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Holographic tools provide a powerful framework for investigating 
strongly coupled systems, in a large N limit, using weakly coupled 
theories of gravity

Examples
• Superconducting phases - with s,p and d-wave order

• Spatially modulated phases - stripes, helices, checkerboards,...

• New ground states - Lifshitz, Schrodinger, hyperscaling violating, ...            

Make contact with real systems?

Greatly enriched our understanding of holography and of 
black holes in AdS spacetime



Metal - Insulator transition

Dramatic reorganisation of degrees of freedom

Furthermore, seen in strongly coupled context in Nature

How can we realise them holographically?
[Hartnoll, Donos]   
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Arises when momentum is nearly conserved

[Hartnoll,Hofman]   
In some situations can be studied perturbatively 
using “memory matrix” formalism

• Drude physics doesn’t require quasi-particles

• There are also “incoherent” metals without Drude peaks

• Insulators with �DC = 0

Holographically we will realise coherent, incoherent metals, 
insulators and transitions between them.



Interaction driven and strongly coupled



Holographic CFTs at finite charge density

 Focus on d=3 CFT and consider D=4 Einstein-Maxwell theory:

Admits              vacuum solutionAdS4 d=3 CFT with
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 UV: IR:

d=3 CFT

CFT at finite T and chemical potential      - described by the  
electrically charged AdS-Reissner-Nordstrom black hole
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r ! 1r ! r+
Black hole horizon 
topology       and temp R2 T



)
The AdS-RN black hole describes holographic matter at finite 
charge density that is  translationally invariant          
momentum conserved

At T=0 AdS-RN black hole interpolates between 

AdS4AdS2 ⇥ R2

 UV IR

Interpretation: at T=0 a locally quantum critical ground state 
appears



Electrical conductivity calculation
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Electrical conductivity calculation
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Electrical conductivity calculation
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Infinite DC conductivity arises because translation invariance 
implies there is no momentum dissipation: Drude physics

! ⇠ 0near 



Holographic Lattices and metals

E.g. Spatially dependent           

To realise more realistic metals and/or insulators we want to 
construct charged black holes that explicitly break translations 
using a deformation of the CFT

E.g.  Couple a D=4 bulk scalar field     ,  dual to operator       in 
the CFT with dimension     .   Deform CFT by           :

µ(x)

At the             boundary, impose:AdS4

� O
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At(r, x) = µ(x) +
q(x)
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A few examples of periodic, monochromatic lattices in one spatial 
dimension have been studied

Need to solve PDEs to get these D=4 black holes

[Horowitz, Santos,Tong]   

Q-lattices: simplified construction with ODEs. Find some 
agreement and some differences with                                        
as well as many new results

µ(x) = µ0 +A cos(kx)

[Chesler,Lucas,Sachdev]   (Case when                                              )µ0 = 0

�(x) = � cos(kx)

[Horowitz, Santos,Tong]   

Also: revisited            case  - see talk by µ(x) Donos   



Plan

• Calculation of thermoelectric DC conductivity         ,        ,                       
in terms of black hole horizon data   

• Q-lattices can give coherent metals, incoherent metals and 
insulators and transitions between them.

• Holographic Q-lattices  - solve ODEs

⌘ =
s

4⇡
(For           c.f. [Iqbal,Liu][Davison][Blake,Tong,Vegh][Andrade,Withers] )

�DC

Analogous to                   [Policastro,Kovtun,Son,Starinets] 

(D=5 helical lattices [Donos,Hartnoll][Donos,Gouteraux,Kiritsis])

↵DC ̄DC

�DC

Find some interesting general results eg a bound on L̄ ⌘ ̄/(�T )



Holographic Q-lattices 

• Choose                  so that we have an            vacuum and

that AdS-RN is a solution at

• Particularly interested in cases where      is periodic.                 

AdS4
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• The model has a gauge           and a global           symmetry U(1) U(1)

Exploit the global bulk symmetry to break translations

eg if it is the phase of a complex scalar field                                 

• Illustrative D=4 model 

Analysis also covers cases when      is not periodic e.g. �
with                                 

� = 0

[Azeneyagi,Takayanagi,Li][Mateos,Trancanelli][Andrade,Withers]



Homogeneous and anisotropic and periodic holographic lattices

Ansatz for fields

U = r2 + . . . ,

a = µ+
q

r
. . . ,

UV expansion:

e2V1 = r2 + . . . e2V2 = r2 + . . .
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+ . . .

