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Holographic tools provide a powerful framework for investigating
strongly coupled systems, in a large N limit, using weakly coupled
theories of gravity

[Make contact with real systems!? ]

Greatly enriched our understanding of holography and of
black holes in AdS spacetime

Examples
e Superconducting phases - with s,p and d-wave order

* Spatially modulated phases - stripes, helices, checkerboards,...

* New ground states - Lifshitz, Schrodinger, hyperscaling violating, ...



Metal - Insulator transition

Dramatic reorganisation of degrees of freedom

Furthermore, seen in strongly coupled context in Nature

How can we realise them holographically?



Drude Model of transport in a metal
e.g. quasi-particles and no interactions
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* Drude physics doesn’t require quasi-particles

Arises when momentum is nearly conserved

In some situations can be studied perturbatively
using “memory matrix’’ formalism

* There are also “incoherent” metals without Drude peaks

* Insulators with opc =0

Holographically we will realise coherent, incoherent metals,
insulators and transitions between them.
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Interaction driven and strongly coupled



Holographic CFTs at finite charge density

Focus on d=3 CFT and consider D=4 Einstein-Maxwell theory:

S:/d4x\/fg[R+6—iF2+...}

Admits AdSs vacuum solution o d=3 CFT with

e global U(I)
ds® = —r?dt* | | rz(de + dy2)

2
A=0

Holographic dictionary
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CFT at finite T and chemical potential /# - described by the
electrically charged AdS-Reissner-Nordstrom black hole

d=3 CFT
A
IR: 7 — 7y UV: 7 — o0

Black hole horizon
topology R“ and temp T' < AdSy




At T=0 AdS-RN black hole interpolates between

IR uv
AdS; x R® <« AdS,

Interpretation: at T=0 a locally quantum critical ground state
appears

The AdS-RN black hole describes holographic matter at finite
charge density that is translationally invariant =
momentum conserved




Electrical conductivity calculation
0A, = e "“lay(r)

5gta: — e_iwthtx (T)




Electrical conductivity calculation

514:1: _ e—iwtax(r) O'(w) — —1 N

0Gty = e_iwthtx (1)
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Electrical conductivity calculation

5A$ _ e_iwtax(fl") a(w) — —1 N

0Gty = e_iwtht:v (1)
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More precisely o(w) ~ d(w) + é near w ~ ()

Infinite DC conductivity arises because translation invariance
implies there is no momentum dissipation: Drude physics



Holographic Lattices and metals

To realise more realistic metals and/or insulators we want to

construct charged black holes that explicitly break translations
using a deformation of the CFT

E.g. Spatially dependent ()
At the AdS,; boundary, impose:

Ai(r,z) = p(x) a(z) -

r

E.e. Couple a D=4 bulk scalar field ¢, dual to operator ( in
the CFT with dimension A . Deform CFT by O(xz) :

¢(r,z) ~ :\3(;{12 -




A few examples of periodic, monochromatic lattices in one spatial
dimension have been studied

u(x) = po + Acos(kx)
(Case when (o =0 )

AMx) = Acos(kx)

[ Need to solve PDEs to get these D=4 black holes ]

Q-lattices: simplified construction with ODEs. Find some
agreement and some differences with
as well as many new results

Also: revisited u(z) case - see talk by



Plan

* Holographic Q-lattices - solve ODEs
(D=5 helical lattices )

e Calculation of thermoelectric DC conductivity opc,apc, Kpc

in terms of black hole horizon data

S

Analogous to 7] = e

(Foropc c.f. )

Find some interesting general results eg a boundon L = k/(cT)

e Q-lattices can give coherent metals, incoherent metals and
insulators and transitions between them.



Holographic Q-lattices

¢ |llustrative D=4 model

Z(9)
4

L=R— [(00) +B(6)(0x)] + V(9) ~

* Choose @ V, 7 so that we have an AdS,; vacuum and

that AdS-RN is a solution at ¢ = 0

* Particularly interested in cases where X is periodic.

eg if it is the phase of a complex scalar field ¢ = pe'X
with & = ¢

Analysis also covers cases when X is not periodic e.g.

