Quantum Dynamics of Supergravity

David Tong
Work with Carl Turner
Based on arXiv:1408.3418

An Old Idea: Euclidean Quantum Gravity

$$
\mathcal{Z}=\sum_{\text {topology }} \int \mathcal{D} g \exp \left(-\int d^{4} x \sqrt{g} \mathcal{R}\right)
$$

A Preview of the Main Results

$$
\text { Kaluza-Klein Theory: } \mathcal{M}=\mathbb{R}^{1, d-1} \times \mathbf{S}^{1}
$$

There is a long history of quantum instabilities of these backgrounds

- Casimir Forces
- Tunneling to "Nothing"

The Main Result

Kaluza-Klein compactification of $N=1$ Supergravity is unstable.

Kaluza-Klein dual photon: $\partial_{\mu} \sigma \sim \frac{1}{2} \epsilon_{\mu \nu \rho} F^{\nu \rho}$

And Something Interesting Along the Way...

Quantum Gravity has a hidden infra-red scale!
$\Lambda_{\text {grav }} \ll M_{\mathrm{pl}}$

This is the scale at which gravitational instantons contribute

The Theory: $N=1$ Supergravity

$$
S=\frac{M_{\mathrm{pl}}^{2}}{2} \int d^{4} x \sqrt{-g}\left(\mathcal{R}_{(4)}+\bar{\psi}_{\mu} \gamma^{\mu \nu \rho} \mathcal{D}_{\nu} \psi_{\rho}\right)
$$

Compactify on a Circle

$$
d s_{(4)}^{2}=\frac{L^{2}}{R^{2}} d s_{(3)}^{2}+\frac{R^{2}}{L^{2}}\left(d z^{2}+A_{i} d x^{i}\right)^{2} \quad z \in[0,2 \pi L)
$$

$$
\mathcal{M}=\mathbb{R}^{1,2} \times \mathbf{S}^{1}
$$

Fields $R\left(x^{i}\right)$ and $A_{i}\left(x^{\prime}\right)$ live here
L is fiducial scale

Classical Low-Energy Physics

$$
\begin{aligned}
S_{\mathrm{eff}} & =\frac{M_{\mathrm{pl}}^{2}}{2} \int d^{4} x \sqrt{-g} \mathcal{R}_{(4)} \\
& =\frac{M_{3}}{2} \int d^{3} x \sqrt{-g_{(3)}}\left[\mathcal{R}_{(3)}-2\left(\frac{\partial R}{R}\right)^{2}-\frac{1}{4} \frac{R^{4}}{L^{4}} F_{i j} F^{i j}\right]
\end{aligned}
$$

$M_{3}=2 \pi L M_{\mathrm{pl}}^{2}$
Or, if we work with the dual photon $\partial_{\mu} \sigma \sim \frac{1}{2} \epsilon_{\mu \nu \rho} F^{\nu \rho}$

$$
S_{\mathrm{eff}}=\int d^{3} x \sqrt{-g_{(3)}}\left[\frac{M_{3}}{2} \mathcal{R}_{(3)}-M_{3}\left(\frac{\partial R}{R}\right)^{2}-\frac{1}{M_{3}} \frac{L^{2}}{R^{4}}\left(\frac{\partial \sigma}{2 \pi}\right)^{2}\right]
$$

Goal: Understand quantum corrections to this action.

Perturbative Quantum Corrections

Perturbative Quantum Corrections

One-Loop Effects: • UV divergences
- Running Gauss-Bonnet term
- The anomaly

- Finite corrections $\sim 1 / M_{\mathrm{pl}}^{2} R^{2}$
- Casimir forces
- Other corrections

One-Loop Divergences

At one-loop in pure gravity, there are three logarithmic divergences

$$
\mathcal{R}^{2}, \quad \mathcal{R}_{\mu \nu} \mathcal{R}^{\mu \nu} \quad, \quad \mathcal{R}_{\mu \nu \rho \sigma} \mathcal{R}^{\mu \nu \rho \sigma}
$$

These two can be absorbed by a field redefinition of the metric

The Riemann² term can be massaged into Gauss-Bonnet.

$$
\chi=\frac{1}{8 \pi^{2}} \int d^{4} x \mathcal{R}_{\mu \nu \rho \sigma} \mathcal{R}^{\mu \nu \rho \sigma}-4 \mathcal{R}_{\mu \nu} \mathcal{R}^{\mu \nu}+\mathcal{R}^{2}
$$

This is purely topological. It doesn't affect perturbative physics around flat space.

