Disentangling Topological Insulators by Tensor Networks

Shinsei Ryu
Univ. of Illinois, Urbana-Champaign

Collaborators:

Ali Mollabashi (IPM Tehran)
Masahiro Nozaki (Kyoto)
Tadashi Takayanagi (Kyoto)

Xueda Wen (UIUC)
Pedro Lopes (UIUC, Campinas)
Gil Cho (UIUC)

Thanks to: Yingfei Gu (Stanford), Xiaoliang Qi (Stanford)
Based on arXiv:1208.3469, 1311.6095 and work in progress

Table of Contents

-- Tensor Network Methods for Quantum Manybody Problems
-- MERA and Emergent Metric
-- MERA for Topological States of Matter
-- Quantum Qunch and Finite-T
-- Summary

Tensor network approach to quantum manybody systems

Tensor network:

way to avoid exponential complexity of many-body problems
Tensor network wave functions of various kinds:

MPS (matrix product state) or DMRG

MERA
(multiscale entanglement renormalization ansatz)

PEPS (projected entangled pair state)

Tensor network approach to quantum manybody systems

- Representing many-body wavefunctions by contracting many tensors DMRG, MPS, MERA, PEPS, etc.

$$
|\Psi\rangle=\sum_{s_{1}, s_{2}, s_{3}, s_{4} \cdots} C^{s_{1}, s_{2}, s_{3}, s_{4} \cdots}\left|s_{1}, s_{2}, s_{3}, s_{4} \ldots\right\rangle
$$

Product state:

$$
|\Psi\rangle=\sum_{\left\{s_{a}\right\}} A^{s_{1}} A^{s_{2}} A^{s_{3}} \cdots\left|s_{1}, s_{2}, s_{3}, s_{4} \ldots\right\rangle=\prod_{i} \sum_{s_{i}} A^{s_{i}}\left|s_{i}\right\rangle \quad \mathrm{EE}=0
$$

MPS (matrix product state) :

Matrix product state (DMRG):

$$
|\Psi\rangle=\sum_{\left\{s_{a}\right\}} \sum_{\left\{i_{n}=1, \cdots, \chi\right\}} A_{i_{1}, i_{2}}^{s_{1}} A_{i_{2}, i_{3}}^{s_{2}} A_{i_{3}, i_{4}}^{s_{3}} A_{i_{4}, i_{5}}^{s_{4}} \cdots\left|s_{1}, s_{2}, s_{3}, s_{4} \ldots\right\rangle
$$

χ :dimension of the aux space ("bond dimension")

Area law scaling in 1D: quite generic in gapped quantum ground states.

Can we extract information from tensor network in an effeicent way?

--> Cutting up tensor networks!

Cutting up = defining "reduced density matrix"

multiscale entanglement renormalization ansatz (MERA)

[Vidal (07-08)]

isometry
(coarse-graining)

block spin decimation and disentangler

- Block spin decimation

$$
\begin{aligned}
\rho_{t o t} & =|\Psi\rangle\langle\Psi| \\
\rho_{23} & =\operatorname{Tr}_{14} \rho_{t o t}=\sum_{i} p_{i}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|
\end{aligned}
$$

small p_{i}--> throw away

- Disentangler

$$
\begin{aligned}
& |\Psi\rangle=\frac{(|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle)_{12}}{\sqrt{2}} \frac{(|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle)_{34}}{\sqrt{2}} \quad p_{i}=\frac{1}{4}(\forall i) \\
& U \frac{(|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle)_{12}}{\sqrt{2}}=|\uparrow \uparrow\rangle_{12} \\
& \operatorname{Tr}_{14}\left[U_{12} \otimes U_{34} \rho_{t o t}\left(U_{12} \otimes U_{34}\right)^{\dagger}\right]
\end{aligned}
$$

MERA and holographich entanglement entropy
[Swingle (09)]

EE for ($1+1$)D case: $\quad S_{A} \sim \log (l / a)$

Geometry <--> Entanglement

- Holographic formula for EE

$$
S_{A}=\frac{\text { Area of minimal surface } \gamma_{A}}{4 G_{N}}
$$

- Entanglement <--> geometry

$$
\begin{aligned}
& d s^{2}=g_{u u} d u^{2}+\frac{e^{2 u}}{\epsilon^{2}} d \vec{x}^{2}+g_{t} d t^{2} \\
& S_{A}=\frac{1}{4 G_{N}} \cdot \frac{V_{d-1}}{\epsilon^{d-1}} \int_{u_{\mathrm{JR}}(=-\infty)}^{u_{0 Y}(=0)} d u \sqrt{g_{u u}} e^{(d-1) v}
\end{aligned}
$$

Can we make "AdS/MERA" more precise ?

