Exact results for Kardar-Parisi-Zhang growth equation from replica Bethe ansatz and sine-Gordon field theory
P. Le Doussal
(LPTENS) Paris

KPZ is a NL stochastic growth equation Kardar-Parisi-Zhang
1985-1990 exact scaling exponents $\mathrm{d}=1$
burgers, random directed polymer,..
2000-2010 many solvable (discrete) models in physics and mathematics found to exhibit same large scale universality called KPZ class ($\mathrm{d}=1$) related to random matrix theory:
Tracy-Widom distributions of largest eigenvalue of GUE, GOE..

KPZ is a NL stochastic growth equation Kardar-Parisi-Zhang (1986)

1985-1990 exact scaling exponents $\mathrm{d}=1$
burgers, random directed polymer,..
2000-2010 many solvable (discrete) models in physics and mathematics found to exhibit same large scale universality called KPZ class ($\mathrm{d}=1$) related to random matrix theory: Tracy Widom distributions of largest eigenvalue of GUE, GOE..

2010-now \quad - exact solutions directly continuum KPZ eq./DP (at all times) methods integrability (Bethe Ansatz) + disorder (replica)

- new very controled precise experiments
- new systems in KPZ class big and growing!
- rigorous definition KPZ and stochastic eqs.

Hairer's Fields medal

- broader mathematical picture of "stochastic integrability" rigorous results, "rigorous replica"

Exact results for the Kardar-Parisi-Zhang equation from replica Bethe ansatz and sine-Gordon field theory
P. Le Doussal
(LPTENS) Paris

outline:

- growth of 1D interfaces

KPZ equation, KPZ universality class

- random matrix theory largest eigenvalues (Tracy Widom universal distributions)
- solving KPZ using (imaginary time) quantum mechanics attractive bose gas (integrable) => TW distribution for KPZ
- KPZ from sine-Gordon QFT
- droplet initial condition
- flat initial condition

Universality, symmetries (RMT) initial conditions (KPZ)
with : Pasquale Calabrese (Univ. Pise)
also: Alberto Rosso (LPTMS Orsay) Thomas Gueudre (LPTENS)
P. Calabrese, P. Le Doussal, A. Rosso EPL 9020002 (2010)
P. Calabrese, P. Le Doussal, Phys. Rev. Letters 106250603 (2011) and J. Stat. Mech. P06001 (2012) T. Gueudre, P. Le Doussal, EPL 10026006 (2012).
also works by: V. Dotsenko
H. Spohn, T. Sasamoto
also: (math) A. Borodin, I. Corwin, J. Quastel, N. O'Connell..
also G. Schehr, Reymenik, Ferrari ..
reviews KPZ: Corwin arXiv 1106.1596, H. Spohn..
RMT: Mehta's book, Edelman, Fyodorov, Majumdar,..

Universal Fluctuations of Growing Interfaces: Evidence in Turbulent Liquid Crystals

Kazumasa A. Takeuchi* and Masaki Sano
Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
(Received 28 January 2010; published 11 June 2010)

measure

Experimental evidence. We study the convection of nematic liquid crystal, confined in a thin container and driven by an electric field ${ }^{19,20}$, and focus on the interface between two turbulent states, called dynamic scattering modes 1 and 2 (DSM1 and DSM2) ${ }^{20,21}$. The latter consists of a large quantity of topological defects and can be created by nucleating a defect with a ultraviolet laser pulse. Whereas

$$
\simeq t^{1 / 3} F\left[\ell / t^{2 / 3}\right]
$$

interface is random self-affine

$$
h \sim t^{1 / 3} \sim x^{1 / 2}
$$

$$
x \sim t^{2 / 3} \quad \mathrm{z}=3 / 2
$$

$$
\begin{aligned}
& t(\mathrm{~s}) \quad h(x, t) \simeq_{t \rightarrow+\infty} v_{\infty} t+\chi t^{1 / 3} \\
& w(l, t) \equiv\left\langle\sqrt{\left\langle\left[h(x, t)-\langle h\rangle_{l}\right]^{2}\right\rangle_{l}}\right\rangle \\
& \chi \text { is a random variable }
\end{aligned}
$$

how to model a growing interface ?

Edwards-Wilkinson

$$
\partial_{t} h=\nu \partial_{x}^{2} h+\eta(x, t)+v
$$

surface tension
noise

$$
\overline{\eta(x, t) \eta\left(x^{\prime}, t^{\prime}\right)}=D \delta\left(x-x^{\prime}\right) \delta\left(t-t^{\prime}\right)
$$

how to model a growing interface ?

Edwards-Wilkinson

$$
\partial_{t} h=\nu \partial_{x}^{2} h+\eta(x, t)+v
$$

surface tension
noise

$$
\begin{array}{ll}
h_{\omega, q}=\frac{\eta_{\omega, q}}{\nu q^{2}+i \omega} & \overline{\eta(x, t) \eta\left(x^{\prime}, t^{\prime}\right)}=D \delta\left(x-x^{\prime}\right) \delta\left(t-t^{\prime}\right) \\
\overline{h h}(q, \omega)=\frac{D}{\nu^{2} q^{4}+\omega^{2}} & h \sim t^{1 / 4} \sim x^{1 / 2} \\
x \sim t^{1 / 2}
\end{array}
$$

$P(h)$ is gaussian, simple diffusive dynamics

Kardar Parisi Zhang equation

Phys Rev Lett 56889 (1986)

$\partial_{t} h=\nu \partial_{x}^{2} h+\frac{\lambda_{0}}{2}\left(\partial_{x} h\right)^{2}+\eta(x, t)$ diffusion
 noise

growth of an interface of height $h(x, t)$

$$
\overline{\eta(x, t) \eta\left(x^{\prime}, t^{\prime}\right)}=D \delta\left(x-x^{\prime}\right) \delta\left(t-t^{\prime}\right)
$$

-1D scaling exponents

- $\mathrm{P}(\mathrm{h}=\mathrm{h}(\mathrm{x}, \mathrm{t}))$ non gaussian
depends on some details of initial condition
flat wedge $h(x, 0)=0$ (droplet)
$\lambda_{0}=0 \quad$ Edwards Wilkinson $\mathrm{P}(\mathrm{h})$ gaussian

$h \sim t^{1 / 3} \sim x^{1 / 2} \quad$ Also reported in:

slow combustion of paper
J. Maunuksela et al. PRL 791515 (1997)
bacterial colony growth
Wakita et al. J. Phys. Soc. Japan. 66, 67 (1996)
fronts of chemical reactions
S. Atis (2012)
formation of coffee rings via evaporation
Yunker et al. PRL (2012)
but.. quenched disorder, LR interactions..
KPZ needs local growth mechanism

