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dimensions):

H=th+ [dx0@sg0 .

linear coupling of disorder

Elg(x)] =0, Elgx)g(y)] =ed(x—y).
disorder averages: E[---].

» suppose Hy invariant under Zy symmetry, O — —QO. Zg is
locally, not globally, broken

» defects act as random-fields in the solid-state lab:

missing atom ~ _ .-~ wrong atom
St
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Reviews

The Harris Criterion at Any z, 0

» most general scale invariant isotropic theory: characterized
by z, 0.

» dynamical exponent z:

t ~ 2%

» hyperscaling violation exponent #: degrees of freedom
“live in” d.g = d — 6 spatial dimensions.
» Fermi surface: § =d — 1.
» example: entropy density s ~ T(@=0)/z,
» Harris criterion: (O(0)O(z)) ~ z~24; disorder relevant if

A<dT_9-|-z
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Pomeranchuk Instability

» Pomeranchuk instability: Fermi surface distortion (d

(p) =0

k

¢~ Z (cos(aky) — cos(aky)) (,‘L(i,k

order...

» experiments: strange metal (critical?) and Ising-nematic

» Ising-nematic quantum critical point:

1 c . .
L=—5(09)° = 56" — 726"+l (10, — e(iV))e — Acle(d] - 9})e
Metlitski, Sachdev, Physical Review B82 075127 (2010)..

=



Ising-Nematic Quantum Critical Point

Random Field Disorder

electron c¢?

» what is electrical resistivity pg. associated to (charged)




Ising-Nematic Quantum Critical Point

Random Field Disorder

electron c¢?

» what is electrical resistivity pg. associated to (charged)

» “Boltzmann” transport (near-FS ¢ scatter off ¢)

Pdc ™~ T4/3 .




Ising-Nematic Quantum Critical Point

Random Field Disorder

electron c¢?

» what is electrical resistivity pg. associated to (charged)

» “Boltzmann” transport (near-FS ¢ scatter off ¢)

Pdc ™~ T4/3 .

» two types of random-field disorder to add:

Lais = —V(x)cle — h(x)¢




Ising-Nematic Quantum Critical Point

Random Field Disorder

» what is electrical resistivity pg. associated to (charged)
electron c?
» “Boltzmann” transport (near-FS ¢ scatter off ¢)

Pdc ™~ T4/3 .

» two types of random-field disorder to add:
Lais = =V (x)cle — h(x)¢
» random-fields dominate transport at low T

E [h2] calculation breaks
—

~EV?] o ——
Pde [ ] + T]og(T*/T) down as T — 0!

Hartnoll, Mahajan, Punk, Sachdev, Physical Review B89 155130 (2014)



(Almost) Hydrodynamics and Memory Matrices

» how to understand? strongly-coupled theory relaxes
quickly to a “hydrodynamic” regime:

Bu(TH) =0, Bu{TH) = — (1",




(Almost) Hydrodynamics and Memory Matrices

» how to understand? strongly-coupled theory relaxes
quickly to a “hydrodynamic” regime:

Bu(TH) =0, Bu{TH) = — (1",

» 7 dominated by fastest momentum-dissipating process




(Almost) Hydrodynamics and Memory Matrices

» how to understand? strongly-coupled theory relaxes
quickly to a “hydrodynamic” regime:

Bu(TH) =0, B, (T = ("),

» 7 dominated by fastest momentum-dissipating process
» 7 also controls pqc

[P, Jiog] #0, 0u(JH) =0 = same
process controlling momentum loss controls pgc




Momentum Loss

(Almost) Hydrodynamics and Memory Matrices

v

how to understand? strongly-coupled theory relaxes
quickly to a “hydrodynamic” regime:

Bu(TH) =0, B, (T = ("),

v

7 dominated by fastest momentum-dissipating process

v

7 also controls pac — [P, Jio) # 0, 0u(J#) =0 = same
process controlling momentum loss controls pgc

» memory matrix formalism (Lgis ~ gO, g ~ ¢€):

G} k
pdc ~ € / d%k kZIm%
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Momentum Loss

A Massive Gravity Analogy

» holographic systems are fluid-like for low-w transport
computations

» break translation symmetry by breaking some of the
diffeomorphism symmetry in bulk (graviton mass)*

» in holography with graviton mass m, one finds that!

TNm2.

