# Holographic transport with random-field disorder

## Andrew Lucas

Harvard Physics

Quantum Field Theory, String Theory and Condensed Matter Physics: Orthodox Academy of Crete

September 1, 2014





Subir Sachdev Harvard Physics/Perimeter Institute Koenraad Schalm Leiden–Lorentz Institute/Harvard Physics

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Lucas, Sachdev, Schalm, Physical Review D89 066018 (2014)



#### Random Fields in QFT

random-field disorder in a low-energy EFT (d spatial dimensions):

$$H = H_0 + \int \mathrm{d}^d \mathbf{x} \, \mathcal{O}(\mathbf{x}) g(\mathbf{x}) ,$$

linear coupling of disorder

$$\mathbb{E}[g(\mathbf{x})] = 0, \quad \mathbb{E}[g(\mathbf{x})g(\mathbf{y})] = \varepsilon^2 \delta(\mathbf{x} - \mathbf{y}).$$
disorder averages:  $\mathbb{E}[\cdots].$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



#### Random Fields in QFT

random-field disorder in a low-energy EFT (d spatial dimensions):

$$H = H_0 + \int \mathrm{d}^d \mathbf{x} \, \mathcal{O}(\mathbf{x}) g(\mathbf{x}) ,$$

linear coupling of disorder

$$\mathbb{E}[g(\mathbf{x})] = 0, \quad \mathbb{E}[g(\mathbf{x})g(\mathbf{y})] = \varepsilon^2 \delta(\mathbf{x} - \mathbf{y}).$$

disorder averages:  $\mathbb{E}[\cdots]$ .

▶ suppose  $H_0$  invariant under  $\mathbb{Z}_2$  symmetry,  $\mathcal{O} \to -\mathcal{O}$ .  $\mathbb{Z}_2$  is *locally*, not globally, broken



#### Random Fields in QFT

▶ random-field disorder in a low-energy EFT (*d* spatial dimensions):

$$H = H_0 + \int \mathrm{d}^d \mathbf{x} \, \mathcal{O}(\mathbf{x}) g(\mathbf{x}) ,$$

linear coupling of disorder

$$\mathbb{E}[g(\mathbf{x})] = 0, \quad \mathbb{E}[g(\mathbf{x})g(\mathbf{y})] = \varepsilon^2 \delta(\mathbf{x} - \mathbf{y}).$$

disorder averages:  $\mathbb{E}[\cdots]$ .

- ▶ suppose  $H_0$  invariant under  $\mathbb{Z}_2$  symmetry,  $\mathcal{O} \to -\mathcal{O}$ .  $\mathbb{Z}_2$  is *locally*, not globally, broken
- *defects* act as random-fields in the solid-state lab:





• most general scale invariant isotropic theory: characterized by  $z, \theta$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



- most general scale invariant isotropic theory: characterized by  $z, \theta$ .
- dynamical exponent z:

 $t \sim x^z$ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・



- most general scale invariant isotropic theory: characterized by  $z, \theta$ .
- dynamical exponent z:

 $t \sim x^z$ .

▶ hyperscaling violation exponent  $\theta$ : degrees of freedom "live in"  $d_{\text{eff}} = d - \theta$  spatial dimensions.



- most general scale invariant isotropic theory: characterized by  $z, \theta$ .
- dynamical exponent z:

 $t \sim x^z$ .

- ▶ hyperscaling violation exponent  $\theta$ : degrees of freedom "live in"  $d_{\text{eff}} = d \theta$  spatial dimensions.
  - Fermi surface:  $\theta = d 1$ .

- most general scale invariant isotropic theory: characterized by  $z, \theta$ .
- dynamical exponent z:

 $t \sim x^z$ .

- ▶ hyperscaling violation exponent  $\theta$ : degrees of freedom "live in"  $d_{\text{eff}} = d \theta$  spatial dimensions.
  - Fermi surface:  $\theta = d 1$ .
- example: entropy density  $s \sim T^{(d-\theta)/z}$ .

- most general scale invariant isotropic theory: characterized by  $z, \theta$ .
- dynamical exponent z:

 $t \sim x^z$ .

