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Symplectic space of asymptotic data & holography

Given our limited understanding of quantum gravity and of strongly coupled QFTs,
a pragmatic approach to gauge gravity dualities has become popular. Namely, one
is trying to model a given strongly coupled QFT of interest using a gravitational
theory, based e.g. on symmetries or the spectrum of observables, and the hope is
that the gravity description captures certain universal features of the dual strongly
coupled QFT.

Typical examples are holographic models of QCD, high temperature
superconductors or other strongly correlated condensed matter systems exhibiting
quantum critical transitions.

Within this approach to gauge/gravity duality, the holographic dictionary can be
derived systematically starting from the gravity side by i) providing a theory that
supports the desired backgrounds, ii) identifying the radial coordinate emanating
from the boundary of these geometries with the RG scale of the dual QFT iii)
constructing the symplectic space of asymptotic data.



Lifshitz & hyperscaling violating Lifshitz holography

Holographic description of quantum critical points and QFTs exhibiting
hyperscaling violation

Geometries suffer from IR pathologies – not relevant here

These backgrounds can emerge in the IR or some intermediate energy scale
starting with some other UV completion – e.g. AdS in the same or higher
dimensions

Here we will focus on the case where these geometries are considered as the UV.
Otherwise we can develop the holographic dictionary in whatever UV completion
these geometries emerge from
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Lifshitz & hyperscaling violating Lifshitz solutions



Lifshitz

The Lifshitz (Lif) metric is

ds2d+2 = `2u−2
(
du2 − u−2(z−1)dt2 + dxadxa

)
with dynamical exponent z 6= 1

This metric is invariant under the scaling transformation

xa → λxa , t→ λzt , u→ λu

The conformal boundary is located at u = 0

The null energy condition

Tµνk
µkν ≥ 0, kµkµ = 0

requires
z ≥ 1



Hyperscaling violating Lifshitz

Hyperscaling refers to the property that the free energy and other thermodynamic
quantities scale with temperature by their naive dimension. e.g. S ∼ T (2−θ)/z ,
where θ is the hyperscaling violating parameter

The Hyperscaling violating Lifshitz (hvLf) metric is [Huijse, Sachdev & Swingle ’11]

ds2d+2 = `2u−2(d−θ)/d
(
du2 − u−2(z−1)dt2 + dxadxa

)
with dynamical exponent z 6= 1 and hyperscaling violation exponent θ 6= 0

This metric has the scaling property that under

xa → λxa , t→ λzt , u→ λu

the metric transforms as
ds2d+2 → λ2θ/dds2d+2

The boundary is located at u = 0 for all values of θ (seen by going to the "dual
frame" where the metric is asymptotically Lifshitz)



The null energy condition requires

(d− θ)(d(z − 1)− θ) ≥ 0, (d− θ + z)(z − 1) ≥ 0

The solutions of the null energy condition are:

I z ≤ 0 θ ≥ d
II 0 < z ≤ 1 θ ≥ d+ z

IIIa
1 ≤ z ≤ 2

θ ≤ d(z − 1)
IIIb d ≤ θ ≤ d+ z
IVa

2 < z ≤ 2d
d−1

θ ≤ d
IVb d(z − 1) ≤ θ ≤ d+ z

V z > 2d
d−1

θ ≤ d

For θ ≥ d+ z the on-shell action does not diverge and hence there is no well
defined asymptotic expansion/holographic dictionary (cf. D6 branes)

We therefore exclude cases I and II and consider all cases with z > 1



The model

We consider a generic bottom up model of the form

S =
1

2κ2

ˆ
M
dd+2x

√
−g
(
R[g]− α∂µφ∂µφ− Z(φ)F 2 −W (φ)A2 − V (φ)

)
Preserve U(1) gauge symmetry via the Stückelberg mechanism:

Aµ → Bµ = Aµ − ∂µω

such that under a U(1) transformation

Aµ → Aµ + ∂µΛ, ω → ω + Λ

Go to generic Weyl frame in order to accommodate both Lifshitz and hyperscaling
violating backgrounds:

g → e2ξφg

Sξ =
1

2κ2

ˆ
M
dd+2x

√
−gedξφ

(
R[g]− αξ∂µφ∂µφ− Zξ(φ)F 2 −Wξ(φ)B2 − Vξ(φ)