- Quantum circuit representation of the target states:

$$
\begin{aligned}
& \left|\Psi\left(u_{\mathrm{R}}\right)\right\rangle \equiv|\Omega\rangle \quad\left|\Psi\left(u_{\mathrm{UV}}\right)\right\rangle \equiv|\Psi\rangle \\
& |\Psi(u)\rangle=U\left(u, u_{\mathrm{IR}}\right)|\Omega\rangle \\
& |\Psi\rangle=U(0, u)|\Psi(u)\rangle
\end{aligned}
$$

$$
\infty
$$

$$
\begin{aligned}
& u_{\mathrm{UV}}=0 \\
& u_{\mathrm{IR}}=-
\end{aligned}
$$

- MERA evolution operator

$$
U\left(u_{1}, u_{2}\right)=P \exp \left[-i \int_{u_{2}}^{u_{1}}(K(u)+L) d u\right]_{\text {disentangler }}
$$

- Optimizing |Omega>, U --> true ground state
- Tensor network method can be formulated as a quantum circuit (successive applications of unitary transformations)
- For MERA: add dummy states |0>

- free boson in d+1 dim:

$$
\begin{aligned}
& H=\frac{1}{2} \int d^{d} k\left[\pi(k) \pi(-k)+\epsilon_{k}^{2} \cdot \phi(k) \phi(-k)\right] \\
& \phi(k)=\frac{a_{k}+a_{-k}^{\dagger}}{\sqrt{2 \epsilon_{k}}} \quad \pi(k)=\sqrt{2 \epsilon_{k}}\left(\frac{a_{k}-a_{-k}^{\dagger}}{2 i}\right)
\end{aligned}
$$

- IR state:

$$
\begin{array}{ll}
\left(\sqrt{M} \phi(x)+\frac{i}{\sqrt{M}} \pi(x)\right)|\Omega\rangle=0 & \begin{array}{l}
\text { completely } \\
\text { uncorrelated }
\end{array} \\
\left(\alpha_{k} a_{k}+\beta_{k} a_{-k}^{\dagger}\right)|\Omega\rangle=0 & \\
\alpha_{k}=\frac{1}{2}\left(\sqrt{\frac{M}{\epsilon_{k}}}+\sqrt{\frac{\epsilon_{k}}{M}}\right) \quad \beta_{k}=\frac{1}{2}\left(\sqrt{\frac{M}{\epsilon_{k}}}-\sqrt{\frac{\epsilon_{k}}{M}}\right)
\end{array}
$$

- coarse-graining

$$
\begin{aligned}
& e^{-i u L} \phi(k) e^{i u L}=e^{-\frac{d}{2} u} \phi\left(e^{-u} k\right) \\
& e^{-i u L} \pi(k) e^{i u L}=e^{-\frac{d}{2} u} \pi\left(e^{-u} k\right)
\end{aligned}
$$

- disentangler

$$
\begin{aligned}
& K(u)=\frac{1}{2} \int d^{d} k[g(k, u)(\phi(k) \pi(-k)+\pi(k) \phi(-k))] \\
& g(k, u)=\chi(u) \cdot \Gamma(|k| / \Lambda)
\end{aligned}
$$

- variational principle:
cutoff function

$$
\begin{aligned}
& E=\langle\Psi| H|\Psi\rangle=\langle\Omega| H\left(u_{\mathrm{IR}}\right)|\Omega\rangle \\
& \chi(u)=\frac{1}{2} \cdot \frac{e^{2 u}}{e^{2 u}+m^{2} / \Lambda^{2}}, \quad M=\sqrt{\Lambda^{2}+m^{2}}
\end{aligned}
$$

