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Viscosity: a reminder 
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Quark gluon plasma	


Viscosity bound	
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Heavy fermions	


High Tc cuprates	
Quark gluon plasma	


Viscosity bound	
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Viscosity: Areas of interest 

A.A. Abrikosov and I.M. Khalatnikov, 	
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But first: Liquid 3He	




Viscosity of 3He	


Black, Hall & Thompson, J Phys C 4, 129 (1971)	




Propagation of sound in a neutral viscous liquid	

	


1 mode for each frequency
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Memory function:   Mη
−∞

t

∫ t '− t( )Δυ t ', r( )dt '

Frequency domain:  η ω( )Δυ r( )
Generalized viscosity:  η ω( )
Reasonable approximation: Mη t( ) !τ =η 0( )e−t/ !τ

So that:  η ω( ) =
η 0( )

1− iω !τ

Behaviour at finite frequency 	

	


Response to flow patterns that have existed in the past	




Viscosity According to Fermi Liquid theory	
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ρυF

2τ coll (1+ F1 / 3) / 5
1− iωτ coll 7 F1 / 32

τ coll  =
8! 1+ F1 / 3( )TF

7π 3F1
2 kBT( )2

#

$

%
%

&

%
%

⇒
High T:    η ≅ a

T 2  (hydrodynamic)                

Large ω :   η ≅ i b
ω

+ cT 2 (collisionless)          

(

)
%
%

*
%
%

 

A. A. Abrikosov and I. M. Khalatnikov, Zh. Eksperim. Teor. Fiz. 33, 110 (1957) 	


One of the Peculiar Consequences: 	

Transverse Sound !	




Transverse sound in neutral viscous Fermi liquid	

(Roach and Ketterson, Phys Rev Lett 36 (1976) )	
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Pat R. Roach & J. B. Ketterson, Phys. Rev. Lett. 36 (1976)	



Viscosity and attenuation:	

Imq ≅ ωρ
2η

,   the experiments confirm that lim
T→0

η T( )→∞



Propagation of coupled transverse sound and EM field 
in viscous charged liquids	


	


Combine the two equations gives 2 modes for each frequency
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Transverse sound in a charged Fermi liquid @ 300 Kelvin	
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Two solutions for the index of refraction à Two “modes” for each frequency	


n j =
q jc
ω

                                



Negative Index of Refraction in the Quark Gluon Plasma	

A. Amariti, D. Forcella, A. Mariotti and G. Policastro, JHEP 1104, 036 (2011).	


A. Amariti, D. Forcella and A. Mariotti, JHEP 1301, 105 (2013).	
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Holographic Optics and Negative Refractive Index 
Amariti, D. Forcella, A. Mariotti and G. Policastro,   

JHEP 1104, 036 (2011). 



Reflection and transmission of EM waves at the boundary 	

from vacuum to a non-viscous charged fluid	


	


A 0( ) teiqz

Constituant relations at the interface:
(1 From Maxwell)   A(0 +δ)− A(0−δ) = 0 ⇒1+ r - t = 0

(2 From Maxwell)   ∂zA(0 +δ)−∂zA(0−δ) = 0 ⇒ k − kr - qt = 0
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Reflection and transmission of EM waves at the boundary 	

from vacuum to a non-viscous charged fluid	
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Constituant relations at the interface:

(1 From Maxwell)   A(0 +δ)− A(0−δ) = 0

(2 From Maxwell)   ∂zA(0 +δ)−∂zA(0−δ) = 0
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Reflection and transmission of EM waves at the boundary 	

from vacuum to a viscous charged fluid	
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Interference between the two modes inside the material: 	

The Anomalous Skin Effect Beats !	




Some Viscosity Numbers  
Fermi Liquid theory           Quantum Critical	
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Materials :
υF

2 / c2 ≈ 5 ⋅10−5   (Al, C)
υF

2 / c2 ≈ 3⋅10−12  (3He)

Abrikosov & Khalatnikov, 	

Zh. Eksperim. Teor. Fiz. 33 (1957) 	
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Reflection and transmission of EM waves at the boundary 	

from vacuum to a viscous charged fluid	
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Transmission through a film 



Transmission through a film 



Surface Impedance	

The electromagnetic response of a metal, whether normal 
or superconducting, is described by a complex surface 
impedance:	


surface resistance	


surface reactance	


sss XiR
H
E

dxxJ
E

Z +===
∫
∞

||

||

0

||

)(

JH =×∇0≈
∂
∂

t
D

For a good conductor and w < 1016 Hz	


The impedance of vacuum is:	




The Physics of Superconducting Microwave Resonators.  
Thesis by Jiansong Gao, Caltex (2008) 

Surface resistance Rs  and surface reactance Xs  of aluminum 
as a function of temperature. 