Random matrix theory

Large N by N random matrices H , with Gaussian independent entries eigenvalues $\lambda_{i} \quad i=1, \ldots N$
$P[\lambda]=c_{N, \beta} \prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} e^{-\frac{\beta N}{4} \sum_{k=1}^{N} \lambda_{k}^{2}}$
1 (GOE) real symmetric
$\beta=2$ (GUE) hermitian
4 (GSE) symplectic
Universality large N :

- DOS: semi-circle law

histogram of eigenvalues $N=25000$
- distribution of the largest eigenvalue
$H \rightarrow N H$

$$
\lambda_{\max }=2 N+\chi N^{1 / 3}
$$

$$
\operatorname{Prob}(\chi<s)=F_{\beta}(s) \quad \text { Tracy Widom (1994) }
$$

Tracy-Widom distributions (largest eigenvalue of RM)

GOE $\quad F_{1}(s)=\operatorname{Det}\left[I-K_{1}\right] \quad \begin{aligned} & \text { Fredhoim } \\ & \text { determinants }\end{aligned}$

$$
K_{1}(x, y)=\theta(x) A i(x+y+s) \theta(y)
$$

$$
(I-K) \phi(x)=\phi(x)-\int_{y} K(x, y) \phi(y)
$$

$K_{A i}(x, y)=\int_{v>0} A i(x+v) A i(y+v)$
tails

Ai(x-E)
is eigenfunction E particle linear potential

Exact solutions of discrete models

discrete models in KPZ class/exact results

- polynuclear growth model (PNG)

Prahofer, Spohn, Baik, Rains (2000)

discrete models in KPZ class/exact results

- polynuclear growth model (PNG)

Prahofer, Spohn, Baik, Rains (2000)

- totally asymmetric exclusion process (TASEP)

Red boxes are added independently at rate 1. Equivalently, particles with no neighbour on the right jump independently with waiting time distributed as $\exp (-x) d x$.
discrete models in KPZ class/exact results

- polynuclear growth model (PNG)

Prahofer, Spohn, Baik, Rains (2000)

- totally asymmetric exclusion process (TASEP)

Red boxes are added independently at rate 1. Equivalently, particles with no neighbour on the right jump independently with waiting time distributed as $\exp (-x) d x$.
q -TASEP
rate $1-q^{\text {gap }}$

Exact results for height distributions for some discrete models in KPZ class

- PNG model

Baik, Deft, Johansson (1999)

$$
h(0, t) \simeq_{t \rightarrow \infty} 2 t+t^{1 / 3} \chi \quad \text { GUE }
$$

Prahofer, Spohn, Ferrari, Sasamoto,.. (2000+) flat IC $\quad \chi=\chi_{1} \quad$ GOE

- similar results for TASEP Johansson (1999), ...
(2000-2010) multi-point correlations Airy processes

$$
\begin{array}{ll}
A_{2}(y) & \text { GUE } \\
A_{1}(y) & \text { GOE }
\end{array}
$$

$$
h\left(y t^{2 / 3}, t\right) \simeq_{t \rightarrow \infty} 2 t-\frac{y^{2}}{2 t}+t^{1 / 3} A_{n}(y)
$$

Exact results for height distributions for some discrete models in KPZ class

- PNG model

> Baik, Deft, Johansson (1999)

$$
h(0, t) \simeq_{t \rightarrow \infty} 2 t+t^{1 / 3} \chi \quad \text { GUE }
$$

Prahofer, Spohn, Ferrari, Sasamoto,.. (2000+)

$$
\text { flat IC } \quad \chi=\chi_{1} \quad \text { GOE }
$$

- similar results for TASEP Johansson (1999), ...
(2000-2010) multi-point correlations Airy processes

$$
\begin{array}{ll}
A_{2}(y) & \text { GUE } \\
A_{1}(y) & \text { GOE }
\end{array}
$$

$$
h\left(y t^{2 / 3}, t\right) \simeq_{t \rightarrow \infty} 2 t-\frac{y^{2}}{2 t}+t^{1 / 3} A_{n}(y)
$$

- Longest increasing subsequence of a random permutation

$$
\begin{gathered}
\{1,2,3, \ldots, N\} \\
N=10 \quad\{8,2,7, \underline{1}, \underline{3}, \underline{4}, 10, \underline{6}, 9,5\} \\
l_{N}=5
\end{gathered} \quad \begin{gathered}
l_{N} \rightarrow 2 \sqrt{N}+N^{1 / 6} \chi \\
\text { Baik, Deft, Johansson (1999) }
\end{gathered} \text { directed paths }
$$

Continuum KPZ via replica

Question: is KPZ equation in KPZ class ?

Continuum
KPZ equation

Directed paths (polymers) in a random potential

\downarrow
Quantum mechanics of bosons (imaginary time)

Kardar 87

Continuum DP fixed endpoint/KPZ Narrow wedge (droplet)
Replica Bethe Ansatz (RBA)

- P. Calabrese, P. Le Doussal, A. Rosso EPL 9020002 (2010)
- V. Dotsenko, EPL 9020003 (2010) J Stat Mech P07010 Dotsenko Klumov P03022 (2010).

Weakly ASEP

- T Sasamoto and H. Spohn PRL 104230602 (2010)

Nucl Phys B 834523 (2010) J Stat Phys 140209 (2010).

- G.Amir, I.Corwin, J.Quastel Comm.Pure.Appl.Math. 64466 (2011)

Continuum DP one free endpoint/KPZ Flat (RBA)
P. Calabrese, P. Le Doussal, PRL 106250603 (2011) and J. Stat. Mech. P06001 (2012)

ASEP J. Quastel, J. Ortmann and D. Remenik in preparation

Cole Hopf mapping

KPZ equation:

$$
\partial_{t} h=\nu \partial_{x}^{2} h+\frac{\lambda_{0}}{2}\left(\partial_{x} h\right)^{2}+\eta(x, t)
$$

define:

$$
\begin{aligned}
Z(x, t)=e^{\frac{\lambda_{0}}{2 \nu} h(x, t) \quad \lambda_{0} h(x, t)=} & T \ln Z(x, t) \\
& T=2 \nu
\end{aligned}
$$

it satisfies:

$$
\partial_{t} Z=\frac{T}{2} \partial_{x}^{2} Z-\frac{V(x, t)}{T} Z
$$

$$
\lambda_{0} \eta(x, t)=-V(x, t)
$$

describes directed paths in random potential $\mathrm{V}(\mathrm{x}, \mathrm{t})$

$$
\partial_{t} Z=\frac{T}{2 \kappa} \partial_{x}^{2} Z-\frac{V(x, t)}{T} Z
$$

initial conditions

$$
e^{\frac{\lambda_{0}}{2 \nu} h(x, t)}=\int d y Z(x, t \mid y, 0) e^{\frac{\lambda_{0}}{2 \nu} h(y, t=0)}
$$