The Gauss-Bonnet Term

$$
S_{\alpha}=\frac{\alpha}{8 \pi^{2}} \int d^{4} x \mathcal{R}_{\mu \nu \rho \sigma} \mathcal{R}^{\mu \nu \rho \sigma}-4 \mathcal{R}_{\mu \nu} \mathcal{R}^{\mu \nu}+\mathcal{R}^{2}=\alpha \chi
$$

The coupling runs logarithmically

$$
\alpha(\mu)=\alpha_{0}-\alpha_{1} \log \left(\frac{M_{U V}^{2}}{\mu^{2}}\right)
$$

where the beta function is given by

$$
\alpha_{1}=\frac{1}{48 \cdot 15}\left(848 N_{2}-233 N_{3 / 2}-52 N_{1}+7 N_{1 / 2}+4 N_{0}\right)
$$

For us...

$$
\alpha_{1}=41 / 48
$$

A New RG-Invariant Scale

$$
\alpha(\mu)=\alpha_{0}-\alpha_{1} \log \left(\frac{M_{U V}^{2}}{\mu^{2}}\right)
$$

As in Yang-Mills, we can replace the log running with an RG invariant scale

$$
\Lambda_{\text {grav }}=\mu \exp \left(-\frac{\alpha(\mu)}{2 \alpha_{1}}\right)
$$

This scale will be associated with non-trivial spacetime topologies.
(We will see an example)

Another Divergence: The Anomaly

The classical action is invariant under rotations of the phase of the fermion.
This $U(1)_{R}$ symmetry does not survive in the quantum theory.

$$
\nabla_{\mu} J_{5}^{\mu}=\frac{1}{24 \cdot 16 \pi^{2}}\left(21 N_{3 / 2}-N_{1 / 2}\right)^{\star} \mathcal{R}_{\mu \nu \rho \sigma} \mathcal{R}^{\mu \nu \rho \sigma}
$$

The phase of the fermion can be absorbed by shifting the theta term

$$
S_{\theta}=\frac{\theta}{16 \pi^{2}} \int d^{4} x \sqrt{-g}{ }^{\star} \mathcal{R}_{\mu \nu \rho \sigma} \mathcal{R}^{\mu \nu \rho \sigma}
$$

Topological Terms

One-loop effects tell us that we should consider two topological terms

$$
\begin{aligned}
& S_{\alpha}=\frac{\alpha}{32 \pi^{2}} \int d^{4} x \sqrt{g}^{\star} \mathcal{R}_{\mu \nu \rho \sigma}^{\star} \mathcal{R}^{\mu \nu \rho \sigma} \\
& S_{\theta}=\frac{\theta}{16 \pi^{2}} \int d^{4} x \sqrt{-g}{ }^{\star} \mathcal{R}_{\mu \nu \rho \sigma} \mathcal{R}^{\mu \nu \rho \sigma}
\end{aligned}
$$

In supergravity, these two coupling constants sit in a chiral multiplet

$$
\tau_{\text {grav }}=\alpha+2 i \theta
$$

Finite Quantum Corrections

Casimir Energy: $\quad V_{\text {eff }}=-\frac{N_{B}-N_{F}}{720 \pi} \frac{L^{3}}{R^{6}}$

Appelquist and Chodos ' 83

Supersymmetry means that $N_{B}=N_{F}$ and this Casimir energy vanishes.
But there are other effects....