Franz Sondheimer 

The theory of the anomalous skin effect in metals	

	

G. E. H. Reuter and E. H. Sondheimer,	

Proc. R. Soc. A 195, 336 (1948)	
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The theory of the anomalous skin effect in metals	

	

G. E. H. Reuter and E. H. Sondheimer,	

Proc. R. Soc. A 195, 336 (1948)	




Comparison of hydrodynamical approach (present work) and Reuter-
Sondheimer model of anomalous skin effect (Proc.R.Soc. A195 (1948))	
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Ralph de Laer Kronig  
η =

3
8

n!⇒ ν =
3
8
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The anomalous skin effect and the reflectivity of metals  
Hydronamical approach  
C. W. Benthem and R. Kronig, Physica 20. 293 (1954) 
 
"Kronig could arrive indirectly at an estimate of η ("internal 
friction") by comparing the formula for the stopping power 
derived by Kronig and Korringa with an expression for the 
same quantity obtained by  Kramers"  
 
 
  
 
 
On the possible influence of electron interaction on the 
reflectivity of metals  
 
C. W. Benthum, Appl. Sci. Research B 1, 275 (1959) 
 
"It seems, therefore, that the effect … wil be too small to 
measure" 



Holography and hydrodynamics: diffusion on stretched horizons 
P. Kovtun, D.T. Son and A.O. Starinets 

JHEP 10 (2003) 064 

η >> ! s
kB

Coefficient of "Internal Friction"  
deduced from expressions for the stopping power  

R. Kronig 
Physica 15 (1949) 667. 
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Strongly  interacting	

	

Fermi liquids	

	

(3He, Sr2RuO4, UPt3,	

High Tc superconductors…) 	

 
 

 
Weakly  interacting	

	

Fermi liquids	

	

(Aluminium, silver…)	


 
 
 

What is more viscous ?	




 
Weakly  interacting 
 
Fermions 
 
(Aluminium, silver…) 
 
 
 

What is more viscous ?	



Weakly interacting 
Fermi liquid 

Strongly interacting 
Fermi liquid 



Surface Impedance of correlated electrons	




Conclusions Part I	

•  Viscosity : another manifestation of correlated electron behaviour	


•  Viscosity of a Fermi liquid grows as 1/T2 
	


•  Electron liquids, plasmas etc: System of viscous liquid coupled to EM-field 
	


•  Consequence 1: Absorbtion peak at ωτ = 1 
	


•  Consequence 2: Two modes (instead of one) inside the plasma 
	


•  Consequence 3: EM-field oscillations due to interference of the two 
modes 
	


•  Strongly interacting Fermi liquid  à low viscosity	


	

	


Further reading: Phys. Rev. B 90, 035143 (2014)	
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Heavy carriers and non-Drude optical conductivity in MnSi

F. P. Mena,1 D. van der Marel,1 A. Damascelli,1 M. Fäth,2 A. A. Menovsky,2 and J. A. Mydosh2,3
1Material Science Center, University of Groningen, 9747 AG Groningen, The Netherlands

2Kamerlingh Onnes Laboratory, Leiden University, 2500 RA Leiden, The Netherlands
3Max-Planck-Institute for Chemical Physics of Solids, D-01187 Dresden, Germany
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The optical properties of the weakly helimagnetic metal MnSi have been determined in the photon energy
range from 2 meV to 4.5 eV using the combination of grazing incidence reflectance at 80° !from 2 meV to 0.8
eV" and ellipsometry !from 0.8 to 4.5 eV". As the sample is cooled below 100 K, the effective mass develops
a strong frequency dependence at low frequencies, while the scattering rate developes a sublinear frequency
dependence. The complex optical conductivity can be described by the phenomenological relation #($ ,T)
%&'(T)!i$("0.5.

