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Reviews 3

Random Fields in QFT

I random-field disorder in a low-energy EFT (d spatial
dimensions):

H = H0 +

∫
ddx O(x)g(x)

︸ ︷︷ ︸
linear coupling of disorder

,

E[g(x)] = 0, E[g(x)g(y)] = ε2δ(x− y).

disorder averages: E[· · · ].

I suppose H0 invariant under Z2 symmetry, O → −O. Z2 is
locally, not globally, broken

I defects act as random-fields in the solid-state lab:

missing atom wrong atom
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Reviews 4

The Harris Criterion at Any z, θ

I most general scale invariant isotropic theory: characterized
by z, θ.

I dynamical exponent z:

t ∼ xz.

I hyperscaling violation exponent θ: degrees of freedom
“live in” deff = d− θ spatial dimensions.

I Fermi surface: θ = d− 1.

I example: entropy density s ∼ T (d−θ)/z.

I Harris criterion: 〈O(0)O(x)〉 ∼ x−2∆; disorder relevant if

∆ <
d− θ

2
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Ising-Nematic Quantum Critical Point 5

Pomeranchuk Instability

I Pomeranchuk instability: Fermi surface distortion (d = 2)

Z2

h�i = 0

h�i 6= 0

� ⇠
X

k

(cos(akx) � cos(aky)) c†
kc�k

I experiments: strange metal (critical?) and Ising-nematic
order...

I Ising-nematic quantum critical point:

L = −1

2
(∂φ)2 − rc

2
φ2 − u

24
φ4 + c†(i∂t − ε(i∇))c− λc†c(∂2

x − ∂2
y)φ

Metlitski, Sachdev, Physical Review B82 075127 (2010)
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Ising-Nematic Quantum Critical Point 6

Random Field Disorder

I what is electrical resistivity ρdc associated to (charged)
electron c?

I “Boltzmann” transport (near-FS c scatter off φ)

ρdc ∼ T 4/3.

I two types of random-field disorder to add:

Ldis = −V (x)c†c− h(x)φ

I random-fields dominate transport at low T :

ρdc ∼ E[V 2] +
E[h2]√

T log(T ∗/T )

calculation breaks

down as T → 0!

Hartnoll, Mahajan, Punk, Sachdev, Physical Review B89 155130 (2014)



Ising-Nematic Quantum Critical Point 6

Random Field Disorder

I what is electrical resistivity ρdc associated to (charged)
electron c?

I “Boltzmann” transport (near-FS c scatter off φ)

ρdc ∼ T 4/3.

I two types of random-field disorder to add:

Ldis = −V (x)c†c− h(x)φ

I random-fields dominate transport at low T :

ρdc ∼ E[V 2] +
E[h2]√

T log(T ∗/T )

calculation breaks

down as T → 0!

Hartnoll, Mahajan, Punk, Sachdev, Physical Review B89 155130 (2014)



Ising-Nematic Quantum Critical Point 6

Random Field Disorder

I what is electrical resistivity ρdc associated to (charged)
electron c?

I “Boltzmann” transport (near-FS c scatter off φ)

ρdc ∼ T 4/3.

I two types of random-field disorder to add:

Ldis = −V (x)c†c− h(x)φ

I random-fields dominate transport at low T :

ρdc ∼ E[V 2] +
E[h2]√

T log(T ∗/T )

calculation breaks

down as T → 0!

Hartnoll, Mahajan, Punk, Sachdev, Physical Review B89 155130 (2014)



Ising-Nematic Quantum Critical Point 6

Random Field Disorder

I what is electrical resistivity ρdc associated to (charged)
electron c?

I “Boltzmann” transport (near-FS c scatter off φ)

ρdc ∼ T 4/3.

I two types of random-field disorder to add:

Ldis = −V (x)c†c− h(x)φ

I random-fields dominate transport at low T :

ρdc ∼ E[V 2] +
E[h2]√

T log(T ∗/T )

calculation breaks

down as T → 0!

Hartnoll, Mahajan, Punk, Sachdev, Physical Review B89 155130 (2014)



Momentum Loss 7

(Almost) Hydrodynamics and Memory Matrices

I how to understand? strongly-coupled theory relaxes
quickly to a “hydrodynamic” regime:

∂µ〈Tµt〉 = 0, ∂µ〈Tµi〉 = −1

τ
〈T ti〉.

I τ dominated by fastest momentum-dissipating process

I τ also controls ρdc – [P xtot, J
x
tot] 6= 0, ∂µ〈Jµ〉 = 0 =⇒ same

process controlling momentum loss controls ρdc

I memory matrix formalism (Ldis ∼ gO, g ∼ ε):

ρdc ∼ ε2

∫
d2k k2Im

GR
OO(ω,k)

ω
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Momentum Loss 8

A Massive Gravity Analogy

I holographic systems are fluid-like for low-ω transport
computations

I break translation symmetry by breaking some of the
diffeomorphism symmetry in bulk (graviton mass)∗

I in holography with graviton mass m, one finds that†

τ ∼ m2.

I computation of ρdc:
◦

ρdc ∼ τ ∼ m2

m2 perturbatively computable for “holographic lattice”
(holographic Higgs mechanism)

∗ Vegh, arXiv:1301.0537
† Davison, Physical Review D88 086003 (2013)
◦ Blake, Tong, Vegh, Physical Review Letters 112 071602 (2014)
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Disordered Holography 9

Beyond Replicas

I we start with finite charge density EMD geometry
(gMN , AM ,Φ) for given z, θ

ds2 =
L2

r2

[
dr2

r2θ/(d−θ)f
− fdt2

r2d(z−1)/(d−θ) + dx2

]
, f = 1−

(
r

rh

)d+dz/(d−θ)

I sanity check: rh ∼ T−(1−θ/d)/z; s ∼ r−dh ∼ T (d−θ)/z.

