Mott gaps, unparticles and Fermi Arcs

Thanks to: NSF, EFRC (DOE)

Kiaran Dave

Charlie Kane

PRL, 110, 090403 (2013)

Brandon Langley

J. A. Hutasoit

Garrett Vanacore

PRB, 88, 115129 (2013)
PRD, 90, 044022 (2014)

propagators

$$
G \propto\left\langle T \psi(0) \psi^{\dagger}(t)\right\rangle
$$

propagators

$$
G \propto\left\langle T \psi(0) \psi^{\dagger}(t)\right\rangle
$$

Fermi liquids
$\frac{1}{p^{2}}$

propagators
 $G \propto\left\langle T \psi(0) \psi^{\dagger}(t)\right\rangle$

Fermi liquids

$$
\frac{1}{p^{2}}
$$

poles at $\mathrm{p}=0$

propagators

$G \propto\left\langle T \psi(0) \psi^{\dagger}(t)\right\rangle$

Fermi liquids

$$
\frac{1}{p^{2}}
$$

poles at $\mathrm{p}=0$

propagators

$$
G \propto\left\langle T \psi(0) \psi^{\dagger}(t)\right\rangle
$$

Fermi liquids

$$
\frac{1}{p^{2}}
$$

poles at $\mathrm{p}=0$

what about

$\left(p^{2}\right)^{d_{U}-d / 2}$

$$
\operatorname{dim}[\psi]=d_{U}
$$

propagators

$$
G \propto\left\langle T \psi(0) \psi^{\dagger}(t)\right\rangle
$$

Fermi liquids
 $$
\frac{1}{p^{2}}
$$

poles at $\mathrm{p}=0$

what about

$\left(p^{2}\right)^{d_{U}-d / 2}$
$d_{U}>d / 2$
$\operatorname{dim}[\psi]=d_{U}$

propagators

$$
G \propto\left\langle T \psi(0) \psi^{\dagger}(t)\right\rangle
$$

Fermi liquids
 $$
\frac{1}{p^{2}}
$$

poles at $\mathrm{p}=0$

what about

$\left(p^{2}\right)^{d_{U}-d / 2}$

$$
d_{U}>d / 2
$$

$$
\operatorname{dim}[\psi]=d_{U}
$$

vanishing propagator! (zeros)
gapped systems
$G \propto\left\langle T \psi(0) \psi^{\dagger}(t)\right\rangle$

Fermi liquids
 $$
\frac{1}{p^{2}}
$$

poles at $\mathrm{p}=0$

what about

$\left(p^{2}\right)^{d_{U}-d / 2}$

$$
d_{U}>d / 2
$$

$$
\operatorname{dim}[\psi]=d_{U}
$$

vanishing propagator! (zeros)

gapped systems

changing scaling dimension

are such propagators important?

Observation of strong electron pairing on bands without Fermi

surfaces in $\mathrm{LiFe}_{1-\mathrm{x}} \mathrm{Co}_{x} \mathrm{As}$

H. Miao ${ }^{1}$, T. Qian ${ }^{1}$, , X. Shi ${ }^{1}$, P. Richard ${ }^{1,2}$, T. K. Kim ${ }^{3}$, M. Hoesch ${ }^{3}$, L. Y. Xing ${ }^{1}$, X.
C. Wang ${ }^{1}$, C. - Q. Jin ${ }^{1,2}$, J. - P. Hu ${ }^{1,2,4}$ and H. Ding ${ }^{1,2, *}$

gapped degrees of freedom=> beyond particles (BCS)

$\mathrm{LiFe}_{1-\mathrm{x}} \mathrm{Co}_{\mathrm{x}} \mathrm{As}$

$\mathrm{LiFe}_{1-\mathrm{x}} \mathrm{Co}_{\mathrm{x}} \mathrm{As}$

H. Ding
 1406.0983

(
$\mathrm{LiFe}_{1-\mathrm{x}} \mathrm{Co}_{\mathrm{x}} \mathrm{As}$

```
H. Ding
1406.0983
```



```
\(>\Delta_{\mathrm{SC}}\)
```

$\mathrm{LiFe}_{1-\mathrm{x}} \mathrm{Co}_{\mathrm{x}} \mathrm{As}$

compute FS volume

compute FS volume

$F S(b)-F S(a)=0.18$

compute FS volume

$\mathrm{FS}(\mathrm{b})-\mathrm{FS}(\mathrm{a})=0.18 \approx 0.03$

compute FS volume

FS(b)-FS(a)=0.1

compute FS volume

FS(b)-FS(a)=0.1
off by a factor of 6

what's the extra stuff?

Fermi Arcs?

Fermi arcs: (PDJ,JCC,ZXS)

Strange Metal

QCP

Bi2212

Bi2212
$x_{\mathrm{FS}} \neq x$

Bi2212
$x_{\mathrm{FS}} \neq x$

Luttinger pole-count fails

What happens when Luttinger's theorem Fails?

What happens when Luttinger's theorem Fails?

unparticles

what do Fermi arcs and LiFeAs have in common?

H. Ding 1406.0983

$(0, \pi) \quad(\pi, \pi)$

what do Fermi arcs and LiFeAs have in common?

H. Ding 1406.0983

vanishing propagator

what do Fermi arcs and LiFeAs have in common?