- ▶ hyperscaling violation exponent  $\theta$ : degrees of freedom "live in"  $d_{\text{eff}} = d \theta$  spatial dimensions.
  - Fermi surface:  $\theta = d 1$ .
- example: entropy density  $s \sim T^{(d-\theta)/z}$ .
- ► Harris criterion:  $\langle \mathcal{O}(0)\mathcal{O}(x)\rangle \sim x^{-2\Delta}$ ; disorder relevant if

$$\Delta < \frac{d-\theta}{2} + z$$

#### Pomeranchuk Instability

• Pomeranchuk instability: Fermi surface distortion (d = 2)



▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

#### Pomeranchuk Instability

▶ Pomeranchuk instability: Fermi surface distortion (d = 2)

$$\phi \sim \sum_{\mathbf{k}} \left( \cos(ak_x) - \cos(ak_y) \right) c_{\mathbf{k}}^{\dagger} c_{-\mathbf{k}} \qquad \underbrace{\langle \phi \rangle = 0}_{\left( \mathbf{Z}_2 \right)} \qquad \underbrace{\langle \phi \rangle \neq 0}_{\left( \mathbf{Z}_2 \right)} \qquad \underbrace{\langle \phi \rangle = 0}_{\left( \mathbf{Z}_2 \right)} \qquad \underbrace{$$

 experiments: strange metal (critical?) and Ising-nematic order...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

#### Pomeranchuk Instability

▶ Pomeranchuk instability: Fermi surface distortion (d = 2)

$$\phi \sim \sum_{\mathbf{k}} \left( \cos(ak_x) - \cos(ak_y) \right) c_{\mathbf{k}}^{\dagger} c_{-\mathbf{k}} \qquad \underbrace{\langle \phi \rangle = 0}_{\mathbb{Z}_2} \qquad \underbrace{\langle \phi \rangle = 0}_{$$

- experiments: strange metal (critical?) and Ising-nematic order...
- ▶ Ising-nematic quantum critical point:

$$\mathcal{L} = -\frac{1}{2}(\partial\phi)^2 - \frac{r_{\rm c}}{2}\phi^2 - \frac{u}{24}\phi^4 + c^{\dagger}(\mathrm{i}\partial_t - \epsilon(\mathrm{i}\nabla))c - \lambda c^{\dagger}c(\partial_x^2 - \partial_y^2)\phi$$

Metlitski, Sachdev, Physical Review B82 075127 (2010)

#### Random Field Disorder

▶ what is electrical resistivity  $\rho_{dc}$  associated to (charged) electron c?

### Random Field Disorder

- ▶ what is electrical resistivity  $\rho_{dc}$  associated to (charged) electron c?
- ▶ "Boltzmann" transport (near-FS c scatter off  $\phi$ )

$$\rho_{\rm dc} \sim T^{4/3}.$$

### Random Field Disorder

- ▶ what is electrical resistivity  $\rho_{dc}$  associated to (charged) electron c?
- ▶ "Boltzmann" transport (near-FS c scatter off  $\phi$ )

$$\rho_{\rm dc} \sim T^{4/3}.$$

▶ two types of random-field disorder to add:

$$\mathcal{L}_{\rm dis} = -V(\mathbf{x})c^{\dagger}c - h(\mathbf{x})\phi$$

### Random Field Disorder

- ▶ what is electrical resistivity  $\rho_{dc}$  associated to (charged) electron c?
- ▶ "Boltzmann" transport (near-FS c scatter off  $\phi$ )

$$\rho_{\rm dc} \sim T^{4/3}.$$

▶ two types of random-field disorder to add:

$$\mathcal{L}_{\rm dis} = -V(\mathbf{x})c^{\dagger}c - h(\mathbf{x})\phi$$

 $\blacktriangleright$  random-fields *dominate transport* at low T:

$$\rho_{\rm dc} \sim \mathbb{E}[V^2] + \frac{\mathbb{E}[h^2]}{\sqrt{T\log(T^*/T)}} \longleftarrow \operatorname{calculation \ breaks}_{\rm down \ as \ T \to 0!}$$