I AdS/CFT dictionary: random-field disorder ⇐⇒ random
(scalar ψ) field in bulk – normalizable mode turned on:

Ldis = g(k)O(k) ⇐⇒ ψ(k, r → 0) ∼ g(k)rν+︸ ︷︷ ︸
relevant operator

+ · · ·

I g(k) ∼ ε “small enough” =⇒ background approx
ψ-independent. (“memory matrix” regime)
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Disordered Holography 10

Aside: Scalar Fields with θ 6= 0

I for this computation to work, “must” choose

S[ψ] = −1

2

∫
dd+2x

(
1

2
∂Mψ∂Mψ +

1

2
B(Φ)ψ2

)

with B(Φ) ∼ e−βΦ

I analogous story with usual AdS/CFT (mass ⇐⇒
dimension): B(Φ) ≈ B0e−βΦ, β fixed by z, θ;

4B0 =

(
d(2∆− θ)
d− θ − d− dz

d− θ

)2

−
(
d+

dz

d− θ

)2

with ∆ dimension of (relevant) operator dual to ψ.

I if B(Φ) = m2, “AdS radius” L enters the boundary theory
as a length scale in ψ correlation functions!
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Disordered Holography 11

Computing the Resistivity

I AdS/CFT: electric field: δAxe−iωt (ω → 0).
electric current: ∂d−1

r δAx.

I linearized fluctuations couple to all spin 1 modes:

δAx, δgtx, ∂xδψ, ∂
2∂xδψ, ∂

2∂2∂xδψ, · · ·

I for computation of ρ (ω = 0 only), only 3 modes couple!

I graviton mass a sum of each mode contribution:

ρdc ∼ sm2, m2 ∼
∫

ddk k2ψ(k, rh)2

I given ρdc, coefficients κ̄dc, αdc straightforward to obtain∗

∗ Amoretti, Braggio, Maggiore, Magnoli, Musso, arXiv:1407.0306
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Disordered Holography 12

A Hairy Black Hole

I mode by mode solution: modes are modified Bessel
functions:

ψ ∼ r# (r � k1−θ/d), ψ ∼ exp[−krd/(d−θ)] (r � k1−θ/d)

I horizon imprinted with disorder: lhair ∼ T−1/z:
(tracks modes that effectively scatter momentum!)

“random Fourier” cartoon

lhair

r

T�(1�✓/d)/z

k
�(1�✓/d)
2

k1 < T 1/z k2 > T 1/z

I similar logic valid even when horizon non-perturbative?



Disordered Holography 12

A Hairy Black Hole

I mode by mode solution: modes are modified Bessel
functions:

ψ ∼ r# (r � k1−θ/d), ψ ∼ exp[−krd/(d−θ)] (r � k1−θ/d)

I horizon imprinted with disorder: lhair ∼ T−1/z:
(tracks modes that effectively scatter momentum!)

“random Fourier” cartoon

lhair

r

T�(1�✓/d)/z

k
�(1�✓/d)
2

k1 < T 1/z k2 > T 1/z

I similar logic valid even when horizon non-perturbative?



Disordered Holography 12

A Hairy Black Hole

I mode by mode solution: modes are modified Bessel
functions:

ψ ∼ r# (r � k1−θ/d), ψ ∼ exp[−krd/(d−θ)] (r � k1−θ/d)

I horizon imprinted with disorder: lhair ∼ T−1/z:
(tracks modes that effectively scatter momentum!)

“random Fourier” cartoon

lhair

r

T�(1�✓/d)/z

k
�(1�✓/d)
2

k1 < T 1/z k2 > T 1/z

I similar logic valid even when horizon non-perturbative?



Disordered Holography 13

The Answer

I “only momenta k < T 1/z contribute” to m2:

ρdc ∼ ε2T 2(1+∆−z)/z ∼ ε2T (d−z+η)/z

I this scaling also found (easier) with memory matrix

I holographic advantage: breakdown of perturbation
theory/memory matrix when ψ backreacts on geometry:

T . Tc, Tc ∼ ε(z−∆+(d−θ)/2)/z

I at this breakdown we find ρdc ∼ T (d+2−θ)/z ∼ T 2/zs

I ρdc ∼ s for random-field disorder coupled to T tt.∗

I generically scalar RF disorder has more singular
contribution

∗ Davison, Schalm, Zaanen, Physical Review B89 245116 (2014)
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I at this breakdown we find ρdc ∼ T (d+2−θ)/z ∼ T 2/zs

I ρdc ∼ s for random-field disorder coupled to T tt.∗

I generically scalar RF disorder has more singular
contribution

∗ Davison, Schalm, Zaanen, Physical Review B89 245116 (2014)
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Nonperturbative Numerics

numerics have recently been performed on (T = 0) disordered
horizons with marginal scalars: plot of ψ(x, rh):

Hartnoll, Santos, Physical Review Letters 112 231601 (2014)



Summary 15

I random-field disorder (almost certainly) present in
experiments on strange metal phases

I most efficient mechanism (known) for losing momentum

I elegant holographic implementation: dirty black holes

I scale-invariant holography with θ 6= 0: dilaton couplings to
new fields for scale-invariant QFT!

I in progress: “easy”
interpolating AdS→HV
geometry at all T for (almost
all) z, θ; holographic check of

⇢dc

T

AdSHV
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