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The Kondo Effect

The screening	

of a magnetic moment	


by conduction electrons	

at low temperatures



�µ � g�S



The Kondo Hamiltonian

Conduction electronsck�c†k�

� =�, �

Dispersion relation

,

Spin SU(2)

HK =
�

k,�

�(k) c†k�ck� + gK
�S ·

�

k�k���

c†k�

1
2
�����ck���

�(k) =
k2

2m
� �F

ck� � ei�ck� Charge U(1)



gK Kondo coupling

Spin of magnetic moment�S

�� Pauli matrices
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Running of the Coupling

Asymptotic freedom!
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The Kondo Temperature

gK � 0



IR

Running of the Coupling

At low energy, the coupling diverges!

What is the ground state?
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The Kondo Problem



Solutions of the Kondo Problem

Numerical RG (Wilson 1975)

Fermi liquid description (Nozières 1975) 

Bethe Ansatz/Integrability	

(Andrei, Wiegmann, Tsvelick, Destri, ... 1980s)

Conformal Field Theory (CFT)	

(Affleck and Ludwig 1990s)

Large-N expansion	

(Anderson, Read, Newns, Doniach, Coleman, ...1970-80s)

Quantum Monte Carlo	

(Hirsch, Fye, Gubernatis, Scalapino,... 1980s)
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IR

Fermi liquid + decoupled spin

“Kondo screening cloud”

Figure 3

T >> TK T < TK(a) (b)
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size� 1/TK
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IR

Fermi liquid + decoupled spin

Figure 3

T >> TK T < TK(a) (b)

Figure 3

T >> TK T < TK(a) (b)

On average, the NET spin	

of the Kondo screening cloud	

equals that of a single electron

size� 1/TK
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IR

The Kondo screening cloud spin	

binds with the impurity spin

Anti-symmetric singlet of SU(2)

1�
2

(|�i �e� � |�i �e�)

“Kondo singlet”

Fermi liquid + decoupled spin



UV

IR

Fermi liquid

+ electrons EXCLUDED 
from impurity location

+ NO magnetic moment

Fermi liquid + decoupled spin



Kondo Effect in Many Systems

Quantum dots
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Not Impressed? How about Quantum Dots?

Regions that can hold a few hundred electrons!

Can drive a current through these!

This is Nano!
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How localized electrons interact with delocalized electrons is a
central question to many problems in sold-state physics1–3. The
simplest manifestation of this situation is the Kondo effect, which
occurs when an impurity atom with an unpaired electron is placed
in a metal2. At low temperatures a spin singlet state is formed
between the unpaired localized electron and delocalized electrons
at the Fermi energy. Theories predict4–7 that a Kondo singlet
should form in a single-electron transistor (SET), which contains
a confined ‘droplet’ of electrons coupled by quantum-mechanical
tunnelling to the delocalized electrons in the transistor’s leads. If
this is so, a SET could provide a means of investigating aspects of
the Kondo effect under controlled circumstances that are not
accessible in conventional systems: the number of electrons can be
changed from odd to even, the difference in energy between the
localized state and the Fermi level can be tuned, the coupling to
the leads can be adjusted, voltage differences can be applied to
reveal non-equilibrium Kondo phenomena7, and a single localized
state can be studied rather than a statistical distribution. But for
SETs fabricated previously, the binding energy of the spin singlet
has been too small to observe Kondo phenomena. Ralph and
Buhrman8 have observed the Kondo singlet at a single accidental
impurity in a metal point contact, but with only two electrodes
and without control over the structure they were not able to
observe all of the features predicted. Here we report measure-
ments on SETs smaller than those made previously, which exhibit
all of the predicted aspects of the Kondo effect in such a system.

When the channel of a transistor is made very small and is
isolated from its leads by tunnel barriers it behaves in an unusual
way. A transistor can be thought of as an electronic switch that is on
when it conducts current and off when it does not. Whereas a
conventional field-effect transistor, such as one in a computer
memory, turns on only once when electrons are added to it, the
SET turns on and off again every time a single electron is added to
it9,10. This increased functionality may eventually make SETs tech-
nologically important.

The unusual behaviour of SETs is a manifestation of the quanti-
zation of charge and energy caused by the confinement of the
droplet of electrons in the small channel. As similar quantization
occurs when electrons are confined in an atom, the small droplet of
electrons is often called an artificial atom11,12.

