Lifshitz Space-Times for Schrødinger Holography

Quantum Field Theory, String Theory and Condensed Matter Physics Crete, Kolymbari, September 5, 2014

Niels Obers, NBI

based on work with:

Jelle Hartong and Elias Kiritsis

1409.1519 & 1409.1522 & to appear

and

Morten Holm Christensen, Jelle Hartong, Blaise Rollier

1311.4794 (PRD) & 1311.6471 (JHEP)

Introduction

• holography as tool to study strong coupling physics

relevance for phenomenology: holographic QCD, QG plasma, out-of-equilibrium dynamics, thermalization, high T superconductors + other CM systems

done by considering deformations: e.g. temperature, chemical potential,

- surge of interest in applied holography
- many new interesting AdS black hole solutions
- construction of new types of holographic dualities involving non-asympt AdS e.g. Schroedinger, Lifshitz, hyperscaling violating

focus of this talk:

Holography for Lifshitz spacetimes

Lifshitz symmetries

Many systems in nature exhibit critical points with non-relativistic scale invariance

Includes in particular scale invariance with dynamical exponent z>1

$$t \to \lambda^z t$$
, $\vec{x} \to \lambda \vec{x}$.

Such systems typically have Lifshitz symmetries:

Lifshitz algebra (non-zero commutators, not involving rotations)

$$[D_z, H] = -zH$$
, $[D_z, P_i] = -P_i$.

Schroedinger symmetries

example of symmetry group that also cisplays non-relativistic scaling and contains Lifshitz is Schroedinger group

additional symmetries: Galilean boosts particle number symmetry

$$\begin{array}{c}G_i \ (x^i \rightarrow x^i + v^i t) \\ M\end{array}$$

Schroedinger algebra

 $\begin{bmatrix} D_z, H \end{bmatrix} = -zH, \qquad \begin{bmatrix} D_z, P_i \end{bmatrix} = -P_i, \qquad \begin{bmatrix} D_z, M \end{bmatrix} = (z-2)M$ $\begin{bmatrix} D_z, G_i \end{bmatrix} = (z-1)G_i, \qquad \begin{bmatrix} H, G_i \end{bmatrix} = P_i, \qquad \begin{bmatrix} P_i, G_j \end{bmatrix} = M\delta_{ij}$

for z=2: additional special conformal generator K

Lifshitz spacetimes

Aim: construct holographic techniques for (strongly coupled) systems with NR symmetries

Lifshitz holography
$$ds^2 = -rac{dt^2}{r^{2z}} + rac{1}{r^2}\left(dr^2 + dec{x}^2
ight)$$
[Kachru,Liu,Mulligan]
[Taylor]

> Lifshitz (or hyperscaling violating/Bianchi spaces) geometries have appeared as (IR) groundstate geometry of CM type systems

Note: here one can either have AdS or Lifshitz UV completion (possibly with hyperscaling violation) depending on one's interest

- IR geometries (near-horizon) of asympt. AdS backgrounds often involve Lifshitz scaling

-> the IR geometry has its own holographic duality

Motivation and Goal

Why Lifshitz holography

Taylor/Danielson,Thorlacius/Ross,Saremi/Ross/ Baggio,de Boer,Holsheimer/Mann,McNees/ Griffin,Horava,Melby-Thompson/ Korovin,Skenderis,Taylor/ Cheng,Hartnoll,Keeler/Baggio/Holsheimer/ Christensen,Hartong,NO,Rollier Chemissany, Papadimitriou

- how general is the holographic paradigm ?
 (nature of quantum gravity, black hole physics)
- extending to spacetimes that go beyond AdS
- applications of holography to strongly coupled condensed matter systems (non relativistic scaling necessitates spacetimes with different asymptotics)

Goal

 Want to understand more precisely the holographic dictionary in such cases (boundary geometry, holographic renormalization, 1-point functions, stress-energy tensor, ...)

Main results/punchline

- For Lifshitz spacetimes we expect a non-relativistic structure on the boundary: Newton-Cartan geometry (or some generalization thereof):
 - fnd that bdr. geometry is torsional Newton-Cartan geometry (novel extension of NC)
 - find how TNC couples to vevs of the field theory (stress tensor, mass current)

(see also [Jensen] this week)

can provide new insights/tools into cond-mat (strongly-correlated electron system, FQH)

recent activity of using NC/TNC

[Son][Gromov,Abanov][Geracie,Son,Wu,Wu] [Brauner,Endlich,Monin,Penco][Geracie,Son] yesterday: [Wu,Wu] using HL-gravity

find that the dual field theory has Schroedinger symmetries !

