Renormalization group flows of Yang-Mills theories with charged fundamental matter

Javier Tarrío

with A. Faedo, A. Kundu and D. Mateos

Quantum Field Theory, String Theory and Condensed Matter Physics Kolymbari, September 2014

Motivation

We are interested in studying the effects of Yang-Mills theories with fundamental charge density at strong coupling.

- \Rightarrow Can get insight on the phase diagram of QCD at low temperatures.
- $\Rightarrow\,$ For a top-down approach one usually starts instead with $\mathcal{N}=4SYM$ with additional degrees of freedom.
- \Rightarrow But UV behavior not under a reasonable control!

Motivation

We are interested in studying the effects of Yang-Mills theories with fundamental charge density at strong coupling, for generic number of dimensions.

- \Rightarrow Allowing to change the number of dimensions may provide intuition and give context to the d = 4 case.
- ⇒ For condensed matter the cases with d = 2,3 are of intrinsic interest, as well.
- \Rightarrow In this talk I will focus in d = 2 + 1 YM theories.

Introduction

D2 branes with sources

RG flow

Basic thermodynamics

Conclusions and outlook

Reminder: holographic dual to d=3 SYM [Itzhaki et al. '98]

 \Rightarrow Stack of N_c D2-branes in flat space

$$e^{\phi(u)} \leftrightarrow {
m tr} F^2 \; , \ G_{MN}(u,S^6) \leftrightarrow T^{\mu
u}, \; {
m tr} F^4 \; .$$

 \Rightarrow With N_c given by the flux along S^6

$$F_6 = 5 L^5 \omega_6 \quad \Rightarrow \quad \frac{1}{2\kappa^2} \int_{S^6} F_6 = T_2 N_c \; .$$

 $\Rightarrow\,$ And the radial coordinate a geometrization of the energy scale

$$u\equiv U\,\ell_s^2$$
 .

Reminder: holographic dual to d=3 SYM [Itzhaki et al. '98]

 \Rightarrow Solution can be expressed in terms of a dimensionless effective coupling

$$g_{eff}^2 \sim rac{\lambda}{U}$$

 \Rightarrow This determines the validity of the gravity description

M2-branes	D2-branes	Pert. SYM
λ	N _c ^{-4/5}	A U

Our setup [Cherkis & Hashimoto '02] [Faedo, Mateos & JT, to appear]

- ⇒ Restricting to SUGRA fields means considering mostly adjoint matter, we need stringy sources for fundamental matter.
- ⇒ An extra set of D6-branes gives us the degrees of freedom to describe matter in this representation. [Karch & Katz '02]

- ⇒ A finite charge density is dual to strings dissolved in the D6-branes. The brane bends towards the origin.
- ⇒ The throat can be interpreted as a collection of strings pulling down the D6-branes. [Kobayashi et al. '06]

Our setup

- \Rightarrow A finite charge density is dual to strings dissolved in the D6-branes. The brane bends towards the origin.
- ⇒ The throat can be interpreted as a collection of strings pulling down the D6-branes. [Kobayashi et al. '06]

Our setup

 \Rightarrow One approximation: Non-dynamic quarks \rightarrow only strings in the holographic description.

 $\Rightarrow\,$ The action is given by SUGRA with a stringy source term

$$S_{total} = S_{IIA} - \underbrace{\frac{n_q}{2\pi\ell_s^2} \int \left(\sqrt{-G_{tt} G_{rr}} \,\mathrm{d}t \wedge \mathrm{d}r - B_2\right) \wedge \Xi_8}_{S_{strings}}$$

Our setup

 \Rightarrow The presence of strings necessarily sources dissolved baryonic branes supergravity fields

$$\mathrm{d}\left(e^{-2\phi}*H_{3}\right)+F_{2}\wedge F_{6}-\frac{1}{2}F_{4}\wedge F_{4}=\underbrace{-\frac{2\kappa_{10}^{2}}{2\pi\ell_{s}^{2}}n_{q}\Xi_{8}}_{sources},$$

with
$$F_2 = -\frac{q}{L} \mathrm{d}x^1 \wedge \mathrm{d}x^2$$
.

 \Rightarrow At a given energy scale, U, the effective charge density is

$$n_q^{eff} \equiv q \left(\frac{L}{u}\right)^4 \sim \frac{n_q}{N_c^2} \frac{\lambda^2}{U^4}$$

UV geometry

- ⇒ For $q = n_q = 0$ the solution is that of a stack of D2-branes, dual to (S)YM theories [Itzhaki et al. '98]
- \Rightarrow For finite charge density the UV is governed by that geometry, but subleading corrections exist

$$e^{\phi} = \left(\frac{u}{L}\right)^{-\frac{5}{4}} \left[1 - \alpha_{\phi} \underbrace{q \left(\frac{L}{u}\right)^{4}}_{n_{q}^{eff}} + \underbrace{v_{\phi}}_{\langle \operatorname{tr} F^{2} \rangle} \left(\frac{L}{u}\right)^{5} + \mathcal{O}\left(\frac{L}{u}\right)^{8}\right]$$

.