)
αξ = α−d(d+1)ξ2, Zξ(φ) = e−2ξφZ(φ), Wξ(φ) = W (φ), Vξ(φ) = e2ξφV (φ)



Lifshitz solutions

This model admit Lif or hvLf solutions at least asymptotically provided the
potentials are of the form

Vξ = Voe
2(ρ+ξ)φ, Zξ = Zoe

−2(ξ+ν)φ, Wξ = Woe
2σφ

The parameters are related to the parameters of the Lif solutions

ds2 = dr2 − e2zrdt2 + e2rd~x2, A =
Q
εZo

eεrdt, φ = µr, ω = const.

as

ρ = −ξ, ν = −ξ +
ε− z
µ

, σ =
z − ε
µ

,

ε =
(αξ + d2ξ2)µ2 − dµξ + z(z − 1)

z − 1
, Q2 =

1

2
Zo(z − 1)ε,

Wo = 2Zoε(d+ z + dµξ − ε), Vo = −d(1 + µξ)(d+ z + dµξ)− (z − 1)ε.



HvLf solutions

HvLf solutions take the form

ds2 = dr2 − r2νzdt2 + r2ν1d~x2, A =
Q
εZo

rεdt, φ = µ log r, ω = const.

where

νz = 1−
dz

θ
, ν1 = 1−

d

θ
, u =

|θ|
d
r
d
θ , θ 6= 0

with

µ(ξ + ρ) = −1, ν = −ξ −
νz − ε
µ

, σ =
νz − ε− 1

µ
, Q2 =

1

2
Zo(νz − ν1)ε,

ε =

(
αξ + d2ξ2

)
µ2 − dξ(ν1 + 1)µ− ν1(d+ νz − 1) + νz(νz − 1)

νz − ν1
,

Wo = 2εZo(d(ν1 + µξ) + νz − 1− ε),
Vo = ε(ν1 − νz)− d(ν1 + µξ)(d(ν1 + µξ) + νz − 1).

For ξ = 0 these are identical to the solutions of [Gouteraux, Kiritsis ’12]



Relation between Lif & HvLf

The hvLf metric is conformal to a Lif metric with the same exponent z. Namely, the
coordinate transformation

r = e−
θ
d
r̄, t =

|θ|
d
t̄, xa =

|θ|
d
x̄a

the hvLf solution becomes

ds2 =

(
θ

d

)2

e
−2θr̄
d
(
dr̄2 − e2zr̄dt̄2 + e2r̄d~̄x2

)
, φ = µh log r = −

θ

d
µhr̄ ≡ µLr̄

It follows that the hvLf metric can be written as

gh = e
− 2θ
dµL

φ
gL, µL = −θµh/d, `L = |θ|`h/d

This allows us to express any hvLf solution as a Lif solution in a different Weyl
frame – cf. “dual frame” for Dp branes with p 6= 3. Namely, if gh = e2ξφgL is a
hvLf metric in the Einstein frame, then gL is a Lif metric in a Weyl frame with

ξ = −
θ

dµL
=

1

µh



Radial Hamiltonian formalism and the
Hamilton-Jacobi equation



Radial Hamiltonian formalism for massive
vector-scalar theory

ADM decomposition

ds2 = (N2 +NiN
i)dr2 + 2Nidrdx

i + γijdx
idxj

Radial ADM Lagrangian:

L =
1

2κ2

ˆ
dd+1x

√
−γNedξφ

{
R[γ] +K2 −KijKij +

2dξ

N
K(φ̇−N i∂iφ)

−
αξ

N2

(
φ̇−N i∂iφ

)2
− αξγij∂iφ∂jφ

−Zξ(φ)

(
2

N2
γij(Fri −NkFki)(Frj −N lFlj) + γijγklFikFjl

)
−Wξ(φ)

(
1

N2

(
Ar −N iAi − ω̇ +N i∂iω

)2
+ γijBiBj

)
− Vξ(φ)