» computation of pgc:°

Pdc ~ T ~ m?
m? perturbatively computable for “holographic lattice”
(holographic Higgs mechanism)

* Vegh, arXiv:1301.0537
t Davison, Physical Review D88 086003 (2013)
° Blake, Tong, Vegh, Physical Review Letters 112 071602 (2014)
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Beyond Replicas

» we start with finite charge density EMD geometry
(9mn, Arr, @) for given z,0

L? dr? fdt?
2
ds® = o) {

720/(d=0) f ~ y2d(=—1)/(d—06)

r d+dz/(d—0)
+ dX2:| s f = 1— (7)

Th
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» we start with finite charge density EMD geometry
(9mn, Arr, @) for given z,0

2 2 5
d32:£{ dr Jdi +dx2], f:l—(r

d+dz/(d—0)
P2 | r20/(d=60)f  p2d(z=1)/(d-0) E)
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2 2 2
d82=£[ & fdt +dx2], f:1_<L

>d+dz/(d0)
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» AdS/CFT dictionary: random-field disorder <= random
(scalar v) field in bulk — normalizable mode turned on:

Las = 9(k)O(k) <= ¢k, 7 —0)~ gk)yr™+ +--

relevant operator



Disordered Holography

Beyond Replicas

» we start with finite charge density EMD geometry
(9mnN, A, @) for given 2,0

FYETE il R RN (G ] I SR d-+dz/(d—0)
o2 rzo/(d—e)f r2d(z—1)/(d—0) ) - Th

> sanity check: 7, ~ T—-(1=0/d)/2; 5 pd o T(A=0)/2,

» AdS/CFT dictionary: random-field disorder <= random
(scalar v) field in bulk — normalizable mode turned on:

Las = 9(k)O(k) <= ¢k, 7 —0)~ gk)yr™+ +--

relevant operator

» g(k) ~ ¢ “small enough” = background approx
y-independent. (“memory matrix” regime)
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Aside: Scalar Fields with 6 # 0

» for this computation to work, “must” choose
d+2,, L om 1 2

with B(®) ~ e F®
» analogous story with usual AdS/CFT (mass <=
dimension): B(®) ~ Boe ?®, j fixed by z, 6;

_[d(2A - 0) dz \? dz \?
430_( d—0 _d_d—0> _(d+d—9)

with A dimension of (relevant) operator dual to ).

» if B(®) = m?, “AdS radius” L enters the boundary theory
as a length scale in v correlation functions!
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Disordered Holography

Computing the Resistivity

» AdS/CFT: electric field: §A,e ! (w — 0).
electric current: 9415 A,.

» linearized fluctuations couple to all spin 1 modes:

5A$7 (5915307 8:061/}7 828@‘5¢7 82628@‘51/)7 e

» for computation of p (w = 0 only), only 3 modes couple!

» graviton mass a sum of each mode contribution:

pac s, [ @tk i (in,)?

*

> given pqc, coefficients Rqc, age straightforward to obtain

* Amoretti, Braggio, Maggiore, Magnoli, Musso, arXiv:1407.0306
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Disordered Holography

A Hairy Black Hole

» mode by mode solution: modes are modified Bessel
functions:

b~ (1< K)o exp[—kr®/ @0 (> g10/d)

» horizon imprinted with disorder: [y, ~ T~Y/%:
(tracks modes that effectively scatter momentum!)

- 1
ky < TV? ky > TV “random Fourier” cartoon

Q/\/ I Ihair

ey (1=0/0) m
S

» similar logic valid even when horizon non-perturbative?

T

T-(1-0/d)/=
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Disordered Holography

The Answer

» “only momenta k < T/* contribute” to m?2:

Pde ~ 62{1-v2(1—|-A—z)/z ~ 82T(d—z+77)/z

v

this scaling also found (easier) with memory matrix

v

holographic advantage: breakdown of perturbation
theory/memory matrix when 1 backreacts on geometry:

T 5 TC7 TC ~ 6(Z—A-i—(d—e)/Q)/z

v

at this breakdown we find pge ~ T(42-0)/2  T2/%5
pde ~ s for random-field disorder coupled to T .*

v



Disordered Holography

The Answer

» “only momenta k < T/* contribute” to m?2:

Pde ~ 62{1-v2(1—|-A—z)/z ~ €2T(d—z+7])/z

» this scaling also found (easier) with memory matrix

> holographic advantage: breakdown of perturbation
theory/memory matrix when 1 backreacts on geometry:

T 5 TC7 Tc ~ 6(Z—A-i-(d—e)/Q)/z

» at this breakdown we find pge ~ T(@+2-0)/2  T2/%4
> pdc ~ s for random-field disorder coupled to T .*

» generically scalar RF disorder has more singular
contribution
* Davison, Schalm, Zaanen, Physical Review B89 245116 (2014)



Disordered Holography
Nonperturbative Numerics

numerics have recently been performed on (7" = 0) disordered
horizons with marginal scalars: plot of ¥ (x,m,):

Hartnoll, Santos, Physical Review Letters 112 231601 (2014)

[m]
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Summary

» random-field disorder (almost certainly) present in
experiments on strange metal phases

» most efficient mechanism (known) for losing momentum

» elegant holographic implementation: dirty black holes

» scale-invariant holography with 6 # 0: dilaton couplings to
new fields for scale-invariant QFT!

» in progress: “easy” Pde
interpolating AdS—HV
geometry at all T' for (almost
all) z, 0; holographic check of

HV AdS
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