1) DP both fixed endpoints $Z\left(x_{0}, t \mid x_{0}, 0\right)$

KPZ: narrow wedge <=> droplet initial condition

$$
\begin{gathered}
h(x, t=0)=-w|x| \\
w \rightarrow \infty
\end{gathered}
$$

2) DP one fixed one free endpoint $\quad \int d y Z\left(x_{0}, t \mid y, 0\right)$

KPZ: flat initial condition

$$
h(x, t=0)=0
$$

Schematically

$$
Z=e^{\frac{\lambda_{0} h}{2 \nu}}
$$

calculate

$$
\overline{Z^{n}}=\int d Z Z^{n} P(Z) \quad n \in \mathbb{N}
$$

"guess" the probability distribution from its integer moments:

$$
P(Z) \rightarrow P(\ln Z) \rightarrow P(h)
$$

Quantum mechanics and Replica..

$\mathcal{Z}_{n}:=\overline{Z\left(x_{1}, t \mid y_{1}, 0\right) . . Z\left(x_{n}, t \mid y_{n} 0\right)}=\left\langle x_{1}, . . x_{n}\right| e^{-t H_{n}}\left|y_{1}, . . y_{n}\right\rangle$
$\partial_{t} \mathcal{Z}_{n}=-H_{n} \mathcal{Z}_{n}$
$x=T^{3} \kappa^{-1} \tilde{x} \quad, \quad t=2 T^{5} \kappa^{-1} \tilde{t}$
drop the tilde..

$$
H_{n}=-\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}-2 \bar{c} \sum_{1 \leq i<j \leq n} \delta\left(x_{i}-x_{j}\right)
$$

Attractive Lieb-Lineger (LL) model (1963)

what do we need from quantum mechanics?

- KPZ with droplet initial condition
μ eigenstates
= fixed endpoint DP partition sum
E_{μ} eigen-energies

$$
e^{-t H}=\sum_{\mu}\left|\mu>e^{-E_{\mu} t}<\mu\right|
$$

$\overline{Z\left(x_{0} t \mid x_{0} 0\right)^{n}}=<x_{0} \ldots x_{0}\left|e^{-t H_{n}}\right| x_{0}, . . x_{0}>$ symmetric states = bosons

$$
=\sum_{\mu} \Psi_{\mu}^{*}\left(x_{0} \ldots x_{0}\right) \Psi_{\mu}\left(x_{0} \ldots x_{0}\right) \frac{1}{\|\mu\|^{2}} e^{-E_{\mu} t}
$$

what do we need from quantum mechanics?

- KPZ with droplet initial condition
μ eigenstates
= fixed endpoint DP partition sum
E_{μ} eigen-energies

$$
e^{-t H}=\sum_{\mu}\left|\mu>e^{-E_{\mu} t}<\mu\right|
$$

$\overline{Z\left(x_{0} t \mid x_{0} 0\right)^{n}}=<x_{0} \ldots x_{0}\left|e^{-t H_{n}}\right| x_{0}, . . x_{0}>$
symmetric states $=$ bosons

$$
=\sum_{\mu} \Psi_{\mu}^{*}\left(x_{0} \ldots x_{0}\right) \Psi_{\mu}\left(x_{0} \ldots x_{0}\right) \frac{1}{\|\mu\|^{2}} e^{-E_{\mu} t}
$$

- flat initial condition

$$
\overline{\left(\int_{y} Z\left(x_{0} t \mid y 0\right)\right)^{n}}=\sum_{\mu} \Psi_{\mu}^{*}\left(x_{0}, . x_{0}\right) \int_{y_{1}, y_{n}} \Psi_{\mu}\left(y_{1}, . y_{n}\right) \frac{1}{\|\mu\|^{2}} e^{-E_{\mu} t}
$$

LL model: n bosons on a ring with local delta attraction

$$
H_{n}=-\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}-2 \bar{c} \sum_{1 \leq i<j \leq n} \delta\left(x_{i}-x_{j}\right)
$$

LL model: n bosons on a ring with local delta attraction

$$
H_{n}=-\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}-2 \bar{c} \sum_{1 \leq i<j \leq n} \delta\left(x_{i}-x_{j}\right)
$$

Bethe Ansatz:

all (un-normalized) eigenstates are of the form (plane waves + sum over permutations)

$$
\begin{array}{r}
\Psi_{\mu}=\sum_{P} A_{P} \prod_{j=1}^{n} e^{i \lambda_{P_{\ell}} x_{\ell}} \\
E_{\mu}=\sum_{j=1}^{n} \lambda_{j}^{2}
\end{array}
$$

They are indexed by a set of rapidities $\lambda_{1}, . . \lambda_{n}$

LL model: n bosons on a ring with local delta attraction

$$
H_{n}=-\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}-2 \bar{c} \sum_{1 \leq i<j \leq n} \delta\left(x_{i}-x_{j}\right)
$$

Bethe Ansatz:

all (un-normalized) eigenstates are of the form (plane waves + sum over permutations)

$$
\begin{array}{r}
\Psi_{\mu}=\sum_{P} A_{P} \prod_{j=1}^{n} e^{i \lambda_{P_{\ell}} x_{\ell}} \\
E_{\mu}=\sum_{j=1}^{n} \lambda_{j}^{2}
\end{array}
$$

They are indexed by a set of rapidities $\lambda_{1}, . . \lambda_{n}$
which are determined by solving the N coupled Bethe equations (periodic BC)

$$
e^{i \lambda_{j} L}=\prod_{\ell \neq j} \frac{\lambda_{j}-\lambda_{\ell}-i \bar{c}}{\lambda_{j}-\lambda_{\ell}+i \bar{c}}
$$

n bosons+attraction => bound states

Bethe equations + large L => rapidities have imaginary parts
Derrida Brunet 2000

- ground state $=$ a single bound state of n particules Kardar 87

$$
\psi_{0}\left(x_{1}, . . x_{n}\right) \sim \exp \left(-\frac{\bar{c}}{2} \sum_{i<j}\left|x_{i}-x_{j}\right|\right) \quad E_{0}(n)=-\frac{\bar{c}^{2}}{12} n\left(n^{2}-1\right)
$$