DOI: 10.1103/PhysRevB.67.241101 PACS number!s": 78.20."e, 78.30."j, 71.27.!a, 71.28.!d

The weakly helimagnetic metal MnSi (TC#29.5 K) has
been the subject of intensive studies during the last 40 years.
In the helimagnetic phase, the resistivity has a T2 depen-
dence, which has been explained as resulting from a cou-
pling of the charge carriers to spin fluctuations.1 Recently,
interest has shifted to the quantum phase transition2 at a criti-
cal pressure of 14.6 kbar, where the Curie temperature be-
comes zero. The temperature dependence of the resistivity
outside the magnetically ordered region, at high pressures,
has been found to be proportional to T3/2 in a temperature
range far larger than that predicted by the so-called nearly
ferromagnetic Fermi-liquid theory !an extension of the
Fermi-liquid picture".2 This fact has suggested the non-
Fermi-liquid nature of MnSi in the normal state.2 Despite
these efforts in understanding the physics behind MnSi, few
attempts have been made to determine and understand its
optical properties. Measurements below TC of the far infra-
red normal incidence reflectivity indicated a remarkable de-
parture from the Hagen-Rubens law, usually observed in
metals.3 However, the high value of the reflection coefficient
close to the 100% line prevented a detailed analysis of the
frequency-dependent optical conductivity in this range. In
this Rapid Communication, we overcome this hurdle by us-
ing p-polarized light at a grazing angle of incidence of 80°,
for which the reflection coefficient drops well below the
100% line. We show that the frequency-dependent-scattering
rate and the effective mass deviate from the behavior ex-
pected for Fermi liquids which can be understood from the
fact that the optical conductivity is best described with an
expression that departs from the usual Drude model.

Single crystals were grown using the traveling floating-
zone technique.3,4 The temperature dependence of the resis-
tivity is shown in Fig. 1. Fitting the resistivity to )(T)
#)(0)!AT* in the temperature interval 4–23 K, we obtain
)(0)#1.85 *+ cm, A#0.021 *+ cm K"2, and *#2.1.
The resistivity increases more rapidly in the region between
23 K and the phase transition. For T$30 K, the resistivity
fits to )p(T)#&1/),!1/()!T)("1, with ),#286 *+ cm
and )!#1.62 *+ cm K"1. The remarkable accuracy of this
parallel resistor formula5 is further confirmed by the logarith-
mic derivative shown in the inset of Fig. 1. The tendency of
the resistivity toward saturation at a value ), for T→, is in

agreement with Gunnarsson’s result6 that the resistivity satu-
rates when the mean free path l#0.5n1/3d !roughly the Ioffe-
Regel limit", where n is the density of the electrons and d is
lattice parameter. Also, this indicates that if the temperature
saturation would be absent, the resistivity would be propor-
tional to T with a very high accuracy. These observations
stand in stark contrast to the T5/3 temperature dependence
predicted from the model of spin fluctuations in itinerant
electron magnetism.1

Grazing incidence reflectivity was measured in the range
20–6000 cm"1 using a Bruker 113v Fourier transform-
infrared spectrometer &Figs. 2!a" and 2!b"(. The temperature
dependence was measured using a home-built cryostat, the
special construction of which guarantees the stable and
temperature-independent optical alignment of the sample.
The intensities were calibrated against a gold reference film
evaporated in situ without repositioning or rotating the
sample holder. In the range 20–100 cm"1, we measured the
temperature dependence of the grazing reflectivity with 0.5

FIG. 1. dc resistivity as a function of temperature !solid curve".
The open symbols represent )p(T)#&1/),!1/(AT)("1, with ),

#286 *+ cm and A#1.62 *+ cm K"1. Top left inset: dc resistiv-
ity below 30 K !dots" and fit to )F(T)#)(0)!AT*. Lower right
inset: Temperature dependence *(T) of the exponent in )(T)
#)(0)!AT* !solid curve". The open symbols represent
d ln )p /d ln T.

RAPID COMMUNICATIONS

PHYSICAL REVIEW B 67, 241101!R" !2003"

0163-1829/2003/67!24"/241101!4"/$20.00 ©2003 The American Physical Society67 241101-1

MnSi	
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CHAPTER 7. MICROWAVE MEASUREMENTS ON UPd2Al3

spin-flip scattering. For temperatures below 4 K the resistivity follows a T 2-

behavior [149] that is taken as an indication of Fermi-liquid behavior, and finally

the system reaches the superconducting state at 2 K. This general behavior is

found for the thin-film as well as the single-crystal data, and also their absolute

resistivities roughly correspond.

Figure 7.2: Low-temperature dc resistivity of UPd2Al3 thin film sample
UPA233c with Fermi liquid and gapped antiferromagnet model
fits. The inset shows the quadratic temperature dependence as
predicted by Fermi liquid theory.

The sample quality is often expressed using residual resistivity ratios. Com-

paring the resistivity at 300 K either to that at 2 K right above the superconduct-

ing transition or to that at 0 K by use of an extrapolation (see below), for the

particular UPA233c sample one obtains R300K/2K = 30 or R300K/0K = 40, respec-

tively. These values are extremely high for thin film samples [154, 155, 157, 158],

whereas the highest-quality single crystal has R300K/0K = 104 [152].