- Scale-dependent Bogoliubov transformation:

$$
\begin{gathered}
\left(\alpha_{k}, \beta_{k}\right) \cdot\binom{a_{k}}{a_{-k}^{\dagger}}|\Omega\rangle=0 \quad \text { IR } \\
\uparrow \begin{array}{c}
U(u)\left(\alpha_{k}, \beta_{k}\right) \cdot\binom{a_{k}}{a_{-k}^{\dagger}}|\Omega\rangle=0 \\
\left(\alpha_{k}, \beta_{k}\right) \cdot U(u)\binom{a_{k}}{a_{-k}^{\dagger}} U^{\dagger}(u) \cdot U(u)|\Omega\rangle=0 \\
\left(\alpha_{k}, \beta_{k}\right) \cdot M(u)\binom{a_{k}}{a_{-k}^{\dagger}}|\Psi(u)\rangle_{L}=0 \\
\downarrow
\end{array} \\
\left(A_{k}, B_{k}\right) \cdot\binom{a_{k}}{a_{-k}^{\dagger}}|\Psi(u)\rangle_{L}=0 \quad \text { UV }
\end{gathered}
$$

Bures distance (quantum distance)

- Bures distance: $D_{\mathrm{B}}\left(\rho_{1}, \rho_{2}\right):=2\left(1-\operatorname{Tr} \sqrt{\rho_{1}^{1 / 2} \rho_{2} \rho_{1}^{1 / 2}}\right)$
- For pure states: $\quad p_{1}=\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right| \quad \rho_{2}=\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|$

$$
D_{\mathrm{B}}\left(\psi_{1}, \psi_{2}\right)=2\left(1-\left|\left\langle\psi_{1} \mid \psi_{2}\right\rangle\right|\right)
$$

- For infinitesimally close state:

$$
\begin{aligned}
& D_{\mathrm{B}}[\psi(\xi), \psi(\xi+d \xi)]=g_{i j}(\xi) d \xi_{i} d \xi_{j} \\
& g_{i j}(\xi)=\operatorname{Re}\left\langle\partial_{i} \psi(\xi) \mid \partial_{j} \psi(\xi)\right\rangle-\left\langle\partial_{i} \psi(\xi) \mid \psi\right\rangle\left\langle\psi \mid \partial_{j} \psi(\xi)\right\rangle
\end{aligned}
$$

- Berry gauge field

$$
A_{i}(\xi)=-i\left\langle\psi(\xi) \mid \partial_{i} \psi(\xi)\right\rangle
$$

$$
\left\langle\partial_{i} \psi(\xi)\right|[1-\rho(\xi)]\left|\partial_{j} \psi(\xi)\right\rangle=g_{i j}+i F_{i j}
$$

Introducing metric in MERA

- Proposal for a metric in radial direction: arXiv:1208.3469

$$
g_{u u}(u) d u^{2}=\mathcal{N}^{-1}\left(1-\left.\left.\right|_{L}\langle\Psi(u) \mid \Psi(u+d u)\rangle_{L}\right|^{2}\right)
$$

where $|\Psi(u+d u)\rangle_{L}=e^{i L u}|\Psi(u)\rangle \quad$ wfn in "interaction picture"

$$
\mathcal{N}=\text { Vol. } \int_{|k| \leq \Lambda e^{u}} d^{d} k \quad \text { normalization }
$$

Motivation for the metric

$$
S_{A} \propto L^{d-1} \sum_{u=-\infty}^{0} n(u) \cdot 2^{(d-1) u}
$$

$$
S_{A}=\frac{1}{4 G_{N}} \cdot \frac{V_{d-1}}{\epsilon^{d-1}} \int_{u_{\mathrm{IR}}(=-\infty)}^{u_{u \mathrm{~V}}(=0)} d u \sqrt{g_{u u} e^{(d-1) u}}
$$

strength of disentangler

Case study for the metric

- Relativistic free scalar:

$$
d s^{2}=g_{u u} d u^{2}+\frac{\epsilon^{2 u}}{\epsilon^{2}} d \vec{x}^{2}+g_{n} d t^{2}
$$

$$
g_{u u}(u)=\chi(u)^{2}=\frac{e^{4 u}}{4\left(e^{2 u}+m^{2} / \Lambda^{2}\right)^{2}}
$$

massless limit:

$$
g_{u u}(u)=\text { const } .
$$

AdS metric
massive case:

$$
\begin{aligned}
& e^{2 u}=\frac{1}{\Lambda^{2} z^{2}}-\frac{m^{2}}{\Lambda^{2}} \quad \text { AdS soliton } \\
& d s^{2}=\frac{d z^{2}}{4 z^{2}}+\left(\frac{1}{\Lambda^{2} z^{2}}-\frac{m^{2}}{\Lambda^{2}}\right) d x^{2}+y_{t t} d t^{2}
\end{aligned}
$$