$\overline{Z^{n}}=\overline{e^{n \ln Z}} \quad \sim_{t \rightarrow \infty} e^{-t E_{0}(n)} \sim e^{\frac{\bar{c}^{2}}{12} n^{3} t}$
exponent $1 / 3$
can it be continued in n ?

n bosons+attraction => bound states

Bethe equations + large L => rapidities have imaginary parts
Derrida Brunet 2000

- ground state $=$ a single bound state of n particules Kardar 87

$$
\psi_{0}\left(x_{1}, . . x_{n}\right) \sim \exp \left(-\frac{\bar{c}}{2} \sum_{i<j}\left|x_{i}-x_{j}\right|\right) \quad E_{0}(n)=-\frac{\bar{c}^{2}}{12} n\left(n^{2}-1\right)
$$

$$
\overline{Z^{n}}=\overline{e^{n \ln Z}} \quad \sim_{t \rightarrow \infty} e^{-t E_{0}(n)} \sim e^{\frac{\bar{c}^{2}}{12} n^{3} t}
$$

$$
\text { exponent } 1 / 3
$$ can it be continued in n ?

need to sum over all eigenstates !

- all eigenstates are: All possible partitions of n
into ns "strings" each with mj particles and momentum kj

$$
E_{\mu}=\sum_{j=1}^{n_{s}}\left(m_{j} k_{j}^{2}-\frac{\bar{c}^{2}}{12} m_{j}\left(m_{j}^{2}-1\right)\right)
$$

Integer moments of partition sum: fixed endpoints (droplet IC)

$$
\begin{aligned}
& \overline{Z^{n}}=\sum_{\mu} \frac{\left|\Psi_{\mu}(0 . .0)\right|^{2}}{\|\mu\|^{2}} e^{-E_{\mu} t}
\end{aligned} \quad \begin{aligned}
& \Psi_{\mu}(0 . .0)=n! \\
& \text { norm of states: Calabrese-Caux (2007) } \\
& \overline{\hat{Z}^{n}}=\sum_{n_{s}=1}^{n} \frac{n!}{n_{s}!(2 \pi \bar{c})^{n_{s}}} \sum_{\left(m_{1}, \ldots m_{n_{s}}\right)_{n}} n=\sum_{j=1}^{n_{s}} m \\
& \int \prod_{j=1}^{n_{s}} \frac{d k_{j}}{m_{j}} \Phi[k, m] \prod_{j=1}^{n_{s}} e^{m_{j}^{3} \frac{\bar{c}^{2} t}{12}-m_{j} k_{j}^{2} t},
\end{aligned}
$$

$$
\Phi[k, m]=\prod_{1 \leq i<j \leq n_{s}} \frac{\left(k_{i}-k_{j}\right)^{2}+\left(m_{i}-m_{j}\right)^{2} c^{2} / 4}{\left(k_{i}-k_{j}\right)^{2}+\left(m_{i}+m_{j}\right)^{2} c^{2} / 4}
$$

how to get $\mathrm{P}(\ln \mathrm{Z})$ i.e. $\mathrm{P}(\mathrm{h})$?

$$
\ln Z=-\lambda f \quad \lambda=\left(\frac{\bar{c}^{2}}{4} t\right)^{1 / 3}
$$

introduce generating function of moments $\mathrm{g}(\mathrm{x})$:
$g(x)=1+\sum_{n=1}^{\infty} \frac{\left(-e^{\lambda x}\right)^{n}}{n!} \overline{Z^{n}}=\overline{\exp \left(-e^{\lambda(x-f)}\right)}$
so that at large time:
$\lim _{\lambda \rightarrow \infty} g(x)=\overline{\theta(f-x)}=\operatorname{Prob}(f>x)$

$$
\ln Z=-\lambda f \quad \lambda=\left(\frac{\bar{c}^{2}}{4} t\right)^{1 / 3}
$$

introduce generating function of moments $\mathrm{g}(\mathrm{x})$:

so that at large time:
$\lim _{\lambda \rightarrow \infty} g(x)=\overline{\theta(f-x)}=\operatorname{Prob}(f>x)$
reorganize sum over number of strings

$$
\begin{aligned}
& g(x)=1+\sum_{n_{s}=1}^{\infty} \frac{1}{n_{s}!} Z\left(n_{s}, x\right) \\
& Z\left(n_{s}, x\right)=\sum_{m_{1}, \ldots m_{n_{s}}=1}^{\infty} \frac{(-1)^{\sum_{j} m_{j}}}{\left(4 \pi \lambda^{3 / 2}\right)^{n_{s}}} \\
& \prod_{j=1}^{n_{s}} \int \frac{d k_{j}}{m_{j}} \prod_{1 \leq i<j \leq n_{s}} \frac{\left(k_{i}-k_{j}\right)^{2}+\left(m_{i}-m_{j}\right)^{2} \lambda^{3}}{\left(k_{i}-k_{j}\right)^{2}+\left(m_{i}+m_{j}\right)^{2} \lambda^{3}} \prod_{j=1}^{n_{s}} e^{\frac{1}{3} \lambda^{3} m_{j}^{3}-m_{j} k_{j}^{2}+\lambda x m_{j}}
\end{aligned}
$$

reorganize sum over number of strings

$$
\begin{aligned}
& g(x)=1+\sum_{n_{s}=1}^{\infty} \frac{1}{n_{s}!} Z\left(n_{s}, x\right) \\
& \begin{aligned}
& Z\left(n_{s}, x\right)=\sum_{m_{1}, \ldots m_{n_{s}=1}}^{\infty} \frac{(-1)^{\sum_{j} m_{j}}}{\left(4 \pi \lambda^{3 / 2}\right)^{n_{s}}} \int_{-\infty}^{\infty} d y A i(y) e^{y w}=e^{w^{3} / 3} \\
& \prod_{j=1}^{n_{s}} \int \frac{d k_{j}}{m_{j}} \prod_{1 \leq i<j \leq n_{s}} \frac{\left(k_{i}-k_{j}\right)^{2}+\left(m_{i}-m_{j}\right)^{2} \lambda^{3}}{\left(k_{i}-k_{j}\right)^{2}+\left(m_{i}+m_{j}\right)^{2} \lambda^{3}} \prod_{j=1}^{n_{s}} e^{\frac{1}{3} \lambda^{3} m_{j}^{3}-m_{j} k_{j}^{2}+\lambda x m_{j}} \\
& \quad \operatorname{det}\left[\frac{1}{i\left(k_{i}-k_{j}\right) \lambda^{-3 / 2}+\left(m_{i}+m_{j}\right)^{2}}\right] \\
&=\prod_{i<j} \frac{\left(k_{i}-k_{j}\right)^{2}+\left(m_{i}-m_{j}\right)^{2} \lambda^{3}}{\left(k_{i}-k_{j}\right)^{2}+\left(m_{i}+m_{j}\right)^{2} \lambda^{3}} \prod_{i=1}^{n_{s}} \frac{1}{2 m_{i}}
\end{aligned}
\end{aligned}
$$