H. Ding 1406.0983

vanishing propagator

Mott Problem

Mott Problem

Mott Problem

$=$ below gap+above gap

Mott Problem

$=$ below gap+above gap $=0$

Mott Problem

$=$ below gap+above gap $=0$

$$
\operatorname{Det} G(\mathbf{k}, \omega=\mathbf{0})=\mathbf{0} \quad \text { (single band) }
$$

Mott Problem

$$
=\text { below gap+above gap }=0
$$

$$
\operatorname{Det} G(\mathbf{k}, \omega=\mathbf{0})=\mathbf{0} \quad \text { (single band) }
$$

$\operatorname{DetReG}(0, p)=0$
Mottness

Mott Problem

$=$ below gap+above gap $=0$

$$
\operatorname{Det} G(\mathbf{k}, \omega=0)=0 \text { (single band) }
$$

$\operatorname{DetReG}(0, p)=0$ Mottness
not true in MF theories

Luttinger theorem: singularities of $\ln G$

$$
n=\frac{2 i}{(2 \pi)^{d+1}} \int d^{d} \mathbf{p} \int_{-\infty}^{0} d \xi \ln \frac{G^{R}(\xi, \mathbf{p})}{G_{R}^{*}(\xi, \mathbf{p})}
$$

Luttinger theorem: singularities of $\ln G$

$$
\begin{aligned}
& n=\frac{2 i}{(2 \pi)^{d+1}} \int d^{d} \mathbf{p} \int_{-\infty}^{0} d \xi \ln \frac{G^{R}(\xi, \mathbf{p})}{G_{R}^{*}(\xi, \mathbf{p})} \\
& n=2 \sum_{\mathbf{k}} \Theta(\Re G(\mathbf{k}, \omega=\mathbf{0}))
\end{aligned}
$$

Luttinger theorem: singularities of $\ln G$

$$
\begin{aligned}
& n=\frac{2 i}{(2 \pi)^{d+1}} \int d^{d} \mathbf{p} \int_{-\infty}^{0} d \xi \ln \frac{G^{R}(\xi, \mathbf{p})}{G_{R}^{*}(\xi, \mathbf{p})} \\
& n=2 \sum_{\mathbf{k}} \Theta(\Re G(\mathbf{k}, \omega=\mathbf{0}))
\end{aligned}
$$

poles+zeros
 (all sign changes)

Luttinger theorem: singularities of $\ln G$

$$
\begin{aligned}
& n=\frac{2 i}{(2 \pi)^{d+1}} \int d^{d} \mathbf{p} \int_{-\infty}^{0} d \xi \ln \frac{G^{R}(\xi, \mathbf{p})}{G_{R}^{*}(\xi, \mathbf{p})} \\
& n=2 \sum_{\mathbf{k}} \Theta(\Re G(\mathbf{k}, \omega=\mathbf{0}))
\end{aligned}
$$

poles+zeros
 (all sign changes)

Fermi Liquids

Mott Insulators

Some consequences of the Luttinger theorem: The Luttinger surfaces in non-Fermi liquids and Mott insulators

Igor Dzyaloshinskii

Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
(Received 30 January 2003; published 27 August 2003)

The proof just presented is good for any state of our system: FL, NFL, or MI [in other words, either of poles or zeros can be used to change the sign of G_{r} in Eq. (1)]. The only way to incapacitate the Luttinger theorem in form (1) is to assume that the limit $T \rightarrow 0$ is discontinuous. Actually, one has to require that the whole line $T=0$ is a line of phase transitions.
also, pw anderson, tm Rice, Tsvelik,etc.

Is this famous theorem from 1960 correct?

simple problem: $\mathrm{n}=1$

simple problem: $\mathrm{n}=1$

simple problem: $\mathrm{n}=1$

simple problem: $\mathrm{n}=1$

simple problem: $\mathrm{n}=1$

$$
G=\frac{1}{\omega+U / 2}+\frac{1}{\omega-U / 2}
$$

simple problem: $\mathrm{n}=1$

$$
G=\frac{1}{\omega+U / 2}+\frac{1}{\omega-U / 2}=0 \quad \text { if } \quad \omega=0
$$

simple problem: $\mathrm{n}=1$

$$
\begin{gathered}
G=\frac{1}{\omega+U / 2}+\frac{1}{\omega-U / 2}=0 \quad \text { if } \quad \omega=0 \\
n=2 \theta(0)=1
\end{gathered}
$$

$$
G(\omega=0)=\frac{2 \mu}{\mu^{2}-\left(\frac{U}{2}\right)^{2}}
$$

$$
n=2 \theta\left(\frac{2 \mu}{\mu^{2}-\left(\frac{U}{2}\right)^{2}}\right)<G(\omega=0)=\frac{2 \mu}{\mu^{2}-\left(\frac{U}{2}\right)^{2}}
$$

$$
n=2 \theta\left(\frac{2 \mu}{\mu^{2}-\left(\frac{U}{2}\right)^{2}}\right) G(\omega=0)=\frac{2 \mu}{\mu^{2}-\left(\frac{U}{2}\right)^{2}}
$$

$n=2 \theta\left(\frac{2 \mu}{\mu^{2}-\left(\frac{U}{2}\right)^{2}}\right) G(\omega=0)=\frac{2 \mu}{\mu^{2}-\left(\frac{U}{2}\right)^{2}}$

$$
\underbrace{n=2 \theta\left(\frac{2 \mu}{\mu^{2}-\left(\frac{U}{2}\right)^{2}}\right)}_{n} G(\omega=0)=\frac{2 \mu}{\mu^{2}-\left(\frac{U}{2}\right)^{2}}
$$

fix chemical potential

$$
\lim _{T \rightarrow 0} \mu(T)
$$

fix chemical potential

$$
\lim _{T \rightarrow 0} \mu(T)
$$

$$
\mathrm{n}=1
$$

fix chemical potential

$$
\lim _{T \rightarrow 0} \mu(T)
$$

$$
\mathrm{n}=1
$$

does this fix all the problems?