Finite Quantum Corrections

One loop corrections to the kinetic terms give

$$
\begin{aligned}
\mathcal{L}_{\mathrm{eff}}=\frac{1}{2}\left(M_{3}+\frac{5}{16 \pi} \frac{L}{R^{2}}\right) \mathcal{R}_{(3)}- & \left(M_{3}-\frac{1}{6 \pi} \frac{L}{R^{2}}\right)\left(\frac{\partial R}{R}\right)^{2} \\
& -\left(M_{3}+\frac{11}{24 \pi} \frac{L}{R^{2}}\right)^{-1} \frac{L^{2}}{R^{4}}\left(\frac{\partial \sigma}{2 \pi}\right)^{2}
\end{aligned}
$$

Finite Quantum Corrections

One loop corrections to the kinetic terms give

$$
\begin{aligned}
\mathcal{L}_{\mathrm{eff}}=\frac{1}{2}\left(M_{3}+\frac{5}{16 \pi} \frac{L}{R^{2}}\right) \mathcal{R}_{(3)}- & \left(M_{3}\left(\frac{1}{6 \pi} \frac{L}{R^{2}}\right)\left(\frac{\partial R}{R}\right)^{2}\right. \\
& -\left(M_{3}+\frac{11}{24 \pi} \frac{L}{R^{2}}\right)^{-1} \frac{L^{2}}{R^{4}}\left(\frac{\partial \sigma}{2 \pi}\right)^{2}
\end{aligned}
$$

Something important: these two numbers are different!

The Complex Structure

The two fields R and σ must combine in a complex number

Classically:

$$
\begin{aligned}
\mathcal{L}_{\text {eff }} & =\left(\frac{\partial R}{R}\right)^{2}+\frac{1}{M_{3}^{2}} \frac{L^{2}}{R^{4}}\left(\frac{\partial \sigma}{2 \pi}\right)^{2} \\
& =\frac{1}{\left(\mathcal{S}+\mathcal{S}^{\dagger}\right)^{2}} \partial \mathcal{S} \partial \mathcal{S}^{\dagger}
\end{aligned}
$$

$$
\mathcal{S}=2 \pi^{2} M_{\mathrm{pl}}^{2} R^{2}+i \sigma
$$

The Complex Structure

The two fields R and σ must combine in a complex number

At one-loop

$$
\mathcal{L}_{\mathrm{eff}}=\left(1-\frac{1}{6 \pi} \frac{L}{M_{3} R^{2}}\right)\left(\frac{\partial R}{R}\right)^{2}+\left(1+\frac{11}{24 \pi} \frac{L}{M_{3} R^{2}}\right)^{-1} \frac{L^{2}}{R^{4}}\left(\frac{\partial \sigma}{2 \pi}\right)^{2}
$$

We want to write this in the form

$$
\mathcal{L}_{\mathrm{eff}}=K\left(\mathcal{S}, \mathcal{S}^{\dagger}\right) \partial \mathcal{S} \partial \mathcal{S}^{\dagger}
$$

Non-Perturbative Quantum Corrections

Gravitational Instantons

Look for other saddle points of the action

We want these to contribute to the (super)potential. They must obey

$$
\mathcal{R}_{\mu \nu \rho \sigma}= \pm^{\star} \mathcal{R}_{\mu \nu \rho \sigma}
$$

Taub-NUT Instantons

The appropriate metrics are given by the multi-Taub-NUT solutions

$$
d s^{2}=U(\mathbf{x}) d \mathbf{x} \cdot d \mathbf{x}+U(\mathbf{x})^{-1}(d z+\mathbf{A} \cdot d \mathbf{x})^{2}
$$

with

$$
U(\mathbf{x})=1+\frac{L}{2} \sum_{a=1}^{k} \frac{1}{\left|\mathbf{x}-\mathbf{X}_{a}\right|} \quad \text { and } \quad \nabla \times \mathbf{A}= \pm \nabla U
$$

From the low-energy 3d perspective, these look like Dirac monopoles.
This is the gravitational verson of Polyakov's famous calculation. Polyakov'77

The Boundary of the Space

The boundary of Taub-NUT is not the same as the boundary of flat space.

$$
\partial\left(\mathbb{R}^{3} \times \mathbf{S}^{1}\right)=\mathbf{S}^{2} \times \mathbf{S}^{1} \quad \text { but } \quad \partial\left(\mathrm{TN}_{k}\right)=\mathbf{S}^{3} / \mathbf{Z}_{k}
$$

Should we include such geometries in the path integral?