IR geometry

 $\Rightarrow\,$ There is an exact solution with a HV-Lif metric with z=5 and $\theta=1$

$$t \to \lambda^5 t$$
, $x^i \to \lambda x^i$, $\mathrm{d} s^2 \to \lambda \mathrm{d} s^2$,

notice in particular that

$$p- heta=1$$
 .

 \Rightarrow Also running scalars

$$e^{\phi}_{\downarrow} \sim \left(\frac{r}{q L}\right)^{\frac{5}{2}} \qquad e^{\eta}_{\downarrow} \sim \left(\frac{r}{q L}\right)^{-\frac{1}{8}}_{\mathrm{tr}F^{4}}$$

.

RG flow in d=2+1 (S)YM

RG flow in d=2+1 (S)YM

- ⇒ For fixed λ , different scales appear depending on n_q/N_c^2 .
- \Rightarrow Crossover scale at

$$U_{cross} \sim \lambda^{rac{1}{2}} \left(rac{n_q}{N_c^2}
ight)^{rac{1}{4}}$$

 \Rightarrow Critical density for the need of an M-theory description

$$\left(rac{n_q}{N_c^2}
ight)_{crit}\sim\lambda^2 N_c^{-rac{16}{5}}$$

A note: changing the number of dimensions

⇒ There are RG flows driving the theory to an IR characterized by dynamical and hyperscaling-violating exponents for different dimensionalities (p = 3 studied in [Kumar '12])

⇒ The p = 4 case can be understood as the $z \to \infty$ limit with $z/\theta = -1$. see [Hartnoll & Shaghoulian '12]

$$\mathrm{d}s^{2} = \left(\frac{r}{L}\right)^{\frac{1}{2}} \left(-\frac{r^{2}}{L^{2}}f(r)\mathrm{d}t^{2} + \mathrm{d}x_{4}^{2} + \#^{2}\frac{q^{-\frac{1}{2}}}{r^{2}}\frac{L^{2}}{r^{2}}\frac{\mathrm{d}r^{2}}{f(r)}\right) \ .$$

A note: changing the number of dimensions

⇒ There are RG flows driving the theory to an IR characterized by dynamical and hyperscaling-violating exponents for different dimensionalities (p = 3 studied in [Kumar '12])

р	1	2	3	4	5
Ζ	13/3	5	7	∞	-1
θ	2/3	1	0	-z	10

 \Rightarrow Uplift to M-theory gives an AdS7 $\rightarrow \text{AdS}_3 \times \mathbb{R}^4$ DW solution.

$$\begin{split} \mathrm{d}s^{2} &= -\frac{r^{2}}{\mathcal{L}^{2}} f(r) \mathrm{d}t^{2} + \frac{r^{2}}{\mathcal{L}^{2}} d\psi^{2} + \frac{\mathcal{L}^{2}}{r^{2}} \frac{\mathrm{d}r^{2}}{f(r)} + \mathrm{d}x_{4}^{2} + \frac{3}{2} \mathcal{L}^{2} \mathrm{d}\Omega_{4}^{2} ,\\ F_{4} &= \frac{\sqrt{2}}{3^{1/4}} \frac{1}{\mathcal{L}} \left[\mathrm{d}x^{1} \wedge \mathrm{d}x^{2} \wedge \mathrm{d}x^{3} \wedge \mathrm{d}x^{4} + \frac{3}{2} \mathcal{L}^{4} \omega_{4} \right] \,. \end{split}$$

compare to [D'Hoker & Kraus '09]

Basic thermodynamics

 \Rightarrow At low temperatures

$$T \ll \lambda^{\frac{1}{4}} \left(\frac{n_q}{N_c^2}\right)^{\frac{3}{8}}$$

only the HV-Lifshitz geometry matters (but UV time!) and

$$s \sim N_c^2 \left(rac{n_q}{N_c^2}
ight)^{rac{4}{5}} (\lambda T)^{rac{1}{5}} \; .$$

 \Rightarrow Free energy obtained from the first law.

 \Rightarrow At large temperatures usual D2-brane thermodynamics

$$s \sim N_c^2 \, \lambda^{-rac{1}{3}} \, T^{rac{7}{3}}$$
 .

Conclusions

- ⇒ Supergravity with strings gives an accurate description of $d \le 6$ (S)YM with an external charge density, $n_q \sim N_c^2$, at strong coupling and large N_c .
- ⇒ Supersymmetry and the global symmetry group do not play an important role in these constructions. [Faedo, Fraser & Kumar, '13]
- ⇒ The IR is described by a theory with dynamical and hyperscaling violating exponents.

р	1	2	3	4	5
Ζ	13/3	5	7	∞	-1
θ	2/3	1	0	-z	10

Outlook

- ⇒ Next step: understand how this picture changes when the charge is dynamic. [Work in progress]
- ⇒ Dynamic flavor requires additional degrees of freedom in the supergravity description, however the HV-Lif solution described here still exists in the IR.
- \Rightarrow Different RG flows parameterized by a single parameter

$$\gamma \equiv \frac{n_q}{N_c^2} \frac{1}{\lambda^2} \left(\frac{N_c}{N_f}\right)^4$$

Thank you

Work supported by the Juan de la Cierva program of the Spanish Ministry of Economy and by ERC StG HoloLHC - 306605