A model with zeros but Luttinger fails

A model with zeros but Luttinger fails

A model with zeros but Luttinger fails

A model with zeros

 but Luttinger fails
no hopping=> no propagation (zeros)

A model with zeros

 but Luttinger fails
no hopping=> no propagation (zeros)

$S U(N)$

$$
H=\frac{U}{2}\left(n_{1}+\cdots n_{N}\right)^{2}
$$

no particle-hole symmetry

a) $\frac{9}{2} U \square$

$$
\begin{aligned}
& 2 U= \\
& \frac{1}{2} U= \\
& 0=
\end{aligned}
$$

b)

no particle-hole symmetry

$$
G_{\alpha \beta}(\omega=0)=\frac{\delta_{\alpha \beta}}{K(n+1)-K(n)}\left(\frac{2 n-N}{N}\right)
$$

$$
G_{\alpha \beta}(\omega=0)=\frac{\delta_{\alpha \beta}}{K(n+1)-K(n)}\left(\frac{2 n-N}{N}\right)
$$

Luttinger's theorem

$$
n=N \Theta(2 n-N)
$$

Luttinger's theorem

$$
n=N \Theta \underbrace{(2 n-N)}_{0,1,1 / 2}
$$

Luttinger's theorem

$$
\begin{gathered}
n=N \\
\begin{array}{c}
n=2 \\
N=3
\end{array} \\
\underbrace{(2 n-N)}_{0,1,1 / 2} \\
\underbrace{}_{0,1}
\end{gathered}
$$

Luttinger's theorem

$$
\begin{aligned}
& n=N \Theta(2 n-N) \\
& n=2 \\
& 0,1,1 / 2 \\
& N=3 \\
& \downarrow \\
& 2=3
\end{aligned}
$$

Luttinger's theorem

Luttinger's theorem

Luttinger's theorem

Luttinger's theorem

no solution

does the degeneracy matter?

Problem

$$
G=0
$$

Problem

$$
\begin{gathered}
\mathrm{G}=0 \\
G=\frac{1}{E-\varepsilon_{p}-\Sigma}
\end{gathered}
$$

inherent problem
inherent problem

$$
\delta I[G]=\int d \omega \Sigma \delta G
$$

inherent problem

$$
\delta I[G]=\int \begin{aligned}
& d \omega \Sigma \delta G \\
& \text { if } \Sigma \rightarrow \infty
\end{aligned}
$$

inherent problem
$\delta I[G]=\int \overbrace{\text { if } \Sigma \rightarrow \infty} d \omega \Sigma \delta G$
integral does not exist
inherent problem

inherent problem

$$
\delta I[G]=\int d \omega \Sigma \delta G
$$

integral does not exist

Luttinger's Theorem
inherent problem

how to count particles?

how to count particles?

some charged stuff has no particle interpretation

what is the extra stuff?

propagators

$$
\begin{gathered}
G \propto\left\langle T \psi(0) \psi^{\dagger}(t)\right\rangle \\
\operatorname{dim}[\psi]=d_{U}
\end{gathered}
$$

how can such large anomalous dimensions be generated?

$\Sigma(\omega=0, \mathbf{p})=0$
Fermi liquid

$\Sigma(\omega=0, \mathbf{p})=0$
Fermi liquid

$\Sigma(\omega=0, \mathbf{p})=\infty$ new fixed point

$\Sigma(\omega=0, \mathbf{p})=0$
Fermi liquid

$\Sigma(\omega=0, \mathbf{p})=\infty$
new fixed point
$G_{U} \propto \downarrow\left(p^{2}\right)^{d_{U}-d / 2}$
scale invariance

$\Sigma(\omega=0, \mathbf{p})=0$
Fermi liquid

$\Sigma(\omega=0, \mathbf{p})=\infty$
new fixed point
$G_{U} \propto \downarrow\left(p^{2}\right)^{d_{U}-d / 2}$
scale invariance
$d_{U}>d / 2$

unparticles

unparticles

 no well-defined mass
 (all possible mass, energy incoherent stuff)

unparticles

no well-defined mass (all possible mass, energy incoherent stuff)
$\mathcal{L}_{\text {eff }}=\int_{0}^{\infty} \mathcal{L}\left(x, m^{2}\right) d m^{2}$

unparticles

no well-defined mass (all possible mass, energy incoherent stuff)
$\mathcal{L}_{\text {eff }}=\int_{0}^{\infty} \mathcal{L}\left(x, m^{2}\right) d m^{2}$
but $m \propto 1 / L$

unparticles

no well-defined mass (all possible mass, energy incoherent stuff)

$$
\mathcal{L}_{\text {eff }}=\int_{0}^{\infty} \mathcal{L}\left(x, m^{2}\right) d m^{2}
$$

but $m \propto 1 / L$
hidden extra dimension

cannot describe systems at $g=0$!
d_{U}

cannot describe systems at $\mathrm{g}=0$!
can we use this construction to fix d_{U} ?

$$
\mathcal{L}=\left(\partial^{\mu} \phi(x, m) \partial_{\mu} \phi(x, m)+m^{2} \phi^{2}(x, m)\right)
$$

$$
\mathcal{L}=\int_{0}^{\infty}\left(\partial^{\mu} \phi(x, m) \partial_{\mu} \phi(x, m)+m^{2} \phi^{2}(x, m)\right) d m^{2}
$$

$$
\mathcal{L}=\int_{0}^{\infty}\left(\partial^{\mu} \phi(x, m) \partial_{\mu} \phi(x, m)+m^{2} \phi^{2}(x, m)\right) d m^{2}
$$

theory with all possible mass!

$$
\mathcal{L}=\int_{0}^{\infty}\left(\partial^{\mu} \phi(x, m) \partial_{\mu} \phi(x, m)+m^{2} \phi^{2}(x, m)\right) d m^{2}
$$

theory with all possible mass!

$$
\begin{gathered}
\phi \rightarrow \phi\left(x, m^{2} / \Lambda^{2}\right) \\
x \rightarrow x / \Lambda \\
m^{2} / \Lambda^{2} \rightarrow m^{2}
\end{gathered}
$$

$$
\mathcal{L}=\int_{0}^{\infty}\left(\partial^{\mu} \phi(x, m) \partial_{\mu} \phi(x, m)+m^{2} \phi^{2}(x, m)\right) d m^{2}
$$

theory with all possible mass!

$$
\begin{gathered}
\phi \rightarrow \phi\left(x, m^{2} / \Lambda^{2}\right) \\
x \rightarrow x / \Lambda \\
m^{2} / \Lambda^{2} \rightarrow m^{2} \\
\mathcal{L} \rightarrow \Lambda^{4} \mathcal{L}
\end{gathered}
$$

scale invariance is restored!!