* The model has a gauge /(1) and a global U(1) symmetry
Exploit the global bulk symmetry to break translations



Ansatz for fields

ds? = —Udt?> + U tdr? + 2V dx? 4 &2V~ dy?
A =a(r)dt
(x=ka1, | ¢=o(r)

UV expansion:

2
U=r e eV =% V2 =%

q
a:M—i_;’ ¢:T3—A ™ e ..

IR expansion: regular black hole horizon

Homogeneous and anisotropic and periodic holographic lattices

UVdat: T/p AptTA k)




e Reminiscent of Coleman’s construction of Q-balls

* Various generalisations possible by allowing for more general
global symmetries e.g. we can have two global U(l)s and two
fields X: allowing for breaking more translations

X1=Fkixz  x2=kay
Isotropic if ki = ko



Analytic result for DC in terms of horizon data

Apply electric fields and thermal gradients and find linear
response

Generalised Ohm/Fourier Law:

(ZzHé’T g)(—(vér)/T)

J Electric current

Q=T — ;J° Heat current

For Q-lattice black holes the DC matrices o,a,a,x diagonal



e Calculating ¢ and «

Switch on constant electric field perturbation
A, = —FEt+ da,(r)

supplemented with 0¢:.(r) 9grz(7)  dx(r)

Gauge equation of motion:
VAZ@F™) =0 = 0,(J=gZ($)F"™") =0
[ J = —eVQ_VlZ(@Uda; + qge V154, ]

Use Einstein equations and regularity at the black hole
horizon to relate J and £ toget o



e Calculating ¢ and «

Switch on constant electric field perturbation
A, = —FEt+ da,(r)

supplemented with 0¢:.(r) 9grz(7)  dx(r)

Gauge equation of motion:
VAZ@F™) =0 = 0,(J=gZ($)F"™") =0
[ J = —evrvlZ(¢)U5a;j + qge V154, ]

Use Einstein equations and regularity at the black hole
horizon to relate J and £ toget o

Perturbed metric has a timelike Killing vector k"
v
G =VHE" 4 ... = VvV, GM" = —§k“

Similar steps thenrelate () and F toget &



e Calculating v and K

Consider a source for electric and heat currents

Gtz = t0 f2(7) + 09tz (7)
A, =tdf1(r) + dag(r)

Similar steps, with a subtlety that there is both a
static and a linear in time-dependent heat current

Static piece: conductivity

Time dependent piece: static susceptibility

Goow=0)=T1T""

Note: GQJ(CU:O):GJJ(LU:O):O
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“Pair evolution” term. Given by (J/E)g—¢ =0 — o’k 'T
Second term “Dissipation” term

Different ground states can be dominated by first or second term



* Some general results

Define thermal conductivity at zero current
k=k—adl /o

For dissipation dominated T=0 ground states x and K can
have different low temperature scaling (n.b. K = £ for FL)

f = 2 Bound is saturated for dissipation
o | [ = T < — dominated systems
o
- T c.f.Wiedemann-Franz Law.

Complementary result using memory
matrix




Coherent metal phases |y data o
k/uw A/

T=0

«—— AdS-RN

IR fixed point AdSs x R?
At T=0 the black holes approach  AdS, x R* inthelR

perturbed by irrelevant operator with A(k;r) > 1

Note: k;r depends on RG flow

Low T DC conductivity is dissipation dominated: o ~ 7228 (k1R)

Always have Kk ~ 1" but K ~ 73-28kr) and K — 0,00



Drude peaks at finite T

60MR6(0)] - — T/u=0.100
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Similar to what was seen for different
lattices in [Horowitz,Santos, Tong]



Wavenumber (cm™)

Intermediate scaling? 100 1000
[Horowitz,Santos, Tong] =0 : ~ e
O Y 200 K
o(w)| = 2/3 +C < %, 260 K
g b N 09998900
Reminiscent of cuprates oo e zce®® R
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Do not see this scaling Ol N Nl
. -0.7
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-0.9




Insulating phases
UV data o

AdSQ X RQ



Insulating phases

UV data




Insulating phases

UV data J
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Appearance of a mid-frequency hump.
Spectral weight is being transferred, consistent with sum rule

What are the T=0 insulating ground states??