Plan

- Newton-Cartan geometry
- asymptotically locally Lifshitz space-times
- two arguments why dual field theory is Schroedinger invariant
- 1. sources (torsional NC geometry), vevs and Ward identities

[Hartong,Kiritsis,NO]1 [Bergshoeff,Hartong,Rosseel]

2. bulk vs. boundary Killing symmetries

[Hartong,Kiritsis,NO]2

Mini-intro to Newton-Cartan geometry

GR is a diff invariant theory whose tangent space is Poincare invariant

Newtonian gravity is diff invariant theory whose tangent space is the Bargmann algebra (non-rel limit of Poincare)

Andringa, Bergshoeff, Panda, de Roo

$$[J_{ab}, P_c] = -2\delta_{c[a}P_{b]}, \qquad [J_{ab}, G_c] = -2\delta_{c[a}G_{b]},$$
$$[G_a, H] = -P_a, \qquad [G_a, P_b] = -\delta_{ab}Z,$$

centrally extended Galilean algebra

here: only interested in geometrical framework; not in EOMs boundary geometry in holographic setup is non-dynamical

From Poincare to GR

GR is a diff invariant theory whose tangent space is Poincare invariant

• make Poincare local (i.e. gauge the translations and rotations)

$$\begin{aligned} A_{\mu} &= P_{a}e_{\mu}^{a} + \frac{1}{2}M_{ab}\omega_{\mu}{}^{ab} \\ F_{\mu\nu} &= \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + [A_{\mu}, A_{\nu}] = P_{a}R_{\mu\nu}{}^{a}(P) + \frac{1}{2}M_{ab}R_{\mu\nu}{}^{ab}(M) \\ \delta A_{\mu} &= \partial_{\mu}\Lambda + [A_{\mu}, \Lambda], \qquad \Lambda = \xi^{\mu}A_{\mu} + \frac{1}{2}M_{ab}\lambda^{ab} \end{aligned}$$

GR (Lorentzian geometry) follows from curvature constraint

$$R_{\mu\nu}{}^{a}(P) = 0 \begin{cases} \omega_{\mu}{}^{ab} = \text{spin connection: expr. in terms of } e^{a}_{\mu} \\ \delta A_{\mu} = \mathcal{L}_{\xi} A_{\mu} + \frac{1}{2} M_{ab} \partial_{\mu} \lambda^{ab} + \frac{1}{2} [A_{\mu}, M_{ab}] \lambda^{ab} \\ R_{\mu\nu}{}^{ab}(M) = \text{Riemann curvature 2-form} \\ \nabla_{\mu} \text{ defined via vielbein postulate} \end{cases}$$

From Bargmann to NC

Andringa,Bergshoeff,Panda,de Roo

Newtonian gravity is a diff invariant theory whose tangent space is Bargmann (make Bargmann local)

symmetry	generators	gauge field	parameters	curvatures
time translations	Н	$ au_{\mu}$	$\zeta(x^{\nu})$	$R_{\mu\nu}(H)$
space translations	P^a	$e_{\mu}{}^{a}$	$\zeta^a(x^ u)$	$R_{\mu\nu}{}^a(P)$
boosts	G^a	$\omega_{\mu}{}^{a}$	$\lambda^a(x^ u)$	$R_{\mu\nu}{}^a(G)$
spatial rotations	J^{ab}	$\omega_{\mu}{}^{ab}$	$\lambda^{ab}(x^{ u})$	$R_{\mu\nu}{}^{ab}(J)$
central charge transf.	Z	m_{μ}	$\sigma(x^{\nu})$	$R_{\mu\nu}(Z)$

curvature constraints $R_{\mu\nu}(H) = R_{\mu\nu}{}^a(P) = R_{\mu\nu}(M) = 0.$

leaves as independent fields:

$$au_{\mu},\,e^{a}_{\mu},\,m_{\mu}$$

transforming as

$$\begin{split} \delta \tau_{\mu} &= \mathcal{L}_{\xi} \tau_{\mu} \\ \delta e^{a}_{\mu} &= \mathcal{L}_{\xi} e^{a}_{\mu} + \lambda^{a} \tau_{\mu} + \lambda^{a}_{b} e^{b}_{\mu} \\ \delta m_{\mu} &= \mathcal{L}_{\xi} m_{\mu} + \partial_{\mu} \sigma + \lambda_{a} e^{a}_{\mu} \end{split}$$

Lessons from z=2 holographic Lifshitz model

[Christensen,Hartong,NO,Rollier]

considered first a specific z=2 example (in 4D) that can be obtained by Scherk-Schwarz dim. reduction (null on bdry) froma 5D AlAdS solution