$$
\mathcal{L}=\int_{0}^{\infty}\left(\partial^{\mu} \phi(x, m) \partial_{\mu} \phi(x, m)+m^{2} \phi^{2}(x, m)\right) d m^{2}
$$

theory with all possible mass!

$$
\begin{gathered}
\phi \rightarrow \phi\left(x, m^{2} / \Lambda^{2}\right) \\
x \rightarrow x / \Lambda \\
m^{2} / \Lambda^{2} \rightarrow m^{2} \\
\mathcal{L} \rightarrow \Lambda^{4} \mathcal{L}
\end{gathered}
$$

scale invariance is restored!!
not particles

unparticles

$$
\mathcal{L}=\int_{0}^{\infty}\left(\partial^{\mu} \phi(x, m) \partial_{\mu} \phi(x, m)+m^{2} \phi^{2}(x, m)\right) d m^{2}
$$

theory with all possible mass!

$$
\begin{gathered}
\phi \rightarrow \phi\left(x, m^{2} / \Lambda^{2}\right) \\
x \rightarrow x / \Lambda \\
m^{2} / \Lambda^{2} \rightarrow m^{2} \\
\mathcal{L} \rightarrow \Lambda^{4} \mathcal{L}
\end{gathered}
$$

scale invariance is restored!!
not particles

propagator

$$
\left(\int_{0}^{\infty} d m^{2} m^{2\left(d_{U}-d / 2\right)} \frac{i}{p^{2}-m^{2}+i \epsilon}\right)^{-1} \propto p^{2\left(d_{U}-d / 2\right)}
$$

fixing d_U
fixing d_U

$$
\mathcal{L}=\int_{0}^{\infty}\left(\partial^{\mu} \phi(x, m) \partial_{\mu} \phi(x, m)+m^{2} \phi^{2}(x, m)\right) m^{2 \delta} d m^{2}
$$

fixing d_U

$$
\begin{gathered}
\mathcal{L}=\int_{0}^{\infty}\left(\partial^{\mu} \phi(x, m) \partial_{\mu} \phi(x, m)+m^{2} \phi^{2}(x, m)\right) m^{2 \delta} d m^{2} \\
m=z^{-1}
\end{gathered}
$$

fixing d_U

$$
\mathcal{L}=\int_{0}^{\infty}\left(\partial^{\mu} \phi(x, m) \partial_{\mu} \phi(x, m)+m^{2} \phi^{2}(x, m)\right) m^{2 \delta} d m^{2}
$$

$$
m=z^{-1} \prod_{\mathrm{AdS}}^{2}=\frac{d_{U}\left(d_{U}-d\right)}{R^{2}}
$$

fixing d_U
$\mathcal{L}=\int_{0}^{\infty}\left(\partial^{\mu} \phi(x, m) \partial_{\mu} \phi(x, m)+m^{2} \phi^{2}(x, m)\right) m^{2 \delta} d m^{2}$

$$
m=z^{-1} \sqrt{\frac{1}{R^{2}}}=\frac{d_{U}\left(d_{U}-d\right)}{R^{2}}
$$

fixing d_U

$$
\begin{gathered}
\mathcal{L}=\int_{0}^{\infty}\left(\partial^{\mu} \phi(x, m) \partial_{\mu} \phi(x, m)+m^{2} \phi^{2}(x, m)\right) m^{2 \delta} d m^{2} \\
m=z^{-1} \frac{1}{R^{2}}=\frac{d_{U}\left(d_{U}-d\right)}{R^{2}} \\
\mathcal{L}=\int_{0}^{\infty} d z \frac{2 R^{2}}{z^{5+2 \delta}}\left[\frac{1}{2} \frac{z^{2}}{R^{2}} \eta^{\mu \nu}\left(\partial_{\mu} \phi\right)\left(\partial_{\nu} \phi\right)+\frac{\phi^{2}}{2 R^{2}}\right]
\end{gathered}
$$

fixing d_U

$$
\begin{gathered}
\mathcal{L}=\int_{0}^{\infty}\left(\partial^{\mu} \phi(x, m) \partial_{\mu} \phi(x, m)+m^{2} \phi^{2}(x, m)\right) m^{2 \delta} d m^{2} \\
m=z^{-1} \frac{1}{R^{2}}=\frac{d_{U}\left(d_{U}-d\right)}{R^{2}} \\
\mathcal{L}=\int_{0}^{\infty} d z \frac{2 R^{2}}{z^{5+2 \delta}}\left[\frac{1}{2} \frac{z^{2}}{R{ }^{2}} \eta^{\mu \nu}\left(\partial_{\mu} \phi\right)\left(\partial_{\nu} \phi\right)+\frac{\phi^{2}}{2 R^{2}}\right] \\
\text { can be absorbed with AdS metric }
\end{gathered}
$$

action on $A d S_{5+2 \delta}$

$$
\begin{array}{r}
S=\frac{1}{2} \int d^{4+2 \delta} x d z \sqrt{-g}\left(\partial_{a} \Phi \partial^{a} \Phi+\frac{\Phi^{2}}{R^{2}}\right) \\
\sqrt{-g}=(R / z)^{5+2 \delta}
\end{array}
$$

action on $A d S_{5+2 \delta}$

$$
\begin{gathered}
S=\frac{1}{2} \int d^{4+2 \delta} x d z \sqrt{-g}\left(\partial_{a} \Phi \partial^{a} \Phi+\frac{\Phi^{2}}{R^{2}}\right) \\
d s^{2}=\frac{L^{2}}{z^{2}}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}+d z^{2}\right) \quad \sqrt{-g}=(R / z)^{5+2 \delta}
\end{gathered}
$$

action on $A d S_{5+2 \delta}$

$$
\begin{gathered}
S=\frac{1}{2} \int d^{4+2 \delta} x d z \sqrt{-g}\left(\partial_{a} \Phi \partial^{a} \Phi+\frac{\Phi^{2}}{R^{2}}\right) \\
d s^{2}=\frac{L^{2}}{z^{2}}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}+d z^{2}\right) \quad \sqrt{-g}=(R / z)^{5+2 \delta}
\end{gathered}
$$