We have fabricated SETs using multiple metallic gates (electrodes)
deposited on a GaAs/AlGaAs heterostructure (Fig. 1a) containing a
two-dimensional electron gas, or 2DEG. First, the electrons are
trapped in a plane by differences in the electronic properties of the
heterostructure’s layers. Second, they are excluded from regions of
the plane beneath the gates when negative voltages are applied to

Figure 1 a, Scanning electron microscope image showing top view of sample.

Three gate electrodes, the one on the right and the upper and lower ones on the

left, control the tunnel barriers between reservoirs of two-dimensional electron

gas (at top and bottom) and the droplet of electrons. The middle electrode on the

left is used as a gate to change the energy of the droplet relative to the two-

dimensional electron gas. Source and drain contacts at the top and bottom are

not shown. Although the lithographic dimensions of the confined region are

150 nm square, we estimate lateral depletion reduces the electron droplet to

dimensions of 100nm square. The gate pattern shown was deposited on top of a

shallow heterostructure with the following layer sequence grown on top of a thick

undoped GaAs buffer: 5 nm Al0.3Ga0.7As, 5 3 1012 cm2 1 Si d-doping, 5 nm

Al0.3Ga0.7As, d-doping, 5 nm Al0.3Ga0.7As, 5 nm GaAs cap (H.S., D.G.-G. and U.M.,

manuscript in preparation). Immediately before depositing the metal, we etched

off the GaAs cap in the areas where the gates would be deposited, to reduce

leakage between the gates and the electron gas. b, Schematic energy diagram of

the artificial atom and its leads. The situation shown corresponds to Vds , kT=e,

forwhich theFermi energies in sourceanddrainarenearlyequal, and to avalueof

Vg near a conductance minimum between a pair of peaks corresponding to the

same spatial state. For this case there is an energy cost ,U to add or remove an

electron. To place an extra electron in the lowest excited state costs ,U þ De.

Cu, Ag, Au, Mg, Zn, ... doped with Cr, Fe, Mo, Mn, Re, Os, ...

200nm

Alloys

 Goldhaber-Gordon, et al., Nature 391 (1998), 156-159.

 Cronenwett, et al., Science 281 (1998), no. 5376, 540-544.



Multiple “channels” or “flavors”

Enhance the spin group

Representation of impurity spin

Generalizations

SU(2)� SU(N)

c� c� � = 1, . . . , k

simp = 1/2 � Rimp

U(1)� SU(k)



IR fixed point:

“Non-Fermi liquids”

NOT always	

a fermi liquid

Generalizations

Kondo model specified by 

Apply the techniques mentioned above...

N, k, Rimp



Open Problems

Entanglement Entropy

Quantum Quenches

Multiple Impurities

Kondo:

Form singlets with each other

Competition between these can produce a

QUANTUM PHASE TRANSITION

Form singlets with electrons

�Si · �Sj

Affleck, Laflorencie, Sørensen 0906.1809

Latta et al. 1102.3982



Open Problems

Entanglement Entropy

Quantum Quenches

Multiple Impurities
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FIG. 1: Quantum critical points in heavy fermion metals. a: AF ordering temperature TN vs. Au

concentration x for CeCu6−xAux (Ref.7), showing a doping induced QCP. b: Suppression of the

magnetic ordering in YbRh2Si2 by a magnetic field. Also shown is the evolution of the exponent α in

∆ρ ≡ [ρ(T )−ρ0] ∝ Tα, within the temperature-field phase diagram of YbRh2Si2 (Ref.9). Blue and

orange regions mark α = 2 and 1, respectively. c: Linear temperature dependence of the electrical

resistivity for Ge-doped YbRh2Si2 over three decades of temperature (Ref.9), demonstrating the

robustness of the non-Fermi liquid behavior in the quantum critical regime. d: Temperature

vs. pressure phase diagram for CePd2Si2, illustrating the emergence of a superconducting phase

centered around the QCP. The Néel- (TN ) and superconducting ordering temperatures (Tc) are

indicated by closed and open symbols, respectively.10

sitions. At the melting point, ice abruptly turns into water, absorbing latent heat. In other

words, the transition is of first order. A piece of magnet, on the other hand, typically “melts”

into a paramagnet through a continuous transition: The magnetization vanishes smoothly,

and no latent heat is involved. In the case of zero temperature, the point of such a second-