- Flat space:

$$
\begin{array}{lc}
H=\int d^{d} x \phi(x) e^{A\left(-\partial^{2}\right)^{w / 2}} \phi(x) & \kappa_{l} \propto c^{A \beta^{w}} \\
g_{u u}(u)=g(u)^{2} \propto e^{2 w u} & \text { c.f. Li-Takayanagi (10) }
\end{array}
$$

- Large-N ? higher spin ? [cf. Swingle (12)]
- Diffeo invariance?
- Time-component of metric g_tt?
- Effects of interactions?
- Einstein equation?
[cf. Faulkner-Guica-Hartman-Myers-Van Raamsdonk 13, Nozaki-Numasawa-Prudenziati-Takayanagi 13, Bhattacharya-Takayanagi 13, etc]

Advantages of AdS/MERA:

- No need for large-N
- Can define geometry for generic many-body states

MERA for Topological Phases of Matter

- Topological phases: gapped phases of matter with a lot of entanglement
e.g. QH states (described by Chern-Simons theories)
- No classical order parameter, highly entangled quantum states of matter
- There is no adiabatic path to topologically trivial states (e.g. atomic insulator v.s. QHE)
- Topological phases: we cannot completely remove entanglement What happens if we try to construct disentanglers and MERA ?

MERA for topological phase

- MERA for Kitaev toric code and Levin-Wen String nets:
[Koenig, Reichardt, Vidal (08)]
[Aguado-Vidal (09)]
Topological infomation is strored in "top tensor"

Holographic dual of gapped phases

Holographic dual of pure YM in (2+1) D
[Witten (98)]

$$
d s^{2}=\frac{R^{2}}{z^{2}}\left(-d t^{2}+f(z) d y^{2}+d x_{1}^{2}+d x_{2}^{2}+f^{-1}(z) d z^{2}\right)
$$

$$
f(z)=1-\left(z / z_{0}\right)^{4}
$$

Holographic dual of CS
[Fujita-Li-Ryu-Takayanagi (10)]

$$
\begin{aligned}
S_{\mathrm{D} 3}=\frac{k}{4 \pi} & \int \operatorname{tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right) \\
S_{t o p} & \sim \frac{k^{2}}{2} \log N
\end{aligned}
$$

Branes $=$ Top tensor ?

- QHE without uniform magnetic field
- Continuum Dirac model with k-dependent mass:

$$
\begin{gathered}
H=\int d^{2} \mathbf{k} \psi^{\dagger}(\mathbf{k})[\boldsymbol{R}(\mathbf{k}) \cdot \boldsymbol{\sigma}] \psi(\mathbf{k}) \\
\boldsymbol{R}(\mathbf{k})=\left(k_{x}, k_{y}, m-\boldsymbol{k} \cdot \boldsymbol{k}\right)
\end{gathered}
$$

- Two phases having different topological invariant (Hall conductance)

$$
\begin{aligned}
& \sigma_{x y}=\frac{1}{8 \pi} \int d^{2} k \boldsymbol{R} \cdot\left(\partial_{k_{x}} \boldsymbol{R} \times \partial_{k_{y}} \boldsymbol{R}\right) \\
& \sigma_{x y}=+1 \quad m>0 \\
& \sigma_{x y}=0 \quad m<0
\end{aligned} \quad \text { "topological" }
$$

Disentangler and Metric for Chern Insulators

- IR state:

$$
\left|\Omega^{\text {trivial }}\right\rangle=\binom{0}{1}
$$

- Disentangler:

$$
\hat{K}(u)=i \int d^{2} \mathbf{k}\left[g_{\mathbf{k}}(u) \psi_{1}^{\dagger}(\mathbf{k}) \psi_{2}(\mathbf{k})+g_{\mathbf{k}}^{\dagger}(u) \psi_{1}(\mathbf{k}) \psi_{2}^{\dagger}(\mathbf{k})\right]
$$