unparticle lives in

$$
d=4+2 \delta \quad \delta \leq 0
$$

action on $A d S_{5+2 \delta}$

$$
\begin{gathered}
S=\frac{1}{2} \int d^{4+2 \delta} x d z \sqrt{-g}\left(\partial_{a} \Phi \partial^{a} \Phi+\frac{\Phi^{2}}{R^{2}}\right) \\
d s^{2}=\frac{L^{2}}{z^{2}}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}+d z^{2}\right) \quad \sqrt{-g}=(R / z)^{5+2 \delta}
\end{gathered}
$$

unparticle lives in

$$
d=4+2 \delta \quad \delta \leq 0
$$

generating functional for unparticles

Claim: $Z_{\mathrm{QFT}}=e^{-S_{\mathrm{ADS}}^{\mathrm{on}-\text { shell }}\left(\phi\left(\phi_{\mathrm{aADS}^{\mathrm{AD}}}\right)\right)}$

$$
S=\left.\frac{1}{2} \int d^{d} x g^{z z} \sqrt{-g} \Phi(z, x) \partial_{z} \Phi(z, x)\right|_{z=\epsilon}
$$

Claim: $Z_{\mathrm{QFT}}=e^{-S_{\mathrm{ADS}}^{\text {on-shell }}\left(\phi\left(\phi_{\partial \mathrm{ADS}}=\mathrm{J}_{\mathcal{O}}\right)\right)}$

$$
S=\left.\frac{1}{2} \int d^{d} x g^{z z} \sqrt{-g} \Phi(z, x) \partial_{z} \Phi(z, x)\right|_{z=\epsilon}
$$

$$
\left\langle\Phi_{U}(x) \Phi_{U}\left(x^{\prime}\right)\right\rangle=\frac{1}{\left|x-x^{\prime}\right|^{2 d_{U}}}
$$

Claim: $Z_{\mathrm{QFT}}=e^{-S_{\mathrm{ADS}}^{\text {on-shell }}\left(\phi\left(\phi_{\partial \mathrm{ADS}}=\mathrm{J}_{\mathcal{O}}\right)\right)}$

$$
S=\left.\frac{1}{2} \int d^{d} x g^{z z} \sqrt{-g} \Phi(z, x) \partial_{z} \Phi(z, x)\right|_{z=\epsilon}
$$

$$
\begin{array}{r}
\left\langle\Phi_{U}(x) \Phi_{U}\left(x^{\prime}\right)\right\rangle=\frac{1}{\left|x-x^{\prime}\right|^{2 d_{U}}} \\
d_{U}=\frac{d}{2}+\frac{\sqrt{d^{2}+4}}{2}>\frac{d}{2}
\end{array}
$$

$$
\begin{gathered}
\text { Claim: } Z_{\mathrm{QFT}}=e^{-S_{\mathrm{ADS}}^{\text {On- shell }}\left(\phi\left(\phi_{\partial \mathrm{ADS}=J_{\mathcal{O}}}\right)\right)} \\
S=\left.\frac{1}{2} \int d^{d} x g^{z z} \sqrt{-g} \Phi(z, x) \partial_{z} \Phi(z, x)\right|_{z=\epsilon} \\
\left\langle\Phi_{U}(x) \Phi_{U}\left(x^{\prime}\right)\right\rangle=\frac{1}{\left|x-x^{\prime}\right|^{2 d_{U}}} \\
d_{U}=\frac{d}{2}+\frac{\sqrt{d^{2}+4}}{2}>\frac{d}{2}
\end{gathered}
$$

$$
\begin{aligned}
& G_{U}(p) \propto p^{2\left(d_{U}-d / 2\right)} \\
& \quad d_{U}=\frac{d}{2}+\frac{\sqrt{d^{2}+4}}{2}>\frac{d}{2} \\
& \quad \downarrow \\
& G_{U}(0)=0
\end{aligned}
$$

unparticle (AdS) propagator has zeros!

$$
\begin{aligned}
& G_{U}(p) \propto p^{2\left(d_{U}-d / 2\right)} \\
& \quad d_{U}=\frac{d}{2}+\frac{\sqrt{d^{2}+4}}{2}>\frac{d}{2} \\
& \quad \downarrow \\
& G_{U}(0)=0
\end{aligned}
$$

top-down construction

Universal fermionic spectral functions from string theory

Jerome P. Gauntlett, ${ }^{1}$ Julian Sonner, ${ }^{1,2}$ and Daniel Waldram ${ }^{1}$
${ }^{1}$ Theoretical Physics Group, Blackett Laboratory, Imperial College, London SW7 2AZ, U.K.
${ }^{2}$ D.A.M.T.P. University of Cambridge, Cambridge, CB3 0WA, U.K.

We carry out the first holographic calculation of a fermionic response function for a strongly coupled $d=3$ system with an explicit $D=10$ or $D=11$ supergravity dual. By considering the supersymmetry current, we obtain a universal result applicable to all $d=3 N=2$ SCFTs with such duals. Surprisingly, the spectral function does not exhibit a Fermi surface, despite the fact that the system is at finite charge density. We show that it has a phonino pole and at low frequencies there is a depletion of spectral weight with a power-law scaling which is governed by a locally quantum critical point.

top-down construction

Universal fermionic spectral functions from string theory

Jerome P. Gauntlett, ${ }^{1}$ Julian Sonner, ${ }^{1,2}$ and Daniel Waldram ${ }^{1}$
${ }^{1}$ Theoretical Physics Group, Blackett Laboratory, Imperial College, London SW7 2AZ, U.K.
${ }^{2}$ D.A.M.T.P. University of Cambridge, Cambridge, CB3 0WA, U.K.