Hartnoll, Mahajan, Punk, Sachdev, Physical Review B89 155130 (2014)

3

how to understand? strongly-coupled theory relaxes quickly to a "hydrodynamic" regime:

$$\partial_{\mu} \langle T^{\mu t} \rangle = 0, \quad \partial_{\mu} \langle T^{\mu i} \rangle = -\frac{1}{\tau} \langle T^{t i} \rangle.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

how to understand? strongly-coupled theory relaxes quickly to a "hydrodynamic" regime:

$$\partial_{\mu} \langle T^{\mu t} \rangle = 0, \quad \partial_{\mu} \langle T^{\mu i} \rangle = -\frac{1}{\tau} \langle T^{t i} \rangle.$$

 $\blacktriangleright$   $\tau$  dominated by fastest momentum-dissipating process

how to understand? strongly-coupled theory relaxes quickly to a "hydrodynamic" regime:

$$\partial_{\mu}\langle T^{\mu t}\rangle = 0, \quad \partial_{\mu}\langle T^{\mu i}\rangle = -\frac{1}{\tau}\langle T^{ti}\rangle.$$

- $\blacktriangleright \tau$  dominated by fastest momentum-dissipating process
- ►  $\tau$  also controls  $\rho_{dc} [P_{tot}^x, J_{tot}^x] \neq 0, \ \partial_\mu \langle J^\mu \rangle = 0 \implies same$ process controlling momentum loss controls  $\rho_{dc}$

how to understand? strongly-coupled theory relaxes quickly to a "hydrodynamic" regime:

$$\partial_{\mu} \langle T^{\mu t} \rangle = 0, \quad \partial_{\mu} \langle T^{\mu i} \rangle = -\frac{1}{\tau} \langle T^{t i} \rangle.$$

- $\blacktriangleright$   $\tau$  dominated by fastest momentum-dissipating process
- ►  $\tau$  also controls  $\rho_{dc} [P_{tot}^x, J_{tot}^x] \neq 0, \ \partial_\mu \langle J^\mu \rangle = 0 \implies same$ process controlling momentum loss controls  $\rho_{dc}$
- memory matrix formalism  $(\mathcal{L}_{dis} \sim g\mathcal{O}, g \sim \varepsilon)$ :

$$\rho_{\rm dc} \sim \varepsilon^2 \int d^2 \mathbf{k} \ k^2 {\rm Im} \frac{G^{\rm R}_{\mathcal{OO}}(\omega, \mathbf{k})}{\omega}$$

### A Massive Gravity Analogy

► holographic systems are fluid-like for low- $\omega$  transport computations

### A Massive Gravity Analogy

- $\blacktriangleright$  holographic systems are fluid-like for low- $\omega$  transport computations
- break translation symmetry by breaking some of the diffeomorphism symmetry in bulk (graviton mass)\*

### A Massive Gravity Analogy

- $\blacktriangleright$  holographic systems are fluid-like for low- $\omega$  transport computations
- break translation symmetry by breaking some of the diffeomorphism symmetry in bulk (graviton mass)\*
- in holography with graviton mass m, one finds that<sup>†</sup>

 $\tau \sim m^2$ .

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

### A Massive Gravity Analogy

- $\blacktriangleright$  holographic systems are fluid-like for low- $\omega$  transport computations
- break translation symmetry by breaking some of the diffeomorphism symmetry in bulk (graviton mass)\*
- in holography with graviton mass m, one finds that<sup>†</sup>

$$\tau \sim m^2$$
.