2

Heavy fermion compounds

Kondo lattice
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sitions. At the melting point, ice abruptly turns into water, absorbing latent heat. In other
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Heavy fermion compounds

Kondo lattice

Let’s try AdS/CFT!
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Kondo Effect
Single Impurity ONLY
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Kondo interaction preserves spherical symmetry

Reduction to one spatial dimension

restrict to momenta near

restrict to s-wave

kF

CFT Approach to the Kondo Effect
Affleck and Ludwig 1990s
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FIG. 4. Reflecting the left-movers to the negative axis.

D. Fermi Liquid Approach at Low T

What is the T → 0 behavior of the antiferromagetic Kondo model? The simplest assumption is
λeff → ∞. But what does that really mean? Consider the strong coupling limit of a lattice model,2

for convenience, in spatial dimension D = 1. (D doesn’t really matter since we can always reduce
the model to D = 1.)

H = t
∑

i

(ψ†
iψi+1 + ψ†

i+1ψi) + λS⃗ · ψ†
0

σ⃗
2
ψ0 (1.20)

Consider the limit λ >> |t|. The groundstate of the interaction term will be the following con-
figuration: one electron at the site 0 forms a singlet with the impurity: | ⇑↓⟩ − | ⇓↑⟩. (We as-
sume SIMP = 1/2). Now we do perturbation theory in t. We have the following low energy states:
an arbitary electron configuration occurs on all other sites-but other electrons or holes are forbidden
to enter the site-0, since that would destroy the singlet state, costing an energy, ∆E ∼ λ >> t.
Thus we simply form free electron Bloch states with the boundary condition φ(0) = 0, where φ(i) is
the single-electron wave-function. Note that at zero Kondo coupling, the parity even single particle
wave-functions are of the form φ(i) = cos ki and the parity odd ones are of the form φ(i) = sin ki.
On the other hand, at λ → ∞ the parity even wave-functions become φ(i) = | sin ki|, while the
parity odd ones are unaffected.

The behaviour of the parity even channel corresponds to a π/2 phase shift in the s-wave channel.

φj ∼ e−ik|j| + e+2iδeik|j|, δ = π/2. (1.21)

In terms of left and right movers on r > 0 we have changed the boundary condition,

ψL(0) = ψR(0), λ = 0,

ψL(0) = −ψR(0), λ = ∞. (1.22)

The strong coupling fixed point is the same as the weak coupling fixed point except for a change
in boundary conditions (and the removal of the impurity). In terms of the left-moving description
of the P -even sector, the phase of the left-mover is shifted by π as it passes the origin. Imposing
another boundary condition a distance l away quantizes k:

ψ(l) = ψL(l) + ψR(l) = ψL(l) + ψL(−l) = 0,

λ = 0 : k =
π
l
(n + 1/2)

λ = ∞ : k =
πn
l

(1.23)
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RELATIVISTIC chiral fermions

“speed of light”vF

CFT Approach to the Kondo Effect
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chiral CFT!
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CFT Approach to the Kondo Effect

Full symmetry:

(1 + 1)d chiral conformal symmetry

SU(N)k � SU(k)N � U(1)kN
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CFT Approach to the Kondo Effect
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Kondo coupling: �S · �J
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UV

IR SU(N)k � SU(k)N � U(1)Nk

SU(N)k � SU(k)N � U(1)Nk

Eigenstates are representations 
of the Kac-Moody algebra

Determine how representations	

re-arrange between UV and IR

RUV
highest weight �Rimp = RIR

highest weight



CFT Approach to the Kondo Effect

Take-Away Messages

Central role of the	

Kac-Moody Algebra

Kondo coupling: �S · �J
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GOAL

Find a holographic description	

of the	


Kondo Effect



STRATEGY

Follow the CFT approach

Reproduce the Symmetries

Reproduce the Kondo coupling   �S · �J



What classical action do we write	

on the gravity side of the correspondence?



How do we describe holographically...

1

2

3

The chiral fermions?

The impurity?