Results: 1) $g(x)$ is a Fredholm determinant at any time t

$$
Z\left(n_{s}, x\right)=\prod_{j=1}^{n_{s}} \int_{v_{j}>0} d v_{j} \operatorname{det}\left[K\left(v_{j}, v_{\ell}\right)\right] \quad \lambda=\left(\frac{\bar{c}^{2}}{4} t\right)^{1 / 3}
$$

$$
K\left(v_{1}, v_{2}\right)=-\int \frac{d k}{2 \pi} d y A i\left(y+k^{2}-x+v_{1}+v_{2}\right) e^{-i k\left(v_{1}-v_{2}\right)} \frac{e^{\lambda y}}{1+e^{\lambda y}}
$$

$$
g(x)=1+\sum_{n_{s}=1}^{\infty} \frac{1}{n_{s}!} Z\left(n_{s}, x\right)=\operatorname{Det}[I+K] \begin{aligned}
& \text { by an equivalent definition } \\
& \text { of a Fredholm determinant }
\end{aligned}
$$

$$
K\left(v_{1}, v_{2}\right) \equiv \theta\left(v_{1}\right) K\left(v_{1}, v_{2}\right) \theta\left(v_{2}\right)
$$

Results: 1) $g(x)$ is a Fredholm determinant at any time t

$$
Z\left(n_{s}, x\right)=\prod_{j=1}^{n_{s}} \int_{v_{j}>0} d v_{j} \operatorname{det}\left[K\left(v_{j}, v_{\ell}\right)\right] \quad \lambda=\left(\frac{\bar{c}^{2}}{4} t\right)^{1 / 3}
$$

$$
K\left(v_{1}, v_{2}\right)=-\int \frac{d k}{2 \pi} d y A i\left(y+k^{2}-x+v_{1}+v_{2}\right) e^{-i k\left(v_{1}-v_{2}\right)} \frac{e^{\lambda y}}{1+e^{\lambda y}}
$$

$$
g(x)=1+\sum_{n_{s}=1}^{\infty} \frac{1}{n_{s}!} Z\left(n_{s}, x\right)=\operatorname{Det}[I+K] \begin{aligned}
& \text { by an equivalent definition } \\
& \text { of a Fredholm determinant }
\end{aligned}
$$

$$
K\left(v_{1}, v_{2}\right) \equiv \theta\left(v_{1}\right) K\left(v_{1}, v_{2}\right) \theta\left(v_{2}\right)
$$

Airy function identity

$$
\text { 2) large time limit } \quad \lambda=+\infty \quad \frac{e^{\lambda y}}{1+e^{\lambda y}} \rightarrow \theta(y)
$$

$$
\begin{aligned}
& \int d d A\left(k^{2}+v+v^{\prime} e^{k t\left(v-v^{\prime}\right)}=2^{2 / 3 / 3 A\left(2^{1 / \beta} v\right) A\left(2^{1 / 3} v^{\prime}\right)}\right. \\
& \mathrm{g}(\mathrm{x})=\operatorname{Prob}\left(f>x=-2^{2 / 3} s\right)=\operatorname{Det}\left(1-P_{s} K_{A i} P_{s}\right)=F_{2}(s) \\
& K_{A i}\left(v, v^{\prime}\right)=\int_{y>0} A i(v+y) A i\left(v^{\prime}+y\right) \\
& \text { GUE-Tracy-Widom } \\
& \text { distribution }
\end{aligned}
$$

An exact solution for the KPZ equation with flat initial conditions

P. Calabrese, P. Le Doussal, (2011)

1) $g(s=-x)$ is a Fredholm Pfaffian at any time t

$$
\begin{gathered}
\text { needed: } \\
\int d y_{1} . . d y_{n} \Psi_{\mu}\left(y_{1}, . . y_{n}\right)
\end{gathered}
$$

$$
\begin{aligned}
& Z\left(n_{s}\right)=\sum_{m_{i} \geq 1} \prod_{j=1}^{n_{s}} \int_{k_{j}} \prod_{q=1}^{m_{j}} \frac{-2}{2 i k_{j}+q} e^{\frac{\lambda^{3}}{3} m_{j}^{3}-4 m_{j} k_{j}^{2} \lambda^{3}-\lambda m_{j} s} \\
& \times \operatorname{Pf}\left[\left(\begin{array}{c}
\frac{2 \pi}{2 i k_{i}} \delta\left(k_{i}+k_{j}\right)(-1)^{m_{i}} \delta_{m_{i}, m_{j}}+\frac{1}{4}(2 \pi)^{2} \delta\left(k_{i}\right) \delta\left(k_{j}\right)(-1)^{\min \left(m_{i}, m_{j}\right)} \operatorname{sgn}\left(m_{i}-m_{j}\right) \\
-\frac{1}{2}(2 \pi) \delta\left(k_{j}\right)
\end{array} \begin{array}{c}
\frac{1}{2}(2 \pi) \delta\left(k_{i}\right) \\
\frac{2 i k_{i}+m_{i}-2 i k_{j}-m_{j}}{2 i k_{i}+m_{i}+2 i k_{j}+m_{j}}
\end{array}\right)\right] \\
& Z\left(n_{s}\right)=\prod_{j=1}^{n_{s}} \int_{v_{j}>0} \operatorname{Pf}\left[\mathbf{K}\left(v_{i}, v_{j}\right)\right]_{2 n_{s}, 2 n_{s}} \quad g_{\lambda}(s)=\operatorname{Pf}[\mathbf{J}+\mathbf{K}]=\sum_{n_{s}=0}^{\infty} \frac{1}{n_{s}!} Z\left(n_{s}\right)
\end{aligned}
$$