• computation of  $\rho_{dc}$ :°

$$\rho_{\rm dc} \sim \tau \sim m^2$$

 $m^2$  perturbatively computable for "holographic lattice" (holographic Higgs mechanism)

\* Vegh, arXiv:1301.0537

<sup>†</sup> Davison, *Physical Review* **D88** 086003 (2013)

° Blake, Tong, Vegh, Physical Review Letters 112 071602 (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (

### **Beyond Replicas**

• we start with finite charge density EMD geometry  $(g_{MN}, A_M, \Phi)$  for given  $z, \theta$ 

$$ds^{2} = \frac{L^{2}}{r^{2}} \left[ \frac{dr^{2}}{r^{2\theta/(d-\theta)}f} - \frac{fdt^{2}}{r^{2d(z-1)/(d-\theta)}} + d\mathbf{x}^{2} \right], \quad f = 1 - \left(\frac{r}{r_{\rm h}}\right)^{d+dz/(d-\theta)}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

#### **Beyond Replicas**

► we start with finite charge density EMD geometry  $(g_{MN}, A_M, \Phi)$  for given  $z, \theta$ 

$$\mathrm{d}s^{2} = \frac{L^{2}}{r^{2}} \left[ \frac{\mathrm{d}r^{2}}{r^{2\theta/(d-\theta)}f} - \frac{f\mathrm{d}t^{2}}{r^{2d(z-1)/(d-\theta)}} + \mathrm{d}\mathbf{x}^{2} \right], \quad f = 1 - \left(\frac{r}{r_{\mathrm{h}}}\right)^{d+dz/(d-\theta)}$$

► sanity check:  $r_{\rm h} \sim T^{-(1-\theta/d)/z}$ ;  $s \sim r_{\rm h}^{-d} \sim T^{(d-\theta)/z}$ .

#### **Beyond Replicas**

• we start with finite charge density EMD geometry  $(g_{MN}, A_M, \Phi)$  for given  $z, \theta$ 

$$ds^{2} = \frac{L^{2}}{r^{2}} \left[ \frac{dr^{2}}{r^{2\theta/(d-\theta)}f} - \frac{fdt^{2}}{r^{2d(z-1)/(d-\theta)}} + d\mathbf{x}^{2} \right], \quad f = 1 - \left(\frac{r}{r_{\rm h}}\right)^{d+dz/(d-\theta)}$$

- ► sanity check:  $r_{\rm h} \sim T^{-(1-\theta/d)/z}$ ;  $s \sim r_{\rm h}^{-d} \sim T^{(d-\theta)/z}$ .
- ► AdS/CFT dictionary: random-field disorder  $\iff$  random (scalar  $\psi$ ) field in bulk normalizable mode turned on:

$$\mathcal{L}_{\text{dis}} = g(\mathbf{k})\mathcal{O}(\mathbf{k}) \iff \psi(\mathbf{k}, r \to 0) \sim \underbrace{g(\mathbf{k})r^{\nu_{+}}}_{\text{relevant operator}} + \cdots$$

うして ふゆう ふほう ふほう ふしつ

#### **Beyond Replicas**

• we start with finite charge density EMD geometry  $(g_{MN}, A_M, \Phi)$  for given  $z, \theta$ 

$$ds^{2} = \frac{L^{2}}{r^{2}} \left[ \frac{dr^{2}}{r^{2\theta/(d-\theta)}f} - \frac{fdt^{2}}{r^{2d(z-1)/(d-\theta)}} + d\mathbf{x}^{2} \right], \quad f = 1 - \left(\frac{r}{r_{\rm h}}\right)^{d+dz/(d-\theta)}$$

- ► sanity check:  $r_{\rm h} \sim T^{-(1-\theta/d)/z}$ ;  $s \sim r_{\rm h}^{-d} \sim T^{(d-\theta)/z}$ .
- ► AdS/CFT dictionary: random-field disorder  $\iff$  random (scalar  $\psi$ ) field in bulk normalizable mode turned on:

$$\mathcal{L}_{\text{dis}} = g(\mathbf{k})\mathcal{O}(\mathbf{k}) \iff \psi(\mathbf{k}, r \to 0) \sim \underbrace{g(\mathbf{k})r^{\nu_{+}}}_{\text{relevant operator}} + \cdots$$

►  $g(\mathbf{k}) \sim \varepsilon$  "small enough"  $\implies$  background approx  $\psi$ -independent. ("memory matrix" regime)