[Donos,Gauntlet][Cassani,Faedo][Chemissany,Hartong]

counterterms and reduction: [Papadimitriou][Chemissany,Geisbuehler,Hartong,Rollier]

important lessons:

- use of vielbeins highly advised (see also [Ross])
- identification of sources requires appropriate lin. combo of timelike vielbein and bulk gauge field

(-> crucial for boundary gauge field)

- bdr. geometry is torsional Newton-Cartan
- can compute unique gauge and tangent space inv. bdry stres tensor
- WIs take TNC covariant form
- conserved quantities from WIs and TNC (conformal) Killing vectors

EPD model and AlLif spacetimes

bulk theory

$$S = \int d^4x \sqrt{-g} \left(R - \frac{1}{4} Z(\Phi) F^2 - \frac{1}{2} (\partial \Phi)^2 - \frac{1}{2} W(\Phi) B^2 - V(\Phi) \right)$$

• admits Lifshitz solutions with z>1

For AlLif BCs useful to write:

$$ds^{2} = \frac{dr^{2}}{R(\Phi)r^{2}} - E^{0}E^{0} + \delta_{ab}E^{a}E^{b}, \qquad B_{M} = A_{M} - \partial_{M}\Xi$$

then AlLif BCs

[Ross],[Christensen,Hartong,NO,Rollier] [Hartong,Kiritsis,NO]1

$$\begin{array}{rclcrc} E^0_\mu & \propto & r^{-z}\tau_\mu + \dots & & E^a_\mu & \propto & r^{-1}e^a_\mu + \dots \\ A_\mu - \alpha(\Phi)E^0_\mu & \propto & r^{z-2}\tilde{m}_\mu + \dots & & A_r & = & (z-2)r^{z-3}\chi + \dots \\ \Xi & = & r^{z-2}\chi + \dots & & \Phi & = & r^\Delta\phi + \dots \end{array}$$

Transformation of sources

[Bergshoeff,Hartong,Rosseel] [Hartong,Kiritsis,NO]1

use local bulk symmetries:

local Lorentz, gauge transformations and diffs preserving metric gauge

these symmetries induce an action on sources:

 $au_{\mu},\,e^a_{\mu},\, ilde{m}_{\mu},\,\chi$

= action of Bargmann algebra plus local dilatations = Schroedinger

there is thus a Schroedinger Lie algebra valued connection given by

$$\begin{split} A_{\mu} &= H\tau_{\mu} + P_a e^a_{\mu} + M m_{\mu} + \frac{1}{2} J_{ab} \omega_{\mu}{}^{ab} + G_a \omega_{\mu}{}^a + D b_{\mu} \\ & \text{with} \qquad \tilde{m}_{\mu} = m_{\mu} - (z-2) \chi b_{\mu} \end{split}$$

with appropriate curvature constrains that reproduces trafos of the sources

Torsional Newton-Cartan (TNC) geometry

the bdry geometry is novel extension of NC geometry

source	ϕ	$ au_{\mu}$	e^a_μ	v^{μ}	e^{μ}_{a}	$ ilde{m}_0$	\tilde{m}_a	χ
scaling dimension	Δ	-z	-1	z	1	2z-2	z-1	z-2

includes inverse veilbeins (v^{μ}, e^{μ}_{a})

$$v^{\mu}\tau_{\mu} = -1$$
, $v^{\mu}e^{a}_{\mu} = 0$, $e^{\mu}_{a}\tau_{\mu} = 0$, $e^{\mu}_{a}e^{b}_{\mu} = \delta^{b}_{a}$

from (inverse) vielbeins and vector: $M_{\mu} = ilde{m}_{\mu} - \partial_{\mu}\chi$

can build Galilean boost-invariants

$$\begin{array}{rclcrcl} h^{\mu\nu} & = & \delta^{ab} e^{\mu}_{a} e^{\nu}_{b} \,, & \hat{v}^{\mu} & = & v^{\mu} - h^{\mu\nu} M_{\nu} \\ \bar{h}_{\mu\nu} & = & \delta_{ab} e^{a}_{\mu} e^{b}_{\nu} - \tau_{\mu} M_{\nu} - \tau_{\nu} M_{\mu} \,, & \Phi_{N} & = & -v^{\mu} M_{\mu} + \frac{1}{2} h^{\mu\nu} M_{\mu} M_{\nu} \end{array}$$

affine connection of TNC

$$\Gamma^{\rho}_{\mu\nu} = -\hat{v}^{\rho}\partial_{\mu}\tau_{\nu} + \frac{1}{2}h^{\rho\sigma}\left(\partial_{\mu}\bar{h}_{\nu\sigma} + \partial_{\nu}\bar{h}_{\mu\sigma} - \partial_{\sigma}\bar{h}_{\mu\nu}\right)$$
with torsion $\Gamma^{\rho}_{[\mu\nu]} = -\frac{1}{2}\hat{v}^{\rho}(\partial_{\mu}\tau_{\nu} - \partial_{\nu}\tau_{\mu})$