We carry out the first holographic calculation of a fermionic response function for a strongly coupled $d=3$ system with an explicit $D=10$ or $D=11$ supergravity dual. By considering the supersymmetry current, we obtain a universal result applicable to all $d=3 N=2$ SCFTs with such duals. Surprisingly, the spectral function does not exhibit a Fermi surface, despite the fact that the system is at finite charge density. We show that it has a phonino pole and at low frequencies there is a depletion of spectral weight with a power-law scaling which is governed by a locally quantum critical point.
 also
Gubser,
et al.

$$
\left(\not D-m-\frac{i}{2} F^{\mu \nu} \Gamma_{\mu \nu}\right) \psi_{\rho}+i F \mu \nu \Gamma_{\mu} \Gamma_{\rho} \psi_{\nu}=0
$$

top-down construction

Universal fermionic spectral functions from string theory

Jerome P. Gauntlett, ${ }^{1}$ Julian Sonner, ${ }^{1,2}$ and Daniel Waldram ${ }^{1}$
${ }^{1}$ Theoretical Physics Group, Blackett Laboratory, Imperial College, London SW7 2AZ, U.K.
${ }^{2}$ D.A.M.T.P. University of Cambridge, Cambridge, CB3 0WA, U.K.

We carry out the first holographic calculation of a fermionic response function for a strongly coupled $d=3$ system with an explicit $D=10$ or $D=11$ supergravity dual. By considering the supersymmetry current, we obtain a universal result applicable to all $d=3 N=2$ SCFTs with such duals. Surprisingly, the spectral function does not exhibit a Fermi surface, despite the fact that the system is at finite charge density. We show that it has a phonino pole and at low frequencies there is a depletion of spectral weight with a power-law scaling which is governed by a locally quantum critical point.
 also
Gubser,
et al.

$$
\left(D-m-\frac{i}{2} F^{\mu \nu} \Gamma_{\mu \nu}\right) \psi_{\rho}+i F_{\mu \nu \Gamma_{\mu} \Gamma_{\rho} \psi_{\nu}=0.003}=0
$$

top-down construction

Universal fermionic spectral functions from string theory

Jerome P. Gauntlett, ${ }^{1}$ Julian Sonner, ${ }^{1,2}$ and Daniel Waldram ${ }^{1}$
${ }^{1}$ Theoretical Physics Group, Blackett Laboratory, Imperial College, London SW7 2AZ, U.K.
${ }^{2}$ D.A.M.T.P. University of Cambridge, Cambridge, CB3 0WA, U.K.

We carry out the first holographic calculation of a fermionic response function for a strongly coupled $d=3$ system with an explicit $D=10$ or $D=11$ supergravity dual. By considering the supersymmetry current, we obtain a universal result applicable to all $d=3 N=2$ SCFTs with such duals. Surprisingly, the spectral function does not exhibit a Fermi surface, despite the fact that the system is at finite charge density. We show that it has a phonino pole and at low frequencies there is a depletion of spectral weight with a power-law scaling which is governed by a locally quantum critical point.

what about bottom-up constructions?

$S_{\text {probe }}(\psi, \bar{\psi})=\int d^{d} x \sqrt{-g} i \bar{\psi}\left(\Gamma^{M} D_{M}-m+\cdots\right) \psi$
what is hidden here?

$$
\text { consider } \sqrt{-g} i \bar{\psi}\left(\not \varnothing-m-i p F_{\mu \nu}^{\downarrow} \Gamma^{\mu \nu}\right) \psi
$$

$$
\begin{array}{r}
S_{\text {probe }}(\psi, \bar{\psi})=\int d^{d} x \sqrt{-g} i \bar{\psi}\left(\Gamma^{M} D_{M}-m+\dot{\zeta} \cdot\right) \psi \\
\text { what is hidden here? }
\end{array}
$$

Consider $\sqrt{-g} i \bar{\psi}\left(\not \square-m-i p F_{\mu \nu} \Gamma^{\mu \nu}\right) \psi$

$$
\begin{array}{r}
S_{\text {probe }}(\psi, \bar{\psi})=\int d^{d} x \sqrt{-g} i \bar{\psi}\left(\Gamma^{M} D_{M}-m+\dot{\zeta} \cdot\right) \psi \\
\text { what is hidden here? }
\end{array}
$$

Consider $\sqrt{-g} i \bar{\psi}\left(\not D-m-i p F_{\mu \nu} \Gamma^{\mu \nu}\right) \psi$

what happens at the boundary?

How is the spectrum modified?
$\mathrm{P}=0$

Fermi
surface peak

How is the spectrum modified?
$\mathrm{P}=0$

Fermi
surface peak

How is the spectrum modified?
$\mathrm{P}=0$

$$
\begin{gathered}
-1.54<p<-0.53 \\
1>\nu_{k_{F}}>1 / 2 \\
\Re \omega \propto k-k_{F} \\
\Im \omega \propto\left(k-k_{F}\right)^{2 \nu_{k_{F}}}
\end{gathered}
$$

'Fermi Liquid'

Fermi
surface peak

How is the spectrum modified?
$\mathrm{P}=0$

Fermi
surface peak

How is the spectrum modified?
$\mathrm{P}=0$

$$
\begin{aligned}
& p=-0.53 \\
& \nu_{k_{F}}=1 / 2
\end{aligned}
$$

MFL
$-0.53<p<1 / \sqrt{6}$
$1 / 2>\nu_{k_{F}}>0$
$\Re \omega=\Im \omega \propto\left(k-k_{F}\right)^{1 /\left(2 \nu_{k_{F}}\right)}$
NFL

Fermi
surface peak

How is the spectrum modified?

$\mathrm{P}=0$

$$
\begin{aligned}
& p=-0.53 \\
& \nu_{k_{F}}=1 / 2
\end{aligned}
$$

MFL
$-0.53<p<1 / \sqrt{6}$
$1 / 2>\nu_{k_{F}}>0$
$\Re \omega=\Im \omega \propto\left(k-k_{F}\right)^{1 /\left(2 \nu_{k_{F}}\right)}$
NFL

Fermi
surface peak

How is the spectrum modified?
$\mathrm{P}=0$

Fermi
surface peak

How is the spectrum modified?

