremental conjecture   

•  Implications for black hole physics 



Thank You 



Supplementary slides 



Local equilibration scale 
The system should locally equilibrate first at a  
time scale        after which thermodynamics  
should apply locally.  

�eq

Holographic systems:  �eq ∼ 1

T
(µ = 0)

Gravity side: horizon formation  

At                   nonlocal observables, such as             
with                    may still be far from their  equilibrium  
values. 

t ∼ �eq
R � �eq

SA(t)



Pre-local-equilibration evolution 

� : energy density AΣ: area  

t � �eqFor  

S(t)− S(0) =
π

D
�AΣ t2 + · · ·

independent of shape, independent of theories  
under consideration (for relativistic theories), and independent  
of  the nature of final equilibrium state. 



Saturation as a “phase transition” 

•  Discontinuous saturation: first derivative of S(t) is discontinuous.  

•  Continuous saturations are characterized by critical behavior  
at saturation 

In the limit quench is sharp, there is a sharp saturation 
time           . ts(Σ)

SΣ(t)− S(eq)
Σ ∝ −(ts − t)γ

Saturation: the tsunami covers the whole region: 



Saturation: simple geometries 

Generic shape: curvature effects should 
be important, e.g. for a sphere, continuous 
saturation,  

Strip : ts =
R

vE

tS =
1

csphere
R− D − 1

4πT
logR+O(R0)

strip: discontinuous, linear growth 
until saturation 



Memory loss regime 
ts � ts − t � �eqFor 

S(R, t)− Seq(R) = −seqλ (ts(R)− t)

with     a sphere of radius R  Σ

λ : volume of region not yet entangled  

Independent of the size of the region: size information lost 

Speculation for generic shape : 

Both shape and size will be forgotten 
at late times, flow to a “fixed point.” 



Gravity description 

·A·BA

B C
D

·
···

Trajectory of the tip 
over time 



Gravity description 

·A·B
A

B C
D

·
··· · ··

C

A
C �B

·