Aside: Scalar Fields with  $\theta \neq 0$ 

▶ for this computation to work, "must" choose

$$S[\psi] = -\frac{1}{2} \int \mathrm{d}^{d+2}x \left(\frac{1}{2} \partial^M \psi \partial_M \psi + \frac{1}{2} B(\Phi) \psi^2\right)$$

with  $B(\Phi)\sim {\rm e}^{-\beta\Phi}$ 

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Aside: Scalar Fields with  $\theta \neq 0$ 

▶ for this computation to work, "must" choose

$$S[\psi] = -\frac{1}{2} \int \mathrm{d}^{d+2}x \left(\frac{1}{2} \partial^M \psi \partial_M \psi + \frac{1}{2} B(\Phi) \psi^2\right)$$

with  $B(\Phi) \sim e^{-\beta \Phi}$ 

► analogous story with usual AdS/CFT (mass  $\iff$  dimension):  $B(\Phi) \approx B_0 e^{-\beta \Phi}$ ,  $\beta$  fixed by  $z, \theta$ ;

$$4B_0 = \left(\frac{d(2\Delta - \theta)}{d - \theta} - d - \frac{dz}{d - \theta}\right)^2 - \left(d + \frac{dz}{d - \theta}\right)^2$$

with  $\Delta$  dimension of (relevant) operator dual to  $\psi$ .

Aside: Scalar Fields with  $\theta \neq 0$ 

▶ for this computation to work, "must" choose

$$S[\psi] = -\frac{1}{2} \int \mathrm{d}^{d+2}x \left(\frac{1}{2} \partial^M \psi \partial_M \psi + \frac{1}{2} B(\Phi) \psi^2\right)$$

with  $B(\Phi) \sim e^{-\beta \Phi}$ 

► analogous story with usual AdS/CFT (mass  $\iff$  dimension):  $B(\Phi) \approx B_0 e^{-\beta \Phi}$ ,  $\beta$  fixed by  $z, \theta$ ;

$$4B_0 = \left(\frac{d(2\Delta - \theta)}{d - \theta} - d - \frac{dz}{d - \theta}\right)^2 - \left(d + \frac{dz}{d - \theta}\right)^2$$

with  $\Delta$  dimension of (relevant) operator dual to  $\psi$ .

• if  $B(\Phi) = m^2$ , "AdS radius" L enters the boundary theory as a length scale in  $\psi$  correlation functions!

Computing the Resistivity

► AdS/CFT: electric field:  $\delta A_x e^{-i\omega t}$  ( $\omega \to 0$ ). electric current:  $\partial_r^{d-1} \delta A_x$ .

### Computing the Resistivity

- ► AdS/CFT: electric field:  $\delta A_x e^{-i\omega t}$  ( $\omega \to 0$ ). electric current:  $\partial_r^{d-1} \delta A_x$ .
- ▶ linearized fluctuations couple to all spin 1 modes:

 $\delta A_x, \quad \delta g_{tx}, \quad \partial_x \delta \psi, \ \partial^2 \partial_x \delta \psi, \ \partial^2 \partial^2 \partial_x \delta \psi, \cdots$ 

### Computing the Resistivity

- ► AdS/CFT: electric field:  $\delta A_x e^{-i\omega t}$  ( $\omega \to 0$ ). electric current:  $\partial_r^{d-1} \delta A_x$ .
- ▶ linearized fluctuations couple to all spin 1 modes:

 $\delta A_x, \quad \delta g_{tx}, \quad \partial_x \delta \psi, \ \partial^2 \partial_x \delta \psi, \ \partial^2 \partial^2 \partial_x \delta \psi, \cdots$ 

▶ for computation of  $\rho$  ( $\omega = 0$  only), only 3 modes couple!