For the later discussion concerning Fermi liquid behavior in Section 7.4.1,

the low-temperature resistivity is of particular interest. For a Fermi liquid the

144

U2Pd2Al3	

	

Marc Scheffler	

Ph D thesis, (2004)	

	


 
 
 
 
 
 

SrTi1-xNbxO3	
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Landau-Fermi Liquids	


1
τ
≈ λ 2 T 2

εF
*   

L. Landau	

Zh. Eksp. Teor. Fiz. 30, 
1058 (1956)	

	




Optical conductivity and optical constants	


Zero viscosity:  Single solution of   qc /ω ≡  n ω( )
Maxwell: q2c22 −ω 2#$ %&A(ω) = 4π J(ω)

⇒
J(ω)
A(ω)

=
ω 2

4π
n ω( )#$ %&

2
−1{ }

σ (ω) ≡ J(ω)
iωA(ω)

=
ω

4πi
n ω( )#$ %&

2
−1{ }



Generalization to interacting quasi-particles

σ (ω,T ) =
ine2 / m
!ω + M (ω)

=
ne2 / m

1/ τ (ω)− iωm*(ω) / m

Zero viscosity.
Optical conductivity of non-interacting charges. 
Momentum relaxation time = τ K

σ (ω) =
ne2 / m

1/ τ K − iω

W Götze & P Wölfle, PRB 6, 1226 (1972)	

JW Allen & JC Mikkelsen, PRB 15, 2952 (1977)	




Straightforward inversion of the experimental data:
1

τ (ω)
= Re ne2 / m

σ (ω)

Generalization to interacting quasi-particles

σ (ω,T ) =
ne2 / m

1/ τ (ω)− iωm*(ω) / m

W Götze & P Wölfle, PRB 6, 1226 (1972)	

JW Allen & JC Mikkelsen, PRB 15, 2952 (1977)	




Fermi liquid

Single particle life time:    τ sp(ε,T )∝ ε 2 +π 2 kBT( )2"
#

$
%
−1

Optical relaxation rate:     
1 / τ opt (ω,T )∝ (!ω)2 + (pπkBT )2

p = 2

'
(
)
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+
,
)
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R. N. Gurzhi, Sov. Phys. JETP 35, 673 (1959)	

	

D. L. Maslov & A. V. Chubukov, PRB 86, 155137 (2012)	

	

C. Berthod et al, PRB 87, 115109 (2013)	






Sr2RuO4 

See also	

AP Mackenzie and Y Maeno	

RMP 75, 657 (2003)	

NE Hussey et al.	

PRB 57, 5505 (1998)	






Measuring Reflectance of Sr2RuO4	


r(ω) 
 
ε(ω)=(1-r)2/(1+r)2 

 
 E 



Ab-plane Reflectivity of Sr2RuO4	




Sr2RuO4: Optical conductivity	




Sr2RuO4: Energy dependend Relaxation rate	
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Sr2RuO4: Scaling collapse	
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Sr2RuO4: Scaling collapse	




Experimental test on Sr2RuO4	


r(ω) 
 
ε(ω)=(1-r)2/(1+r)2 

 
 E 

r(ω) 
 
ε(ω)=(1-r)2/(1+r)2 

E 



Ac-plane (non-local response)	


Ab-plane (local response)	


Experimental test on Sr2RuO4	




Ac-plane (non-local response)	


Ab-plane (local response)	


Experimental test on Sr2RuO4	


⇒
η
τ

<10−7ρc2

The overlap of both signals with and without viscosity implies an upper limit for η / τ 



Conclusions Part II 	

•  Sr2RuO4: A strongly interacting Fermi liquid	

•  Lifetime grows as 1/T2 and as 1/ω2	


•  Universal scaling of the optical momentum 
relaxation rate: 1/τ = A{  (ħω)2 + (2π kBT)

2  }	


•  Viscosity parameter η /τ< 10-7 ρc2 	


	


Further reading: Phys. Rev. Lett. 113, 087404 (2014)	
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H ≠B;D ≠E 
magnetic permeability:  H = µ−1 ω( )B
dielectric permittivity:  D = ε ω( )E
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⇒ q2 = ε ω( )µ ω( )ω
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c2

Gauge transformation

!H =  H +∂N /∂t
⇒ !µ−1 ω( ) = µ−1 ω( )− iωN / B
!D = D + c∇×N
⇒ !ε ω( ) = ε ω( )+ icq×N / E

Take:   N ≡
i
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