An exact solution for the KPZ equation with flat initial conditions

P. Calabrese, P. Le Doussal, (2011)

1) $g(s=-x)$ is a Fredholm Pfaffian at any time t

$$
\begin{gathered}
\text { needed: } \\
\int d y_{1} . . d y_{n} \Psi_{\mu}\left(y_{1}, . . y_{n}\right)
\end{gathered}
$$

$$
\begin{aligned}
& Z\left(n_{s}\right)=\sum_{m_{i} \geq 1} \prod_{j=1}^{n_{s}} \int_{k_{j}} \prod_{q=1}^{m_{j}} \frac{-2}{2 i k_{j}+q} e^{\frac{\lambda^{3}}{3} m_{j}^{3}-4 m_{j} k_{j}^{2} \lambda^{3}-\lambda m_{j} s} \\
& \times \operatorname{Pf}\left[\left(\begin{array}{cc}
\frac{2 \pi}{2 i k_{i}} \delta\left(k_{i}+k_{j}\right)(-1)^{m_{i}} \delta_{m_{i}, m_{j}}+\frac{1}{4}(2 \pi)^{2} \delta\left(k_{i}\right) \delta\left(k_{j}\right)(-1)^{\min \left(m_{i}, m_{j}\right)} \operatorname{sgn}\left(m_{i}-m_{j}\right) & \frac{1}{\frac{1}{2}(2 \pi) \delta\left(k_{i}\right)} \\
-\frac{1}{2}(2 \pi) \delta\left(k_{j}\right) & \frac{\left.2 i k_{i}+m_{i}-2 k_{j}\right) m_{j}}{2 i_{i}+m_{i}+2 k_{j}+m_{j}}
\end{array}\right)\right] \\
& Z\left(n_{s}\right)=\prod_{j=1}^{n_{s}} \int_{v_{j}>0} \operatorname{Pf}\left[\mathbf{K}\left(v_{i}, v_{j}\right)\right]_{2 n_{s}, 2 n_{s}} \quad \begin{aligned}
& g_{\lambda}(s)=\operatorname{Pf}[\mathbf{J}+\mathbf{K}]=\sum_{n_{s}=0}^{\infty} \frac{1}{n_{s}!} Z\left(n_{s}\right) \\
& \mathbf{J}=\left(\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right)
\end{aligned}
\end{aligned}
$$

2) large time limit $\quad \lambda=+\infty$

$$
g_{\infty}(s)=F_{1}(s)=\operatorname{det}\left[I-\mathcal{B}_{s}\right]
$$

$$
\mathcal{B}_{s}=\theta(x) A i(x+y+s) \ddot{\theta}(y)
$$

GOE Tracy Widom

Fredholm Pfaffian Kernel at any time t

$$
\begin{align*}
& K_{11}=\int_{y_{1}, y_{2}, k} A i\left(y_{1}+v_{i}+s+4 k^{2}\right) A i\left(y_{2}+v_{j}+s+4 k^{2}\right)\left[\frac{e^{-2 i\left(v_{i}-v_{j}\right) k}}{2 i k} f_{k / \lambda}\left(e^{\lambda\left(y_{1}+y_{2}\right)}\right)\right. \\
& K_{12}=\frac{1}{2} \int_{y} A i\left(y+s+v_{i}\right)\left(e^{-2 e^{\lambda y}}-1\right) \delta\left(v_{j}\right) \\
& K_{22}=2 \delta^{\prime}\left(v_{i}-v_{j}\right), \\
& \left.f_{k}(z)=\frac{\pi \delta(k)}{2} F\left(2 e^{\lambda y_{1}}, 2 e^{\lambda y_{2}}\right)\right] \\
& \begin{array}{l}
\sinh (2 \pi k) \Gamma\left(z_{i}, z_{j}\right)=\sinh \left(z_{2}-z_{1}\right)+e^{-z_{2}}-e^{-z_{1}}+\int_{0}^{1} d u \\
\times J_{0}\left(2 \sqrt{\left.z_{1} z_{2}(1-u)\right)}\left[z_{1} \sinh \left(z_{1} u\right)-z_{2} \sinh \left(z_{2} u\right)\right] .\right. \\
\quad g_{\lambda}(s)=\sqrt{D e t(1-2 i k) \Gamma(2+2 i k)}, \quad(19) \\
\left.\quad K_{10}\left(v_{1}, v_{2}\right)=\partial_{v_{1}}\right)\left(1+\langle\tilde{K}|\left(1-2 K_{11}\left(v_{1}, v_{2}\right)\right.\right.
\end{array} \quad K_{12}\left(v_{1}, v_{2}\right)=\tilde{K}\left(v_{1}\right) \delta\left(v_{2}\right) \tag{19}
\end{align*}
$$

Fredholm Pfaffian Kernel at any time t

$$
\begin{array}{ll}
K_{11}=\int_{y_{1}, y_{2}, k} A i\left(y_{1}+v_{i}+s+4 k^{2}\right) A i\left(y_{2}+v_{j}+s+4 k^{2}\right)\left[\frac{e^{-2 i\left(v_{i}-v_{j}\right) k}}{2 i k} f_{k / \lambda}\left(e^{\lambda\left(y_{1}+y_{2}\right)}\right)\right. \\
K_{12}=\frac{1}{2} \int_{y} A i\left(y+s+v_{i}\right)\left(e^{-2 e^{\lambda y}}-1\right) \delta\left(v_{j}\right) & \left.+\frac{\pi \delta(k)}{2} F\left(2 e^{\lambda y_{1}}, 2 e^{\lambda y_{2}}\right)\right] \\
K_{22}=2 \delta^{\prime}\left(v_{i}-v_{j}\right), & \text { large time limit } \\
& \lim _{\lambda \rightarrow+\infty} f_{k / \lambda}\left(e^{\lambda y}\right)=-\theta(y) \\
f_{k}(z)=\frac{-2 \pi k z_{1} F_{2}(1 ; 2-2 i k, 2+2 i k ;-z)}{\sinh (2 \pi k) \Gamma(2-2 i k) \Gamma(2+2 i k)}, & \lim _{\lambda \rightarrow+\infty} F\left(2 e^{\lambda y_{1}}, 2 e^{\lambda y_{2}}\right)= \\
F\left(z_{i}, z_{j}\right)=\sinh \left(z_{2}-z_{1}\right)+e^{-z_{2}}-e^{-z_{1}}+\int_{0}^{1} d u & \theta\left(y_{1}+y_{2}\right)\left(\theta\left(y_{1}\right) \theta\left(-y_{2}\right)-\theta\left(y_{2}\right) \theta\left(-y_{1}\right)\right) \\
\times J_{0}\left(2 \sqrt{\left.z_{1} z_{2}(1-u)\right)\left[z_{1} \sinh \left(z_{1} u\right)-z_{2} \sinh \left(z_{2} u\right)\right] .}\right. \tag{19}\\
\\
g_{\lambda}(s)=\sqrt{\operatorname{Det}\left(1-2 K_{10}\right)\left(1+\langle\tilde{K}|\left(1-2 K_{10}\right)^{-1}|\delta\rangle\right)} \\
K_{10}\left(v_{1}, v_{2}\right)=\partial_{v_{1}} K_{11}\left(v_{1}, v_{2}\right) & K_{12}\left(v_{1}, v_{2}\right)=\tilde{K}\left(v_{1}\right) \delta\left(v_{2}\right)
\end{array}
$$