- Metric:

trivial

- Small k:

- Large k:

Berry flux in the bulk

Choice of IR state

$$
\begin{aligned}
& \left|\Omega^{\text {triūial }}\right\rangle=\binom{0}{1} \\
& \left|\Omega^{\text {nontrivial }}\right\rangle=\left|\Psi\left(\mathbf{k}, u=u_{\mathrm{IR}}\right)\right\rangle=\binom{-e^{-i \theta}}{0}
\end{aligned}
$$

nontrivial IR: $\uparrow \uparrow \uparrow+\uparrow+\uparrow+\uparrow+\uparrow+\uparrow$ times a phase

Trivial IR state

Nontrivial IR state

trivial IR state

nontrivial IR state

Quantum quench and finite T

- MERA at finite T (mixed state)
- Quantum quench (pure state)

Metric after quantum quench for 2 d free boson

- Light-cone like structure

$$
g_{u u}=g(u)^{2} \simeq \frac{1}{4}\left[1+\frac{a_{1} k^{2} \beta^{2}+a_{2} k^{2} t^{2}}{\sinh ^{2}(k \beta / 2)}\right]
$$

- t-linear growth of SA_{A}

$$
\Delta S_{A} \sim \int_{-\log \beta / \epsilon}^{0} d u\left(\sqrt{g_{u u}}-1 / 2\right)+\int_{-}^{-\log \beta / \epsilon} d u \sqrt{g_{u u}} \sim \frac{t}{\beta}
$$

What can we say about finite T ?

- Thermofield double description:
[Matsueda, Molina-Vilaplana, etc]
[Swingle (12)]

- Concrete setup in cMERA (cf. Hartman-Maldacena, next slide):

$$
\begin{aligned}
|\Psi(0, t)\rangle_{t h} & =\mathcal{N} \cdot e^{-i t\left(H_{1}+H_{2}\right)} \cdot \prod_{k} \sum_{n_{k}=0}^{\infty} e^{-\beta c_{k} n_{k} / 2}\left|n_{k}\right\rangle_{1}\left|n_{k}\right\rangle_{2} \\
& \left.=\mathcal{N} \cdot \exp \left(\int d k e^{-\frac{\beta_{k}}{2}} e^{-2 i c_{k} t} a_{k}^{\dagger} \tilde{a}_{k}^{\dagger}\right)|0\rangle|0\rangle\right\rangle
\end{aligned}
$$

- Can use the same disentangler for quantum quench

$$
\begin{aligned}
& \tilde{a}_{k} \rightarrow a_{-k}, \quad|0\rangle|0 \hat{0}\rangle \rightarrow|0\rangle . \\
& |\Psi(0, t=0)\rangle_{t h}=P e^{-i \int_{u_{t R}}^{0} \hat{K}(s) d s} \otimes P e^{-i \int_{u_{t R}}^{0} \hat{K}(\hat{x}) d \dot{s}}|\Omega(\beta)\rangle . \quad \text { same metric as quench }
\end{aligned}
$$

$$
d s^{2}=-\frac{1-z^{2} / z_{H}^{2}}{z^{2}} d \tau^{2}+\frac{d z^{2}}{z^{2}\left(1-z^{2} / z_{H}^{2}\right)}+\frac{d x^{2}}{z^{2}}
$$

[Israel (76), Maldacena]

$$
|\Psi\rangle=\sum_{n} e^{-\beta E_{n} / 2}|n\rangle_{1}|n\rangle_{2}
$$

quantum quench
$|\Psi\rangle=\sum_{n} e^{i E_{n} t} e^{-\beta E_{n} / 2}|n\rangle$
thermofield double
$|\Psi\rangle=\sum_{n} e^{i E_{n} t} e^{-\beta E_{n} / 2}|n\rangle_{1}|n\rangle_{2}$

Summary

- Proposal for definition of of bulk metric and gauge field for MERA representation of quantum states
- Behaviors expected from AdS/CFT
- Classical phases of matter <-- group theory (symmetry breaking) Quantum phases of matter <-- geometry (entanglement) Topological phases <--> D-branes (non-trivial IR)