### Computing the Resistivity

- ► AdS/CFT: electric field:  $\delta A_x e^{-i\omega t}$  ( $\omega \to 0$ ). electric current:  $\partial_r^{d-1} \delta A_x$ .
- ▶ linearized fluctuations couple to all spin 1 modes:

 $\delta A_x, \quad \delta g_{tx}, \quad \partial_x \delta \psi, \ \partial^2 \partial_x \delta \psi, \ \partial^2 \partial^2 \partial_x \delta \psi, \cdots$ 

- ▶ for computation of  $\rho$  ( $\omega = 0$  only), only 3 modes couple!
- ▶ graviton mass a sum of each mode contribution:

$$\rho_{\rm dc} \sim sm^2, \quad m^2 \sim \int \mathrm{d}^d \mathbf{k} \, \mathbf{k}^2 \psi(\mathbf{k}, r_{\rm h})^2$$

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

### Computing the Resistivity

- ► AdS/CFT: electric field:  $\delta A_x e^{-i\omega t}$  ( $\omega \to 0$ ). electric current:  $\partial_r^{d-1} \delta A_x$ .
- ▶ linearized fluctuations couple to all spin 1 modes:

 $\delta A_x, \quad \delta g_{tx}, \quad \partial_x \delta \psi, \ \partial^2 \partial_x \delta \psi, \ \partial^2 \partial^2 \partial_x \delta \psi, \cdots$ 

- ▶ for computation of  $\rho$  ( $\omega = 0$  only), only 3 modes couple!
- ▶ graviton mass a sum of each mode contribution:

$$\rho_{\rm dc} \sim sm^2, \quad m^2 \sim \int d^d \mathbf{k} \, \mathbf{k}^2 \psi(\mathbf{k}, r_{\rm h})^2$$

- given  $\rho_{dc}$ , coefficients  $\bar{\kappa}_{dc}$ ,  $\alpha_{dc}$  straightforward to obtain\*
- \* Amoretti, Braggio, Maggiore, Magnoli, Musso, arXiv:1407.0306

### A Hairy Black Hole

mode by mode solution: modes are modified Bessel functions:

$$\psi \sim r^{\#} \quad (r \ll k^{1-\theta/d}), \quad \psi \sim \exp[-kr^{d/(d-\theta)}] \quad (r \gg k^{1-\theta/d})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

### A Hairy Black Hole

mode by mode solution: modes are modified Bessel functions:

$$\psi \sim r^{\#} \quad (r \ll k^{1-\theta/d}), \quad \psi \sim \exp[-kr^{d/(d-\theta)}] \quad (r \gg k^{1-\theta/d})$$

► horizon imprinted with disorder:  $l_{\text{hair}} \sim T^{-1/z}$ : (tracks modes that effectively scatter momentum!)



"random Fourier" cartoon

### A Hairy Black Hole

mode by mode solution: modes are modified Bessel functions:

$$\psi \sim r^{\#} \quad (r \ll k^{1-\theta/d}), \quad \psi \sim \exp[-kr^{d/(d-\theta)}] \quad (r \gg k^{1-\theta/d})$$

► horizon imprinted with disorder:  $l_{\text{hair}} \sim T^{-1/z}$ : (tracks modes that effectively scatter momentum!)



► similar logic valid even when horizon non-perturbative?

э

### The Answer

• "only momenta  $k < T^{1/z}$  contribute" to  $m^2$ :

$$\rho_{\rm dc} \sim \varepsilon^2 T^{2(1+\Delta-z)/z} \sim \varepsilon^2 T^{(d-z+\eta)/z}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

### The Answer

• "only momenta 
$$k < T^{1/z}$$
 contribute" to  $m^2$ :

$$\rho_{\rm dc} \sim \varepsilon^2 T^{2(1+\Delta-z)/z} \sim \varepsilon^2 T^{(d-z+\eta)/z}$$

# ▶ this scaling also found (easier) with memory matrix

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

#### The Answer

• "only momenta 
$$k < T^{1/z}$$
 contribute" to  $m^2$ :

$$\rho_{\rm dc} \sim \varepsilon^2 T^{2(1+\Delta-z)/z} \sim \varepsilon^2 T^{(d-z+\eta)/z}$$

- ▶ this scaling also found (easier) with memory matrix
- holographic advantage: breakdown of perturbation theory/memory matrix when ψ backreacts on geometry:

$$T \lesssim T_{\rm c}, \quad T_{\rm c} \sim \varepsilon^{(z-\Delta+(d-\theta)/2)/z}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