$\mathrm{P}=0$

Fermi
surface peak

How is the spectrum modified?

$\mathrm{P}=0$

Fermi

Edalati,Leigh, PP PRL, 106 (2011)

$$
\psi \propto a r^{\Delta} \text { Mechanism (2009)? } b r^{-\Delta}
$$

k_F moves into log-oscillatory region: IR $\mathcal{O}_{ \pm}$acquires a complex dimension

> Is the log-oscillatory region necessary?

chiral symmetry and Pauli term
chiral symmetry and Pauli term

$$
\psi \rightarrow e^{i \alpha \Gamma_{5}} \psi
$$

chiral symmetry and Pauli term

$$
\psi \rightarrow e^{i \alpha \Gamma_{5}} \psi
$$

X breaks chiral symmetry if

$$
\left\{\Gamma_{5}, X\right\} \neq 0
$$

chiral symmetry and Pauli term

$$
\psi \rightarrow e^{i \alpha \Gamma_{5}} \psi
$$

X breaks chiral symmetry if

$$
\begin{aligned}
&\left\{\Gamma_{5},\right.X\} \\
& \neq 0 \\
&\left\{\Gamma_{5}, \Gamma_{\mu \nu} F^{\mu \nu}\right\} \neq 0
\end{aligned}
$$

Pauli term breaks chiral symmetry

chiral symmetry and Pauli term

$$
\psi \rightarrow e^{i \alpha \Gamma_{5}} \psi
$$

X breaks chiral symmetry if

$$
\begin{aligned}
&\left\{\Gamma_{5},\right.X\} \\
& \eta \neq 0 \\
&\left\{\Gamma_{5}, \Gamma_{\mu \nu} F^{\mu \nu}\right\} \neq 0
\end{aligned}
$$

Pauli term breaks chiral symmetry

helicity on the boundary (scaling dimension)
+k and -k have different scaling dimensions

+k and -k have different scaling dimensions

hidden duality

Flow equations

$$
\begin{gathered}
u^{2} \sqrt{f(u)} \partial_{u} \xi_{ \pm}=-2(m L) u \xi_{ \pm}+\left[v_{-}(u) \mp k\right]+\left[v_{+}(u) \pm k\right] \xi_{ \pm}^{2}, \\
v_{ \pm}(u)=\frac{1}{\sqrt{f(u)}}\left[\omega+Q q\left(1-u^{2-d}\right)\right] \pm Q p u^{2-d} .
\end{gathered}
$$

Flow equations

$u^{2} \sqrt{f(u)} \partial_{u} \xi_{ \pm}=-2(m L) u \xi_{ \pm}+\left[v_{-}(u) \mp k\right]+\left[v_{+}(u) \pm k\right] \xi_{ \pm}^{2}$,

$$
\begin{gathered}
v_{ \pm}(u)=\frac{1}{\sqrt{f(u)}}\left[\begin{array}{l}
\left.\omega+Q q\left(1-u^{2-d}\right)\right] \pm Q p u^{2-d} \\
\\
{\left[\begin{array}{l}
\xi_{ \pm} \rightarrow \zeta_{ \pm} \equiv 1 / \xi_{ \pm} \\
p \rightarrow-p \\
k \rightarrow-k
\end{array}\right.}
\end{array} .\right.
\end{gathered}
$$

Flow equations

$u^{2} \sqrt{f(u)} \partial_{u} \xi_{ \pm}=-2(m L) u \xi_{ \pm}+\left[v_{-}(u) \mp k\right]+\left[v_{+}(u) \pm k\right] \xi_{ \pm}^{2}$,

$$
\begin{gathered}
v_{ \pm}(u)=\frac{1}{\sqrt{f(u)}}\left[\begin{array}{l}
\left.\omega+Q q\left(1-u^{2-d}\right)\right] \pm Q p u^{2-d} . \\
{\left[\begin{array}{l}
\xi_{ \pm} \rightarrow \zeta_{ \pm} \equiv 1 / \xi_{ \pm} \\
p \rightarrow-p
\end{array}\right.} \\
k \rightarrow-k
\end{array}\right. \\
u^{2} \sqrt{f(u)} \partial_{u} \zeta_{ \pm}=+2(m L) u \zeta_{ \pm}-\left[v_{-}(u) \mp k\right]-\left[v_{+}(u) \pm k\right] \zeta_{ \pm}^{2},
\end{gathered}
$$

Flow equations

$u^{2} \sqrt{f(u)} \partial_{u} \xi_{ \pm}=-2(m L) u \xi_{ \pm}+\left[v_{-}(u) \mp k\right]+\left[v_{+}(u) \pm k\right] \xi_{ \pm}^{2}$,

Green functions are -inverses of one another!!

Flow equations

$u^{2} \sqrt{f(u)} \partial_{u} \xi_{ \pm}=-2(m L) u \xi_{ \pm}+\left[v_{-}(u) \mp k\right]+\left[v_{+}(u) \pm k\right] \xi_{ \pm}^{2}$,

$$
\begin{aligned}
& v_{ \pm}(u)=\frac{1}{\sqrt{f(u)}}\left[\omega+Q q\left(1-u^{2-d}\right)\right] \pm Q p u^{2-d} . \\
& \xi_{ \pm} \rightarrow \zeta_{ \pm} \equiv 1 / \xi_{ \pm} \\
& p \rightarrow-p \\
& \forall k \rightarrow-k \\
& u^{2} \sqrt{f(u)} \partial_{u} \zeta_{ \pm}=+2(m L) u \zeta_{ \pm}-\left[v_{-}(u) \mp k\right]-\left[v_{+}(u) \pm k\right] \zeta_{ \pm}^{2},
\end{aligned}
$$

Green functions are -inverses of one another!!
$\operatorname{DetG}_{\mathrm{R}}(\omega, k ; m, p)=\frac{1}{\operatorname{DetG}_{\mathrm{R}}(\omega, k ;-m,-p)}$