Summary: we found

for droplet initial conditions

$$
\frac{\lambda_{0} h}{2 \nu} \equiv \ln Z=v_{\infty} t+2^{2 / 3}\left(\frac{t}{t^{*}}\right)^{1 / 3} \chi
$$

at large time has the same distribution as the largest eigenvalue of the GUE
for flat initial conditions similar (more involved)

$$
\frac{\lambda_{0} h}{2 \nu} \equiv \ln Z=v_{\infty} t+\left(\frac{t}{t^{*}}\right)^{1 / 3} \chi
$$

χ at large time has the same distribution as the largest eigenvalue of the GOE

$$
t^{*}=\frac{8(2 \nu)^{5}}{D^{2} \lambda_{0}^{4}}
$$

in addition: $\mathrm{g}(\mathrm{x})$ for all times
=> $\mathrm{P}(\mathrm{h})$ at all t (inverse LT)
decribes full crossover from Edwards Wilkinson to KPZ
t^{*} is crossover time scale large for weak noise, large diffusivity

Summary: we found

for droplet initial conditions

$$
\frac{\lambda_{0} h}{2 \nu} \equiv \ln Z=v_{\infty} t+2^{2 / 3}\left(\frac{t}{t^{*}}\right)^{1 / 3} \chi
$$

at large time has the same distribution as the largest eigenvalue of the GUE
for flat initial conditions similar (more involved)

$$
\frac{\lambda_{0} h}{2 \nu} \equiv \ln Z=v_{\infty} t+\left(\frac{t}{t^{*}}\right)^{1 / 3} \chi
$$

χ at large time has the same distribution as the largest eigenvalue of the GOE

$$
t^{*}=\frac{8(2 \nu)^{5}}{D^{2} \lambda_{0}^{4}}
$$

in addition: $\mathrm{g}(\mathrm{x})$ for all times
=> $\mathrm{P}(\mathrm{h})$ at all t (inverse LT)
decribes full crossover from Edwards Wilkinson to KPZ
t^{*} is crossover time scale

GSE ? KPZ in half-space

DP near a wall $=$ KPZ equation in half space

T. Gueudre, P. Le Doussal,

$$
\begin{aligned}
& g(s)=\sqrt{\operatorname{Det}[I+\mathcal{K}]} \\
& \mathcal{K}\left(v_{1}, v_{2}\right)=-2 \theta\left(v_{1}\right) \theta\left(v_{2}\right) \partial_{v_{1}} f\left(v_{1}, v_{2}\right) \\
& f\left(v_{1}, v_{2}\right)=\int \frac{d k}{2 \pi} \int_{y} A i\left(y+s+v_{1}+v_{2}+4 k^{2}\right) f_{k / \lambda}\left(e^{\lambda y}\right) \frac{e^{-2 i k\left(v_{1}-v_{2}\right)}}{2 i k} \\
& f_{k}[z]=\frac{2 \pi k}{\sinh (4 \pi k)}\left(J_{-4 i k}\left(\frac{2}{\sqrt{z}}\right)+J_{4 i k}\left(\frac{2}{\sqrt{z}}\right)\right) \\
& -{ }_{1} F_{2}(1 ; 1-2 i k, 1+2 i k ;-1 / z)
\end{aligned}
$$

$Z(x, 0, t)=Z(0, y, t)=0$
$\nabla h(0, t)$ fixed

DP near a wall $=$ KPZ equation in half space

$$
g(s)=\sqrt{\operatorname{Det}[I+\mathcal{K}]}
$$

T. Gueudre, P. Le Doussal,

$$
\mathcal{K}\left(v_{1}, v_{2}\right)=-2 \theta\left(v_{1}\right) \theta\left(v_{2}\right) \partial_{v_{1}} f\left(v_{1}, v_{2}\right)
$$

$$
f\left(v_{1}, v_{2}\right)=\int \frac{d k}{2 \pi} \int_{y} A i\left(y+s+v_{1}+v_{2}+4 k^{2}\right) f_{k / \lambda}\left(e^{\lambda y}\right) \frac{e^{-2 i k\left(v_{1}-v_{2}\right)}}{2 i k}
$$

$$
f_{k}[z]=\frac{2 \pi k}{\sinh (4 \pi k)}\left(J_{-4 i k}\left(\frac{2}{\sqrt{z}}\right)+J_{4 i k}\left(\frac{2}{\sqrt{z}}\right)\right)
$$

$$
-{ }_{1} F_{2}(1 ; 1-2 i k, 1+2 i k ;-1 / z)
$$

$Z(x, 0, t)=Z(0, y, t)=0$
$\nabla h(0, t)$ fixed

$h \simeq v_{\infty} t+(\Gamma t)^{1 / 3} \chi$,

skewness =

$$
\frac{<(h-<h>)^{3}>}{<(h-<h>)^{2}>^{3 / 2}}
$$

Other systems believed to show KPZ class

- classical fluid of interacting particles finite T sound peak described by KPZ
H. Spohn, Van Beijeren 2012
$S_{\text {phonon }}^{(\pm)}(k, \omega) \propto \frac{1}{\Gamma_{k}} f_{\mathrm{PS}}\left(\frac{\omega \pm c|k|}{\Gamma_{k}}\right) \quad \Gamma_{k} \propto|k|^{3 / 2}$
in quantum case ? Kulkarni, Lamacraft, 2013
Gross Pitaevski Bose gas
- in localized phase of 2D quantum particles
fluctuations of log-conductance are Tracy-Widom
interferences of (complex) directed paths => KPZ class
Kardar, Ortuno, Somoza
- connections to quantum quench

From the sine Gordon field theory to KPZ

1. integrable quantum field theory $\phi(x, t)$
P. Calabrese, M. Kormos, PLD arXiv/1405.2582, EPL (2014) imaginary time

$$
\int D \phi e^{-\int d x d t \mathcal{L}_{\mathrm{sG}}[\phi]}
$$

$$
\mathcal{L}_{\mathrm{SG}}[\phi]=\frac{1}{2 c_{l}^{2}}\left(\partial_{t} \phi\right)^{2}+\frac{1}{2}\left(\partial_{x} \phi\right)^{2}-\frac{m_{0}^{2} c_{l}^{2}}{\beta^{2}}(\cos (\beta \phi)-1)
$$