}



First class constraints

Hamiltonian:

H =

ˆ
dd+1x

(
γ̇ijπ

ij + Ȧiπ
i + φ̇πφ + ω̇πω

)
− L

=

ˆ
dd+1x

(
NH+NiHi +ArF

)
where

H = −
κ2

√
−γ

e−dξφ
(

2πijπij −
2

d
π2 +

1

2α

(
πφ − 2ξπ

)2
+

1

4
Z−1
ξ πiπi +

1

2
W−1
ξ π2

ω

)
+

√
−γ

2κ2
edξφ

(
−R[γ] + αξ∂

iφ∂iφ+ Zξ(φ)F ijFij +Wξ(φ)BiBi + Vξ(φ)
)

Hi = −2Djπ
ji + F ijπ

j + πφ∂
iφ−Biπω

F = −Diπi + πω



Canonical momenta

From off-shell Lagrangian:

πij =
δL

δγ̇ij
=

1

2κ2

√
−γedξφ

(
Kγij −Kij +

dξ

N
γij
(
φ̇−Nk∂kφ

))
,

πi =
δL

δȦi
= −

1

2κ2

√
−γedξφZξ(φ)

4

N
γij
(
Frj −NkFkj

)
,

πφ =
δL

δφ̇
=

1

2κ2

√
−γedξφ

(
2dξK −

2αξ

N
(φ̇−N i∂iφ)

)
,

πω =
δL

δω̇
= −

1

2κ2

√
−γedξφWξ(φ)

2

N

(
ω̇ −N i∂iω −Ar +N iAi

)
From on-shell action:

πij =
δS
δγij

, πi =
δS
δAi

, πφ =
δS
δφ
, πω =

δS
δω



Flow equations

Combining the two expressions for the momenta:

γ̇ij = −
4κ2

√
−γ

e−dξφ
((

γikγjl −
αξ + d2ξ2

dα
γijγkl

)
δ

δγkl
−

ξ

2α
γij

δ

δφ

)
S,

Ȧi = −
κ2

2

1
√
−γ

e−dξφZ−1
ξ (φ)γij

δ

δAj
S,

φ̇ = −
κ2

α

1
√
−γ

e−dξφ
(
δ

δφ
− 2ξγij

δ

δγij

)
S,

ω̇ = −
κ2

√
−γ

e−dξφW−1
ξ (φ)

δ

δω
S



Recursive solution of the Hamilton-Jacobi
equation



Zero derivative solution

The zero order solution of the HJ equation contains no transverse derivatives:

S(0) =
1

κ2

ˆ
dd+1x

√
−γU(φ,AiA

i)

Inserting this ansatz into the Hamiltonian constraint yields a PDE for U(X,Y ),
where X := φ, Y := BiB

i = AiA
i (cf. superpotential equation)

1

2α
(UX − ξ(d+ 1)U + 2ξY UY )2 + Z−1

ξ (X)Y U2
Y

−
1

2d
((d+ 1)U + 2(d− 1)Y UY ) (U − 2Y UY ) =

1

2
e2dξX

(
Wξ(X)Y + Vξ(X)

)
This equation for the ‘superpotential’ U(X,Y ) determines the zero derivative
solution of the Hamilton-Jacobi equation: It can be used to holographically
renormalize any homogeneous background of the equations of motion and any
exact solution of this PDE leads to exact solutions of the equations of motion via
the flow equations.



Constraints from Lifshtiz asymptotics

Imposing Lifshitz boundary conditions requires that asymptotically the gauge
invariant vector field behaves as

Bi ∼ Boi =

√
z − 1

2ε
Z
−1/2
ξ (φ)ni

where ni is the unit normal to the constant t surfaces

This in turn implies that the superpotential U(X,Y ) must satisfy

U(X,Yo(X)) ∼ edξX (d(1 + µξ) + z − 1)

UY (X,Yo(X)) ∼ −εedξXZξ(X)

UX(X,Yo(X)) ∼ edξX
(
−µαξ + dξ(d+ z)