Reissner-Nordstrom/AdS

$\operatorname{Re} \operatorname{det} G_{R}(\omega=0, k ; p=-5), \operatorname{Im} d a t G_{R}(\omega=0, k, p=-5)$
:0.5
hep-th: 1404.4010

Re det $G_{R}(\omega=0, \mathrm{k}, \mathrm{p}=5)$, Im det $G_{R}(\omega=0, \mathrm{k} ; \mathrm{p}=5)$

Reissner-Nordstrom/AdS

Re det $G_{R}(\omega=0, \mathrm{k} ; \mathrm{p}=-5), \operatorname{Im} \operatorname{det} G_{R}(\omega=0, \mathrm{k}, \mathrm{p}=-5)$

FIG. 4. Poles at $k=k_{F}$ (blue lines) and zeroes at $k=k_{L}$ (red lines) vs. p with $q=1$. Notice the symmetry under $k \rightarrow-k$, and the duality of poles and zeroes under $p \rightarrow-p$.

General Result

Parameter choices	$G_{ \pm}(\omega, k ; m, p)$	$\operatorname{DetG}_{\mathrm{R}}(\omega, k ; m, p)$
$k \leftrightarrow-k$	$G_{\mp}(\omega,-k ; m, p)$	-
$m=0$	$\frac{-1}{G_{ \pm}(\omega,-k)}$	1
$p=0$	$\frac{-1}{G_{ \pm}(\omega,-k ;-m,-p)}$	$\frac{1}{\operatorname{DetG}_{\mathrm{R}}(\omega, k ;-m,-p)}$
$m \neq 0$ $p \neq 0$		

Gap is due to zeros not vanishing of Z !

General Result

Parameter choices	$G_{ \pm}(\omega, k ; m, p)$	$\operatorname{DetG}_{\mathrm{R}}(\omega, k ; m, p)$
$k \leftrightarrow-k$	$G_{\mp}(\omega,-k ; m, p)$	-
$m=0$	$\frac{-1}{G_{ \pm}(\omega,-k)}$	1
$p=0$	$\frac{-1}{G_{ \pm}(\omega,-k ;-m,-p)}$	$\frac{1}{\operatorname{DetG}_{\mathrm{R}}(\omega, k ;-m,-p)}$
$m \neq 0$ $p \neq 0$		

Gap is due to zeros not vanishing of Z !

Mott problem

Fermi arcs?

Fermi arcs?
consider

$$
i p \Gamma_{\mu \nu} F^{\mu \nu} \rightarrow i p \Gamma \Gamma_{\mu \nu} F^{\mu \nu}
$$

Fermi arcs?
consider
$i p \Gamma_{\mu \nu} F^{\mu \nu} \rightarrow i p \Gamma \Gamma_{\mu \nu} F^{\mu \nu}$

$$
\Gamma=\left(\begin{array}{ll}
-I & 0 \\
0 & I
\end{array}\right)
$$

Fermi arcs?

consider

$$
i p \Gamma_{\mu \nu} F^{\mu \nu} \rightarrow i p \Gamma \Gamma_{\mu \nu} F^{\mu \nu}
$$

$$
\Gamma=\left(\begin{array}{ll}
-I & 0 \\
0 & I
\end{array}\right)
$$

$-k$ and $+k$ have different sign for the Pauli term!!

zeros-pole duality

zeros-pole duality
$i p \Gamma \Gamma_{\mu \nu} F^{\mu \nu} \begin{gathered}\text { coexistence of zeros } \\ \text { and poles }\end{gathered}$
zeros-pole duality
$i^{2} \Gamma \Gamma_{\mu \nu} F^{\mu \nu} \begin{gathered}\text { coexistence of zeros } \\ \text { and poles }\end{gathered}$

zeros-pole duality

zeros-pole duality

Superconducting Instability with unparticles

ladder approximation

$$
1=\lambda T \sum_{n \vec{k}}\left|w_{n \vec{k}}\right|^{2} G_{U}\left(\omega_{n}, \vec{k}\right) G_{U}\left(-\omega_{n},-\vec{k}\right),
$$

tendency towards pairing (any instability which establishes a gap)

tendency towards pairing (any instability which establishes a gap)
see also, dresden group, 1407.8492

prediction: algebraic pairing susceptibility

$$
\begin{gathered}
G\left(\Lambda k, i \Lambda \omega_{n}\right)=\Lambda^{2 d_{U}-D} G\left(k, i \omega_{n}\right) . \\
\chi(0, i \Omega)=\frac{T}{N} \sum_{n, k} G\left(-k,-i \omega_{n}\right) G\left(k, i \omega_{n}+i \Omega\right)
\end{gathered}
$$

prediction: algebraic pairing susceptibility

$$
\begin{gathered}
G\left(\Lambda k, i \Lambda \omega_{n}\right)=\Lambda^{2 d_{U}-D} G\left(k, i \omega_{n}\right) . \\
\chi(0, i \Omega)=\frac{T}{N} \sum_{n, k} G\left(-k,-i \omega_{n}\right) G\left(k, i \omega_{n}+i \Omega\right) \\
\begin{array}{ccc}
\chi(0, i \Omega) & \propto \Omega^{4 d_{U}-D} . \\
d_{U}>D / 2
\end{array}
\end{gathered}
$$

prediction: algebraic pairing susceptibility

$$
\begin{gathered}
G\left(\Lambda k, i \Lambda \omega_{n}\right)=\Lambda^{2 d_{U}-D} G\left(k, i \omega_{n}\right) . \\
\chi(0, i \Omega)=\frac{T}{N} \sum_{n, k} G\left(-k,-i \omega_{n}\right) G\left(k, i \omega_{n}+i \Omega\right)
\end{gathered}
$$

$$
\begin{aligned}
\chi(0, i \Omega) & \propto \Omega^{4 d_{U}-D} \\
d_{U} & >D / 2
\end{aligned}
$$

see also J. Zaanen