The Kondo coupling?
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0 1 2 3 4 5 6 7 8 9
Nc D3 X X X X

N = 4 SYM
Type IIB Supergravity

Nc �⇥ =

The D3-branes

��� AdS5 � S5

3-3 strings

Our Kondo model will have TWO coupling constants

’t Hooft and Kondo



Anti-de Sitter Space

r =�

r = 0

boundary

Figure 1: The two slicings of AdS5. The horizontal axis is the direction x transverse to the
brane and the vertical axis is the radial direction of AdS interpolating from the boundary
(solid line) to the horizon (dashed line). The figure on the left shows lines of constant ρ
while the figure on the right shows lines of constant r.

Every AdSd+1 bulk field φd+1(y⃗, w, r) of mass M , transforming in some representation
of SO(d, 2), decomposes into a tower of AdSd modes φd,n(y⃗, w) inhabiting representations
of the preserved isometry group SO(d − 1, 2). Each mode is multiplied by an appropriate
wavefunction of the r-direction:

φd+1(y⃗, w, r) =
∑

n

ψn(r) φd,n(y⃗, w) . (15)

Among the data of the SO(d − 1, 2) representation is an AdSd-mass mn for each φd,n,

∂2
dφd,n = m2

nφd,n , (16)

where ∂2
d is the AdSd-Laplacian. The mass mn and the wavefunction ψn(r) may be deter-

mined by solving the wave equation for φd+1(y⃗, x, r). In general the backreaction of the
brane may produce a more general warp factor A(r), ds2 = dr2 + e2A(r)ds2

AdSd
, although (13)

will continue to hold at large |r|; this more general metric still preserves AdSd isometries
associated with dual dCFT. To linear order the wave equation then reduces to an ordinary
differential equation for the wavefunction ψn(r),

∂2
rψn(r) + dA′(r)∂rψn(r) + e−2A(r)m2

nψn(r) − M2ψn(r) = 0 . (17)

This will receive corrections from various interactions in the brane worldvolume theory,7 all
of which affect the calculation of the masses mn.

The field φd+1 of mass M is dual to an ambient operator Od(y⃗, x) of dimension ∆d (with
∆d(∆d − d) = M2) in the dCFT. Analogously, since the φd,n inhabit an effective AdSd the-
ory (they are representations of SO(d − 1, 2)), they are related to dual “defect operators”

7The brane interactions will generally cause a mixing between the modes corresponding to different bulk
fields φd+1, though we neglect this here. However, precisely the same phenomenon occurs also in the BOPE,
and it is easy to generalize our discussion to incorporate it.

11

x

ds2 =
dr2

r2
+ r2

�
�dt2 + dx2 + dy2 + dz2

�

Poincaré horizon



0 1 2 3 4 5 6 7 8 9
Nc D3 X X X X
N7 D7 X X X X X X X X
N5 D5 X X X X X X

3-3 5-5 7-7
3-7 7-3
3-5
7-5 5-7

and and

and

and

and

Decouple5-3

Top-Down Model



Probe Limit

becomes a global symmetryU(N7)� U(N5)

Total symmetry:

(plus R-symmetry)

SU(Nc)� �� ��U(N7)� U(N5)� �� �
gauged global

N7/Nc � 0 and N5/Nc � 0
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Harvey and Royston 0709.1482, 0804.2854
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SU(Nc)� U(N7)� U(N5)

Nc N7 singlet

Skenderis, Taylor hep-th/0204054
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Kac-Moody algebra

Harvey and Royston 0709.1482, 0804.2854
Buchbinder, Gomis, Passerini 0710.5170 

Skenderis, Taylor hep-th/0204054

SU(Nc)N7 � SU(N7)Nc � U(1)NcN7

(1+1)-dimensional chiral fermions �L
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The D7-branes

Do not come from reduction from (3+1) dimensions

Genuinely relativistic

Differences from Kondo

(1+1)-dimensional chiral fermions �L
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The D7-branes

SU(Nc) is gauged!

(1+1)-dimensional chiral fermions �L

Differences from Kondo

�J = �†
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 Gauge Anomaly! 

The D7-branes
0 1 2 3 4 5 6 7 8 9
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SU(Nc) is gauged!

Harvey and Royston 0709.1482, 0804.2854
Buchbinder, Gomis, Passerini 0710.5170



In the probe limit, the gauge anomaly is suppressed...

SU(Nc)N7 � SU(Nc)

SU(N7)Nc � U(1)NcN7 � SU(N7)Nc � U(1)NcN7

... but the global anomalies are not.