)
Hence, the asymptotic form of the zero order solution of the HJ equation is

S(0) ∼
1

κ2

ˆ
Σr

dd+1x
√
−γedξφ

(
d(1 + µξ) +

1

2
(z − 1)− εZξ(φ)BiB

i

)



Taylor expansion of the superpotential

Since Lifshitz boundary conditions require that Bi ∼ Boi asymptotically, the
solution of the HJ equation can be expressed as a Taylor series in Bi −Boi
The zero derivative solution S(0) can be Taylor expanded in

Y − Yo = 2Bio(Bi −Boi) +O(B −Bo)2

where Yo ≡ BioBoi, as

U = e(d+1)ξφ
(
u0(φ) + Y −1

o u1(φ)(Y − Yo(φ)) + Y −2
o u2(φ)(Y − Yo(φ))2 + · · ·

)
Inserting this expansion in the superpotential equation for U(X,Y ) leads to a
tower of equations for the functions un(φ)



An additional relation between the functions u0(φ) and u1(φ) is imposed by the
consistency of the Taylor expansion, i.e. requiring that

Ẏ − Ẏo = O(Y − Yo)

In a bottom up approach these equations can be used to define the potentials
V (φ), Z(φ) and W (φ) in terms of u0(φ) and u1(φ), with all un(φ) for n ≥ 2 being
determined in terms of these functions.

Lifshitz boundary conditions require

u0(φ) ∼ (z − 1 + d(1 + µξ)) e−ξφ

u1(φ) ∼
1

2
(z − 1)e−ξφ

The function u2(φ) satisfies a quadratic (Riccati) equation and determines the
scaling behavior of the independent mode Y − Yo, while un(φ) with n ≥ 3 satisfy
linear equations.



Recursive solution of the HJ equation

To summarize the above analysis, we have shown that the most general zero
derivative solution of the HJ equation takes the form

S(0) =
1

κ2

ˆ
Σr

dd+1x
√
−γU(φ,B2)

where for Lifshitz boundary conditions the superpotential U(X,Y ) admits a Taylor
expansion in Y − Yo. Moreover, this zero derivative solution is the asymptotically
leading one, with derivative terms entering only in asymptotically subleading
orders.

In order to systematically determine these asymptotically subleading derivative
terms of the solution of the HJ equation, we expand S in a covariant expansion in
eigenfunctions of a suitable operator.

For backgrounds with asymptotic scaling invariance one can use the dilatation
operator [I. P. & Skenderis 2004] but in the presence of an asymptotically running
dilaton, meaning that asymptotic scale invariance is broken, this is not sufficient.

Instead we need an operator such that S(0) is an eigenfunction for any
superpotential U(φ,B2).



In fact there are two mutually commuting such operators:

δ̂ :=

ˆ
dd+1x

(
2γij

δ

δγij
+Bi

δ

δBi

)
, δB :=

ˆ
dd+1x

(
2Y −1BiBj

δ

δγij
+Bi

δ

δBi

)
which satisfy

δ̂S(0) = (d+ 1)S(0), δBS(0) = S(0), [δ̂, δB ] = 0

This allows us to seek a solution of the HJ equation in the form of a graded
covariant expansion in simultaneous eigenfunctions of both δ̂ and δB :

S =
∞∑
k=0

S(2k) =
∞∑
k=0

k∑
`=0

S(2k,2`) =
∞∑
k=0

k∑
`=0

ˆ
dd+1xL(2k,2`)

where

δ̂S(2k,2`) = (d+1−2k)S(2k,2`), δBS(2k,2`) = (1−2`)S(2k,2`), 0 ≤ ` ≤ k+1

The operator δ̂ counts derivatives

The operator δB annihilates the projection operator σij := δij − Y −1BiBj and
counts derivatives contracted with Bi, which asymptotically become time
derivatives since Bi ∼ Boi ∝ ni



Linear recursion equations

Inserting the covariant expansion of S in simultaneous eigenfunctions of δ̂ and δB
in the Hamilton-Jacobi equation (Hamiltonian constraint) results in a system of
recursive first order functional linear equations for the higher derivative terms:

1

α
(UX − (d+ 1)ξU + 2ξY UY )