Vevs, EM tensor and mass current

assuming holographic renormalizability -> general form of variation of on-shell action

$$\delta S_{\rm ren}^{\rm os} = \int d^3x e \left[-S^0_\mu \delta v^\mu + S^a_\mu \delta e^\mu_a + T^0 \delta \tilde{m}_0 + T^a \delta \tilde{m}_a + \langle O_\chi \rangle \delta \chi + \langle \tilde{O}_\phi \rangle \delta \phi - \mathcal{A}_{(\prime)} \frac{\delta r}{r} \right]$$

local bulk symmetries induce transformation on vevs (cf. sources)
-> exhibit again Schroedinger symmetry

from vevs & sources:	${\cal T}^{\mu}{}_{ u}$	=	$-\left(S^{0}_{\nu}+T^{0}\partial_{\nu}\chi\right)v^{\mu}+\left(S^{a}_{\nu}+T^{a}\partial_{\nu}\chi\right)e^{\mu}_{a}$	
bdyr EM tensor- mass current	T^{μ}	=	$-T^0v^\mu + T^a e^\mu_a$	

tangent space projections provide energy density, energy flux, momentum density, stress, mass density, mass current

$\mathcal{T}_{\mu}{}^{\nu}\tau_{\nu}\hat{v}^{\mu}$	$\mathcal{T}_{\mu}{}^{\nu}\tau_{\nu}e^{\mu}_{a}$	$\mathcal{T}_{\mu}{}^{ u}\hat{e}^a_{ u}\hat{v}^{\mu}$	$\mathcal{T}_{\mu}{}^{ u}\hat{e}^a_{ u}e^{\mu}_b$	$T^{\mu}\tau_{\mu}$	$T^{\mu} \hat{e}^{a}_{\mu}$
z+2	3	2z + 1	z+2	4-z	3

Covariant Ward identities

Ward identities: (ignore for simplicity dilaton scalar)

- uses Galilean boost invariant vielbeins and density e

- ∇_{μ} contains affine TNC connection
- \mathcal{D}_{μ} contains Bargmann boost and rotation connections

TNC Killing vectors and flat NC spacetime

Conserved currents $\partial_{\mu} \left(e K^{\nu} \mathcal{T}^{\mu}{}_{\nu} \right) = 0^{-1}$ [Kiritsis, Hartong, NO]2

whenever K is a TNC Killing vector:

$$\begin{array}{rcl} \mathcal{L}_{K}\tau_{\mu} &=& -z\Omega\tau_{\mu}\,, & \mathcal{L}_{K}\hat{v}^{\mu} &=& z\Omega\hat{v}^{\mu}\,, & \mathcal{L}_{K}\bar{h}_{\mu\nu} &=& -2\Omega\bar{h}_{\mu\nu} \\ \mathcal{L}_{K}h^{\mu\nu} &=& 2\Omega h^{\mu\nu}\,, & \mathcal{L}_{K}\Phi_{N} &=& 2(z-1)\Omega\Phi_{N}\,, & \mathcal{A}\Omega &=& 0 \end{array}$$

notion of flat NC space-time

$ au_{\mu}$	=	$\delta^t_\mu \ \delta^{ij} \delta^\mu_i \delta^ u_j$	fixing diffs fixing diffs and flat space
		$-\delta^{\mu}_{t}$	fixing boosts
		$\delta_{ij} \check{\delta}^i_\mu \delta^j_ u$	forced by other choices
M_{μ}	=	$\partial_{\mu}M$	global inertial coordinates: $\Gamma^{\rho}_{\mu\nu} = 0$
Φ_N	=	0	no Newton potential

Conformal Killing vectors of flat NC spactime

the conformal Killing vectors are:

$$\begin{split} K^t &= a - z\lambda t - \alpha t^z \\ K^i &= a^i + v^i t + \lambda^i{}_j x^j - \lambda x^i - \alpha t^{z-1} x^i \\ \Omega &= \lambda + \alpha t^{z-1} \end{split}$$

provided we can solve

$$\mathcal{L}_{K}M = v^{i}x^{i} - \frac{1}{2}(z-1)\alpha t^{z-2}x^{i}x^{i} + (z-2)\Omega M$$

$$0 = \partial_{t}M + \frac{1}{2}\partial_{i}M\partial^{i}M \quad \text{due to } \Phi_{N} = 0 \text{ and } M_{\mu} = \partial_{\mu}M$$