Probe Limit

N7/Nc � 0
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J = ACurrent Gauge fieldU(N7) U(N7)

AdS3 � S5
Probe D7-branes 
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Kac-Moody Algebra Chern-Simons Gauge Field

Gukov, Martinec, Moore, Strominger	

hep-th/0403225

Kraus and Larsen	

hep-th/0607138
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gauge field

J = ACurrent Gauge field



AdS3 � S5Probe D7-branes along
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U(N7)Nc
Chern-Simons gauge field
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Chern-Simons Gauge Field in AdS3
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The D5-branes

SU(Nc) is “spin”

“Abrikosov pseudo-fermions”

Abrikosov, Physics 2, p.5 (1965) 

“slave fermions”

�S = �†�� �



Integrate out 

N5 = 1
Gomis and Passerini hep-th/0604007

�

...R = }
chargeU(N5) = U(1)

Q = �†�

Det (�D) = TrRP exp
�
i

�
dt At

�



Probe D5-branes 
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Probe D5-branes 

N = 4 SYM

Nc �⇥ =
���

Probe =

Type IIB Supergravity

AdS5 � S5

AdS2 � S4
�

Q = Electric flux

J =Current Gauge field aU(N5) U(N5)



Probe D5-brane along AdS2 � S4

Camino, Paredes, Ramallo hep-th/0104082

electric field AdS2 frt

�
�gf tr

��
�AdS2

= Q = �†�

QDissolve strings into the D5-brane
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Yang-Mills Gauge Field in AdS2

The impurity:
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The Kondo Interaction

Complex scalar!

SU(Nc)� U(N7)� U(N5)
singlet

O � �†
L�

N5N7



The Kondo Interaction
SU(Nc) is “spin”

�S · �J = |�†
L�|2 + O(1/Nc)

“double trace”

�J = �†
L�� �L �S = �†�� �

�S · �J = �†�� � · �†
L�� �L

��ij · ��kl = �il�jk �
1

Nc
�ij�kl



AdS3 � S5
Probe D7-branes 

N = 4 SYM

Nc �⇥ =
���

Probe �L =

Type IIB Supergravity

AdS5 � S5

Probe D5-branes 
Probe = AdS2 � S4�

= Bi-fundamental scalar

AdS2 � S4O � �†
L�
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Bi-fundamental scalar in

The Kondo interaction:

AdS2
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What is V (�†�) ?

Top-Down Model



We don’t know.
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Switch to bottom-up model!

Top-Down Model
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Boundary Conditions

c = g̃K c̃
Witten hep-th/0112258

We choose Breitenlohner-Freedman boundm2 =

�
�gfrt

��
�AdS2

= Q

Our double-trace (Kondo) coupling:

Berkooz, Sever, Shomer hep-th/0112264

�(r) = c̃ r�1/2 + c r�1/2 log r + . . .



� (r) = 0T > Tc
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A holographic superconductor in AdS2
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Phase Transition



Superconductivity???
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The large-N Kondo effect!
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Solutions of the Kondo Problem

Numerical RG (Wilson 1975)

Fermi liquid description (Nozières 1975) 

Bethe Ansatz/Integrability	

(Andrei, Wiegmann, Tsvelick, Destri, ... 1980s)

Conformal Field Theory (CFT)	

(Affleck and Ludwig 1990s)

Large-N expansion	

(Anderson, Read, Newns, Doniach, Coleman, ...1970-80s)

Quantum Monte Carlo	

(Hirsch, Fye, Gubernatis, Scalapino,... 1980s)
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Represents the formation of the Kondo singlet
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The phase transition is an ARTIFACT of the large-N limit!
The actual Kondo effect is a crossover



Outline:

• The Kondo Effect	


• The CFT Approach	


• Top-Down Holographic Model	


• Bottom-Up Holographic Model	


• Summary and Outlook



Summary

What is the holographic dual of the Kondo effect?

Holographic superconductor in

coupled as a defect

AdS2

AdS3to a Chern-Simons gauge field in



Outlook
!

• Entropy? Heat Capacity? Resistivity?	


• Multi-channel?	


• Other impurity representations?	


• Entanglement entropy?	


• Quantum Quenches?	


• Multiple Impurities?



Thank You.