UV data: T/µ �/µ3�� k/µ

IR expansion: regular black hole horizon
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• Reminiscent of  Coleman’s construction of Q-balls

• Various generalisations possible by allowing for more general 
global symmetries e.g. we can have two global U(1)s and two 
fields        allowing for breaking more translations�i

�1 = k1x �2 = k2y

Isotropic if k1 = k2



Analytic result for DC in terms of horizon data
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Generalised Ohm/Fourier Law:

For Q-lattice black holes the DC matrices                     diagonal

Qa = T ta � µJa

Ja Electric current

Heat current

Apply electric fields and thermal gradients and find linear 
response

�,↵, ↵̄, ̄



Switch on constant electric field perturbation
A
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Switch on constant electric field perturbation
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Gauge equation of motion: 
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• Calculating       and 
Consider a source for electric and heat currents

↵ ̄

A
x

= t�f1(r) + �a
x

(r)

Similar steps, with a subtlety that there is both a 
static and a linear in time-dependent heat current

Static piece: conductivity

Time dependent piece: static susceptibility 

G
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“Pair evolution” term. Given by
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Second term “Dissipation” term

Different ground states can be dominated by first or second term
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• Some general results

̄

↵
= �Ts

q

L̄ ⌘ ̄

�T
 s2

q2

Bound is saturated for dissipation 
dominated systems

 Define thermal conductivity at zero current
 = ̄� ↵↵̄T/�

For dissipation dominated T=0 ground states      and     can 
have different low temperature scaling (n.b.             for FL)

 ̄
 = ̄

c.f. Wiedemann-Franz Law.  
• 

• 

Complementary result using memory 
matrix [Mahajan,Barkeshli,Hartnoll]   



UV data

IR fixed point

Coherent metal phases

T=0
AdS-RN

At T=0 the black holes approach                           in the IRAdS2 ⇥ R2

[Hartnoll, Hoffman]

Always have                but  ⇠ T ̄ ! 0,1

� ⇠ T 2�2�(kIR)

AdS2 ⇥ R2

perturbed by irrelevant operator with

and̄ ⇠ T 3�2�(kIR)

Note:         depends on RG flowkIR

�/µk/µ

Low T DC conductivity is dissipation dominated:

�(kIR) � 1
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Intermediate scaling?

|�(!)| = B

!2/3
+ C

[Horowitz,Santos,Tong]   
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Insulating phases

AdS2 ⇥ R2

UV data



Insulating phases

AdS2 ⇥ R2New

UV data



Insulating phases

AdS2 ⇥ R2New
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Spectral weight is being transferred, consistent with sum rule

What are the T=0 insulating ground states??

Focus on specific models (see also [Gouteraux])
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New Insulating and Metallic ground states - Anisotropic

Focus on models and T=0 ground states which are solutions 
with r ! 0

and  

as   
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New Insulating and Metallic ground states - Anisotropic

Focus on models and T=0 ground states which are solutions 
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• Calculate AC conductivity

Obtained using a matching argument [Faulkner,Liu,McGreevy,Vegh] 
with ground state correlators at T=0.  Valid: T << ! << µ

• Calculate DC conductivity using analytic formula

For                  the scaling is obtained from the IR fixed point 
solutions 

T << µ

In these models we have                 
(as we have for the                       coherent metals)

b = c

�AC ⇠ !c(�)

�DC ⇠ T b(�)

AdS2 ⇥ R2



Have new type of insulating ground statesb = c > 0

b = c = 0
Novel metallic ground states  with 
finite conductivity at T=0

b = c < 0 Have new type of incoherent metallic 
ground states not associated with Drude 
physics

�DC ⇠ T b(�) �AC ⇠ !c(�)

Metallic ground states are all thermal insulators: 

Both terms in            scale in the same way

T << ! << µT << µ

, ̄ ! 0

�DC



Insulators Metals

�DC ⇠ T b

b

�

New Insulating and Metallic ground states - Isotropic 
Models with �1 = kx

�2 = kyand

(“pair evolution” dominated)
q = 0



Insulators Metals

�DC ⇠ T b

b

�

New Insulating and Metallic ground states - Isotropic 
Models with �1 = kx

�2 = kyand

�1

�AC ⇠ !c

c

Reappearance of sharp peaks not related to 
the charge density and Drude physics

All have , ̄ ! 0

(“pair evolution” dominated)
q = 0



• Holographic Q-lattices are simple and illuminating

• Coherent metallic phases with Drude peaks

• Analytic result for DC conductivity in terms of horizon data.

Summary

• Also find novel metallic  (          )  and insulating ground states

• No intermediate 2/3 scaling in AC conductivity

Metal-Insulator and Metal-Metal transitions

Absent in another recent example [Taylor,Woodhead]

L̄ ⌘ ̄/(�T )Bound on 

Can be “pair evolution” dominated metal ground states
with q = 0

 ! 0



• Construct them directly

Alternatives

• Lattices are a good way to look for new holographic 
ground states

• Find the ground states of holographic phases that 
spontaneously break symmetries



• Analytic results for DC conductivity

 Key results for Inhomogeneous lattices 

• Bound on 

µ(x)

L̄ ⌘ ̄/(�T )

• High temperature behaviour
� ! 1 +

(
R
µ)2R

µ2 � (
R
µ)2

� 1

Like Mott-Ioffe-Regel bound?

• No intermediate scaling for |�(!)|

• As               black holes approach                      in the IR T ! 0 AdS2 ⇥ R2

No exotic “floppy” ground states seen by

Like Mott-Ioffe-Regel bound?

Donos Talk @ 7:30 pm Friday! 

[Hartnoll,Santos] 