δ

δφ

ˆ
L(2k,2`)+(

(2Y + Z−1
ξ )UY +

1

dα

(
αξU − 2(αξ + d2ξ2)Y UY + dξUX

))
Bi

δ

δBi

ˆ
L(2k,2`)−(

1

dα

(
αξU − 2(αξ + d2ξ2)Y UY + dξUX

)
(d+ 1− 2k) + 2Y UY (1− 2`)

)
L(2k,2`) =

edξφR(2k,2`)

The inhomogeneous term R(2k,2`) involves derivatives of lower order terms as
well as the 2-derivative sources from the Hamiltonian constraint



Lifshitz boundary conditions

The covariant expansion of S in simultaneous eigenfunctions of δ̂ and δB , and
hence the above recursion relations, is independent of the specific choice of
boundary conditions

In order to impose Lifshitz boundary conditions we must additionally expand
S(2k,2`) in Bi −Boi at each order of the covariant expansion as

L(2k,2`) = L0
(2k,2`)[γ(x), φ(x)]

+

ˆ
dd+1x′(Bi(x

′)−Boi(x′))L1i
(2k,2`)[γ(x), φ(x);x′] +O (B −Bo)2

Inserting this Taylor expansion in the above recursion relations eliminates the
derivative with respect to Bi, resulting in first order linear functional differential
equations in φ only. Such functional differential equations appear in the relativistic
case as well, e.g. for non-conformal branes or Improved Holographic QCD, and
they can be solved systematically [I.P. ’11].



Solution of the recursion relations up to O(B −Bo)

The inhomogeneous solution of these linear functional differential equations takes
the form

L0
(2k,2`) = e−Ck,`A(φ)

ˆ φ
dφ̄K(φ̄)eCk,`A(φ̄)R0

(2k,2`),

�ijL
1j
(2k,2`)

= Z
1
2
ξ e
−Ck,`A(φ)

ˆ φ
dφ̄K(φ̄)eCk,`A(φ̄)Z

− 1
2

ξ �ijR
1j
(2k,2`)

,

Boj(x)L1j
(2k,2`)

= Ω−1e−Ck,`A(φ)

ˆ φ
dφ̄K(φ̄)eCk,`A(φ̄)ΩBojR̂1j

(2k,2`)

where Ck,` := d+ 1− 2k + (z − 1)(1− 2`),

K(φ) :=
α

eξφ
(
u′0 + Z′

Z
u1

) ∼ − 1

µ
, eA(φ) = Z

− 1
2(ε−z)

ξ ∼ eφ/µ

and the Ω(φ) can be expressed in terms of u0, u1 and u2.

If µ = 0 (e.g. for Einstein-Proca theory) the corresponding solutions can be
expressed algebraically in terms of the source terms.



Structure of the HJ solution & the holographic
dictionary



Structure of the HJ solution

The general asymptotic solution of the HJ equation obtained via the above
algorithm takes the form

S =
∑

k,`,m | Ck,`+θ−m∆−≥0

ˆ
· · ·
ˆ

(B −Bo)mSm(2k,2`) + Ŝren + · · ·

where ∆+ = d+ z − θ −∆− is the scaling dimension of the scalar operator dual
to the mode

ψ := Y −1
o Bjo(Bj −Boj)

and (B −Bo)mSm(2k,2`) has dilatation weight Ck,` + θ −m∆−, while Ŝren has
dilatation weight 0.

All terms (B −Bo)mSm(2k,2`) with Ck,` + θ −m∆− ≥ 0 are determined by the
recursion algorithm.

For Ck,` + θ −m∆− < 0 these terms are powerlike divergent in the UV, while
terms with Ck,` + θ −m∆− = 0 have a pole which via dimensional regularization
leads to a logarithmic divergence. Such logarithmically divergence terms give rise
to the conformal anomaly when µ = 0, but they can be absorbed in the dilaton
when µ 6= 0.