#### The Answer

• "only momenta 
$$k < T^{1/z}$$
 contribute" to  $m^2$ :

$$\rho_{\rm dc} \sim \varepsilon^2 T^{2(1+\Delta-z)/z} \sim \varepsilon^2 T^{(d-z+\eta)/z}$$

- ▶ this scaling also found (easier) with memory matrix
- holographic advantage: breakdown of perturbation theory/memory matrix when ψ backreacts on geometry:

$$T \lesssim T_{\rm c}, \quad T_{\rm c} \sim \varepsilon^{(z-\Delta+(d-\theta)/2)/z}$$

 $\blacktriangleright$  at this breakdown we find  $\rho_{\rm dc} \sim T^{(d+2-\theta)/z} \sim T^{2/z} s$ 

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

#### The Answer

• "only momenta 
$$k < T^{1/z}$$
 contribute" to  $m^2$ :

$$\rho_{\rm dc} \sim \varepsilon^2 T^{2(1+\Delta-z)/z} \sim \varepsilon^2 T^{(d-z+\eta)/z}$$

- ▶ this scaling also found (easier) with memory matrix
- holographic advantage: breakdown of perturbation theory/memory matrix when  $\psi$  backreacts on geometry:

$$T \lesssim T_{\rm c}, \quad T_{\rm c} \sim \varepsilon^{(z-\Delta+(d-\theta)/2)/z}$$

- ▶ at this breakdown we find  $\rho_{\rm dc} \sim T^{(d+2-\theta)/z} \sim T^{2/z}s$
- $\rho_{\rm dc} \sim s$  for random-field disorder coupled to  $T^{tt}$ .\*

### The Answer

• "only momenta 
$$k < T^{1/z}$$
 contribute" to  $m^2$ :

$$\rho_{\rm dc} \sim \varepsilon^2 T^{2(1+\Delta-z)/z} \sim \varepsilon^2 T^{(d-z+\eta)/z}$$

- ▶ this scaling also found (easier) with memory matrix
- ► holographic advantage: breakdown of perturbation theory/memory matrix when  $\psi$  backreacts on geometry:

$$T \lesssim T_{\rm c}, \quad T_{\rm c} \sim \varepsilon^{(z-\Delta+(d-\theta)/2)/z}$$

- $\blacktriangleright$  at this breakdown we find  $\rho_{\rm dc} \sim T^{(d+2-\theta)/z} \sim T^{2/z} s$
- $\rho_{\rm dc} \sim s$  for random-field disorder coupled to  $T^{tt}$ .\*
- generically scalar RF disorder has more singular contribution
- \* Davison, Schalm, Zaanen, Physical Review B89 245116, (2014)

#### Nonperturbative Numerics

numerics have recently been performed on (T = 0) disordered horizons with marginal scalars: plot of  $\psi(\mathbf{x}, r_{\rm h})$ :



Hartnoll, Santos, Physical Review Letters 112 231601 (2014)



▶ random-field disorder (almost certainly) present in experiments on strange metal phases

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・



- ► random-field disorder (almost certainly) present in experiments on strange metal phases
- ▶ most efficient mechanism (known) for losing momentum

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・



- ► random-field disorder (almost certainly) present in experiments on strange metal phases
- ▶ most efficient mechanism (known) for losing momentum
- ▶ elegant holographic implementation: dirty black holes

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ



- ► random-field disorder (almost certainly) present in experiments on strange metal phases
- ▶ most efficient mechanism (known) for losing momentum
- ▶ elegant holographic implementation: dirty black holes
- ► scale-invariant holography with  $\theta \neq 0$ : dilaton couplings to new fields for scale-invariant QFT!

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

- ► random-field disorder (almost certainly) present in experiments on strange metal phases
- ▶ most efficient mechanism (known) for losing momentum
- ▶ elegant holographic implementation: dirty black holes
- ► scale-invariant holography with  $\theta \neq 0$ : dilaton couplings to new fields for scale-invariant QFT!
- ▶ in progress: "easy" interpolating AdS→HV geometry at all T for (almost all) z, θ; holographic check of