Two solutions: $\begin{cases}
M = \text{cst} \to \text{conf. KVs: } H, D, P_i, J_{ij} \\
M = \frac{x^i x^i}{2t} \to \text{conf. KVs: } K, D, G_i, J_{ij}
\end{cases}$ Schr has outer automorphsim $(H, P_i, D, J_{ii}) \leftrightarrow (-K, G_i, -D, J_{ij})$

Field theory on TNC backgrounds

• Action for Schroedinger equation on TNC background

$$S = \int d^{d+1}x e \left[-i\phi^* \hat{v}^\mu \partial_\mu \phi + i\phi \hat{v}^\mu \partial_\mu \phi^* - h^{\mu\nu} \partial_\mu \phi \partial_\nu \phi^* + \phi \phi^* \Phi_N - V(\phi \phi^*) \right]$$

on flat NC background this becomes:

$$S = \int d^{d+1}x \left[i\phi^* \left(\partial_t \phi + i\phi \partial_t M \right) - i\phi \left(\partial_t \phi^* - i\phi^* \partial_t M \right) \right. \\ \left. -\delta^{ij} \left(\partial_i \phi + i\phi \partial_i M \right) \left(\partial_j \phi^* - i\phi^* \partial_j M \right) - V(\phi \phi^*) \right]$$

wave function ψ defined as $\phi = e^{-iM}\psi$.

 $M = \operatorname{cst}$ spacetime symmetries = Lifshitz subalgebra of Sch given by
 H, D, P_i and J_{ij} $M = \frac{x^i x^i}{2t}$ spacetime symmetries = Lifshitz subalgebra of Sch given by
K, D, G and J_{ij}

Bulk perspective of two solutions

 $M = \operatorname{cst}$ Lifshitz algebra and dual bulk

 $H = \partial_t \,, \quad P_i = \partial_i \,, \quad D = zt\partial_t + x^i\partial_i + r\partial_r \,, \quad J_{ij} = x^i\partial_j - x^j\partial_i$

$$ds^{2} = -\frac{dt^{2}}{r^{2z}} + \frac{dr^{2}}{r^{2}} + \frac{dx^{i}dx^{i}}{r^{2}}$$

 $M = \frac{x^i x^i}{2t}$ Lifshitz algebra and dual bulk

$$\begin{split} K &= t^z \partial_t + t^{z-1} (x^i \partial_i + r \partial_r) \,, \quad G_i = t \partial_i \,, \quad D = z t \partial_t + x^i \partial_i + r \partial_r \,, \quad J_{ij} \\ &ds^2 = \left(-\frac{1}{r^{2z}} + \frac{1}{t^2} \right) dt^2 - \frac{2drdt}{rt} + \frac{dr^2}{r^2} + \frac{1}{r^2} \left(dx^i - \frac{x^i}{t} dt \right)^2 \end{split}$$

Large diff relating the two bulk solutions !

$$\bar{t} = \frac{1}{1-z} t^{1-z}, \qquad \bar{x}^i = \frac{x^i}{t}, \qquad \bar{r} = \frac{r}{t}$$

Next steps

- subleading terms in asymtotic expansion and counterterms
- comparison to linearized perturbations
- adding other exponents: (logarithmic running of scalar) alpha/zeta-deformation

 $A_a = r^{-z-\zeta} \alpha_{(0)} \tau_{(0)a}$ [Kiritsis,Goutereaux][Gath,Hartong,Monteiro,NO]

- adding charge
- 3D bulk (Virasoro-Schroedinger)
- applications to hydrodynamics:
 black branes with zero/non-zero particle number density ?
- Schroedinger holography
- HL gravity and Einstein-aether theories

Discussion and Outlook

defined sources for AlLif spacetimes and shown that they

- transform under local Schroedinger group
- describe torsional NC boundary geometry
- lead to Sch Ward identities for bdry stress tensor and mass current

TNC of growing interest in cond-mat (str-el, mes-hall) literature

developments in Lifshitz holography can drive development of tools to study dynamics and hydrodynamics of non-rel. systems

(in parallel to progress in the last many years in relativistic fluids and superfluids inspired from the fluid/gravity correspondence in AdS)

TNC right ingredients to start constructing effective TNC theories and their coupling to matter (e.g. QH-effect)

The end