The covariant local counterterms that render the on-shell action finite and the
variational problem with Lifshitz boundary conditions well posed are

Sct := −
∑

k,`,m | Ck,`+dµξ−m∆−≥0

ˆ
· · ·
ˆ

(B −Bo)mSm(2k,2`)

The renormalized part of the on-shell action is therefore given by the UV-finite
term Ŝren, which corresponds to an independent contribution to the HJ solution
and can be parameterized as

Ŝren =

ˆ
dd+1x

(
γij π̂

ij +Biπ̂
i + φπ̂φ

)
where π̂ij , π̂i and π̂φ are undetermined integration functions of the HJ equation.



Sources & VEVs

Inserting this general asymptotic solution of the HJ equation, including the
undetermined term Ŝren, in the first order flow equations one can systematically
derive the generalized asymptotic Fefferman-Graham expansions for the bulk
fields, including the sources and 1-point functions of the dual operators.

The sources generically correspond to integration constants of the flow equations,
while the 1-point functions are related to the integration constants of the HJ
solution in Ŝren.

Decomposing the induced fields as

γijdx
idxj = −(n2−nana)dt2+2nadtdx

a+σabdx
adxb, Aidx

i = adt+Aadx
a,

where the indices a, b run from 1 to d, and introducing the linear combinations

T̂ ij := −
e−dξφ
√
−γ

(
2π̂ij + Y −1

o BioB
j
oBokπ̂

k
)
,

Ôφ :=
e−dξφ
√
−γ

(
π̂φ + (ν + ξ)Boiπ̂

i
)
,

Ôψ :=
e−dξφ
√
−γ

Boiπ̂
i, Êi :=

e−dξφ
√
−γ

√
−Yo�ij π̂j ,

the full set of sources and VEVs is (cf. energy-momentum complex [Ross ’09]):



1-point function source

spatial stress tensor Π̂ij := �ik�jlT
kl ∼ e−(d+z−θ)rΠij(x) σ(0)ab

momentum density P̂i := −�iknlT
kl ∼ e−(d+2−θ)rPi(x) n(0)a

energy density Ê := −nknlT kl ∼ e−(d+z−θ)rE(x) n(0)

energy flux Êi ∼ e−(d+2z−θ)rEi(x) 0

dilaton Ôφ ∼ e−(d+z+dµξ)rOφ(x) φ(0)

composite scalar Ôψ ∼ e−∆+rOψ(x) ψ−



Holographic Ward identities

The momentum constraint of the radial Hamiltonian formalism leads to the
diffeomorphism Ward identity

DjΠ̂
i
i + qjΠ̂

j
i + njDjP̂i + KP̂i + KiiP̂j + niqjP̂j − Êqi + ÔφDiφ+ ÔψDiψ = 0,

niDiÊ + KÊ − KijΠ̂
j
i + DiÊi + ÔφniDiφ = 0,

DiP̂i + 2qiP̂i = 0,

where Di is the covariant derivative w.r.t. �ij , Kij = Dinj is the extrinsic
curvature of the constant time slices, and qi = nkDkni.

The transformation of the renormalized action under local anisotropic boundary
Weyl transformations leads to the trace Ward identity

zÊ + Π̂ii + ∆−ψÔψ − µÔφ = 0, µ 6= 0,

zÊ + Π̂ii + ∆−ψÔψ = A, µ = 0,

where A is the conformal anomaly, corresponding to all terms satisfying
Ck,` + θ −m∆− = 0.



Concluding remarks



Concluding remarks

We presented a general prescription for constructing the holographic dictionary for
asymptotically locally Lifshitz and hyperscaling violating Lifshitz backgrounds, with
arbitrary dynamical exponents compatible with the null energy condition.

The key to the construction of the holographic dictionary is a recursive algorithm
for solving the radial Hamilton-Jacobi equation asymptotically by expanding the
solution in simultaneous eigenfunctions of two commuting operators.

The full holographic dictionary can be obtained from this asymptotic solution of the
Hamilton-Jacobi equation. Crucially, we have demonstrated that there is no need
for field redefinitions such as using vielbeins in an otherwise second order
formalism for the bulk theory, and there is no need for using the second order
equations to derive the asymptotic expansions.

Correlation functions are also much more efficiently computed holographically
using Hamilton-Jacobi techniques in order to trade the second order linear
fluctuation equations for first order non-linear (Riccati) equations.
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