The Boundary of the Space

The boundary of Taub-NUT is not the same as the boundary of flat space.

$$
\partial\left(\mathbb{R}^{3} \times \mathbf{S}^{1}\right)=\mathbf{S}^{2} \times \mathbf{S}^{1} \quad \text { but } \quad \partial\left(\mathrm{TN}_{k}\right)=\mathbf{S}^{3} / \mathbf{Z}_{k}
$$

Should we include such geometries in the path integral?

Yes!

The Boundary of the Space

The boundary of Taub-NUT is not the same as the boundary of flat space.

$$
\partial\left(\mathbb{R}^{3} \times \mathbf{S}^{1}\right)=\mathbf{S}^{2} \times \mathbf{S}^{1} \quad \text { but } \quad \partial\left(\mathrm{TN}_{k}\right)=\mathbf{S}^{3} / \mathbf{Z}_{k}
$$

Should we include such geometries in the path integral?

> Yes!
c.f. Atiyah-Hitchin with boundary a circle fibre over $\boldsymbol{R P}^{2}$ for which the answer is probably no!

Zero Modes of Taub-NUT

$$
\begin{aligned}
& d s^{2}=U(\mathbf{x}) d \mathbf{x} \cdot d \mathbf{x}+U(\mathbf{x})^{-1}(d z+\mathbf{A} \cdot d \mathbf{x})^{2} \\
& U(\mathbf{x})=1+\frac{L}{2} \sum_{a=1}^{k} \frac{1}{\left|\mathbf{x}-\mathbf{X}_{a}\right|} \quad \text { and } \quad \nabla \times \mathbf{A}= \pm \nabla U
\end{aligned}
$$

$3 k$ bosonic zero modes
$2 k$ fermionic zero modes
\rightleftarrows Only $k=1$ solution contributes to the superpotential

Doing the Computation

Action, Zero Modes, Jacobians, Determinants, Propagators....

The Determinants

$$
\operatorname{dets}=\frac{\operatorname{det}(\text { Fermions })}{\operatorname{det}(\text { Bosons })}
$$

Supersymmetry $\Rightarrow \operatorname{dets}=1$?

The Determinants

In a self-dual background, you can write the determinants as

$$
\operatorname{dets}=\left.\left.\frac{\operatorname{det}^{\prime} \not D^{\dagger} \not D}{\operatorname{det} \not D \not D^{\dagger}}\right|_{\operatorname{spin}-3 / 2} ^{1 / 4} \frac{\operatorname{det}^{\prime} \not D^{\dagger} \not D}{\operatorname{det} \not D \not D D^{\dagger}}\right|_{\operatorname{spin}-1 / 2} ^{-1 / 2}
$$

A somewhat detailed calculation gives

We've seen these fractions before!

The Superpotential

The calculation gives

All the pieces now fit together

$$
\mathcal{W}=C\left(\frac{\Lambda_{\text {grav }}^{2}}{M_{\mathrm{pl}}^{2}}\right)^{41 / 48} e^{-\mathcal{S}}
$$

with $\mathcal{S}=2 \pi^{2} M_{\mathrm{pl}}^{2} R^{2}+\frac{7}{48} \log \left(M_{\mathrm{pl}}^{2} R^{2}\right)+i \sigma$

The Potential

Kaluza-Klein compactification of $N=1$ supergravity is unstable

The ground state has $R \rightarrow \infty$

Open Questions

$\Lambda_{\text {grav }}$

What is this good for?
What is it in our Universe?

Thank you for your attention