Focus on specific models (see also [Gouteraux])



New Insulating and Metallic ground states - Anisotropic

£= R [(00)? + 9(6)(00)?] +V(6) - 22

F2

Focus on models and T=0 ground states which are solutions
with ¢ — o0 as 7 — 0

eV P
4

F2

3
and Lo R— 5 [(06) +¢*(0x)?] + ¢*
IR “fixed point” solutions
ds® ~ —rdt® +r~"dr® + r''dz® + r’2dy”
e? ~ pP0 A~ redt Y = kx

with exponents fixed by 7



New Insulating and Metallic ground states - Anisotropic

£= R [(00)? + 9(6)(00)?] +V(6) - 22

F2

Focus on models and T=0 ground states which are solutions
with ¢ — o0 as 7 — 0

and L— R — g [(8¢)2 4 €2¢(8X)2} 4 e _F2
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IR “fixed point” solutions

ds® ~ —rdt® +r~"dr® + r''dz® + r’2dy”
e? ~ pP0 A~ redt Y = kx

with exponents fixed by 7



e Calculate AC conductivity

Obtained using a matching argument
with ground state correlators at T=0. Valid: 1" << w << p

(7)

O‘ACNwC

e Calculate DC conductivity using analytic formula

For T' << the scaling is obtained from the IR fixed point
solutions

Ope ~ 70(7)

In these models we have b = c
(as we have for the AdS; x R* coherent metals)



[O-DC N Tb(’y)] [O-AC' ~ wC(W’)]

T << u T <<w<< 1

b=c>0 Have new type of insulating ground states

Have new type of incoherent metallic

b=c<0 . .
ground states not associated with Drude
physics
Novel metallic ground states with
b=c=0 5

finite conductivity at T=0
Metallic ground states are all thermal insulators: <, x — 0

Both terms in opc scale in the same way



New Insulating and Metallic ground states - Isotropic

Models with X1 = kz and X2 = ky

(o001

b

)

<

Insulators

—> <

Metals

(“pair evolution” dominat%d)
q p—



New Insulating and Metallic ground states - Isotropic
Models with X1 = k= and X2 = ky

[UDC ~ Tb] [UAC ~ wcj All have K,k — 0

)

Insulators Metals  (“pair evolution” dominat%d)
<€ > q =

Reappearance of sharp peaks not related to
the charge density and Drude physics




Summary
* Holographic Q-lattices are simple and illuminating

* Analytic result for DC conductivity in terms of horizon data.

Boundon L =k/(0oT)

* Coherent metallic phases with Drude peaks

* No intermediate 2/3 scaling in AC conductivity

Absent in another recent example

* Also find novel metallic (x — 0) and insulating ground states

Can be “pair evolution” dominated metal ground states
with ¢ =10

Metal-Insulator and Metal-Metal transitions



e Lattices are a good way to look for new holographic
ground states

Alternatives

e Construct them directly

* Find the ground states of holographic phases that
spontaneously break symmetries



Key results for Inhomogeneous lattices ()

* Analytic results for DC conductivity
*Boundon L =k/(cT)

* High temperature behaviour
| (f p)° > 1

7 Ju?—=(fw? =

Like Mott-loffe-Regel bound!?

* No intermediate scaling for |o(w)]

eAs T — 0 black holes approach AdSs x R* in the IR

No exotic “floppy” ground states seen by