From the sine Gordon field theory to KPZ

1. integrable quantum field theory $\phi(x, t)$
P. Calabrese, M. Kormos, PLD arXiv/1405.2582, EPL (2014) imaginary time

$$
\int D \phi e^{-\int d x d t \mathcal{L}_{\mathrm{sG}}[\phi]}
$$

$$
\mathcal{L}_{\mathrm{sG}}[\phi]=\frac{1}{2 c_{l}^{2}}\left(\partial_{t} \phi\right)^{2}+\frac{1}{2}\left(\partial_{x} \phi\right)^{2}-\frac{m_{0}^{2} c_{l}^{2}}{\beta^{2}}(\cos (\beta \phi)-1)
$$

2. excitation spectrum

- solitons mass -> infinity decouple
$H=\int d x \Pi(x)^{2}+\frac{1}{2}\left(\partial_{x} \phi\right)^{2}+. . \quad$ - breathers $B_{1} \quad$ "particle" sinh-Gordon

$$
\begin{aligned}
& E_{m}(\theta)=M_{m} c_{l}^{2} \cosh \theta \\
& P_{m}(\theta)=M_{m} c_{l} \sinh (\theta)
\end{aligned}
$$

$$
M_{m}=M \frac{\sin m \pi \alpha / 2}{\sin \pi \alpha / 2}
$$

$$
\begin{aligned}
& m_{\max }=[1 / \alpha] \\
& \alpha=c_{l} \beta^{2} /\left(8 \pi-c_{l} \beta^{2}\right)
\end{aligned}
$$

$\mathcal{L}_{\mathrm{SG}}[\phi]=\frac{1}{2 c_{l}^{2}}\left(\partial_{t} \phi\right)^{2}+\frac{1}{2}\left(\partial_{x} \phi\right)^{2}-\frac{m_{0}^{2} c_{l}^{2}}{\beta^{2}}(\cos (\beta \phi)-1)$
3. non-relativistic limit (NRL): $\left\{\begin{array}{l}c_{l} \rightarrow+\infty \quad \beta c_{l}=4 \sqrt{\bar{c}} \\ \beta \rightarrow 0\end{array}\right.$
$\beta \rightarrow 0$

$$
\begin{aligned}
& \alpha \approx c_{l} \beta^{2} /(8 \pi) \rightarrow 0 \\
& \quad m_{\max }=[1 / \alpha] \rightarrow \infty
\end{aligned}
$$

ShG \longrightarrow repulsive Lieb-Liniger Mussardo, Kormos et al. (2014)
$\mathrm{SG} \longrightarrow \quad$ attractive $\mathrm{LL} \quad B_{m} \longrightarrow \mathrm{~m}$-string $\quad+\frac{\bar{c}^{2}}{24 M}\left(m-m^{3}\right)+m \frac{p^{2}}{2 M}$

$$
M \approx m_{0}
$$

$\mathcal{L}_{\mathrm{SG}}[\phi]=\frac{1}{2 c_{l}^{2}}\left(\partial_{t} \phi\right)^{2}+\frac{1}{2}\left(\partial_{x} \phi\right)^{2}-\frac{m_{0}^{2} c_{l}^{2}}{\beta^{2}}(\cos (\beta \phi)-1)$
3. non-relativistic limit (NRL): $\left\{\begin{array}{l}c_{l} \rightarrow+\infty \quad \beta c_{l}=4 \sqrt{\bar{c}}\end{array}\right.$
$\beta \rightarrow 0$

ShG \longrightarrow repulsive Lieb-Liniger Mussardo, Kormos et al. (2014)
\longrightarrow non-linear Schrodinger
$\phi(x, t)=e^{-m_{0} c_{c}^{2} t} \Psi(x, t)+e^{m_{0} c_{c}^{2} t} \Psi^{+}(x, t)$

$$
\begin{aligned}
& \alpha \approx c_{l} \beta^{2} /(8 \pi) \rightarrow 0 \\
& \quad m_{\max }=[1 / \alpha] \rightarrow \infty
\end{aligned}
$$

Form factors known explicitly
satisfy functional recursion relations, analyticity,..

$$
\begin{aligned}
& E_{m}(\theta)=M m c_{l}^{2} \\
& B_{m} \rightarrow \text { m-string } \quad \begin{array}{l}
+\frac{\bar{c}^{2}}{24 M}\left(m-m^{3}\right)+m \frac{p^{2}}{2 M} \\
M \approx m_{0}
\end{array}
\end{aligned}
$$

4. SG is integrable QFT

Smirnov, Mussardo, ..

$$
\begin{array}{cc}
\langle 0| e^{i k \beta \phi(0,0)}\left|\theta_{1}, . ., \theta_{n}\right\rangle=F_{n}^{k}\left(\theta_{1}, . . \theta_{n}\right) & e^{i k \beta \phi(0,0)}=e^{i \tilde{k} \phi(0,0)} \\
\downarrow & k=\tilde{k} / \beta
\end{array}
$$

2-point correlation function in SG

Lehman formula:

$$
G(\tilde{k}, t)=\langle 0| e^{i \tilde{k} \phi(0, t)} e^{-i \tilde{k} \phi(0,0)}|0\rangle
$$

$\left.G(\tilde{k}, t) \simeq \sum_{n_{s}=0}^{\infty} \frac{1}{n_{s}!} \prod_{j=1}^{n_{s}} \sum_{m_{j}=1}^{m_{\max }} \int \frac{\mathrm{d} \theta_{1}}{2 \pi} \cdots \frac{\mathrm{~d} \theta_{n_{s}}}{2 \pi}\left|\langle 0| e^{i \bar{k} \phi(0,0)}\right| B_{m_{1}}\left(\theta_{1}\right) \ldots B_{m_{n_{s}}}\left(\theta_{n_{s}}\right)\right\rangle\left.\right|^{2} e^{-\sum_{j=1}^{n_{s}} E_{m_{j}}\left(\theta_{j}\right)|t|}$

2-point correlation function in SG

Lehman formula:

$$
G(\tilde{k}, t)=\langle 0| e^{i \tilde{k} \phi(0, t)} e^{-i \tilde{k} \phi(0,0)}|0\rangle
$$

$$
\begin{gathered}
\left.G(\tilde{k}, t) \simeq \sum_{n_{s}=0}^{\infty} \frac{1}{n_{s}!} \prod_{j=1}^{n_{s}} \sum_{m_{j}=1}^{m_{\max }} \int \frac{\mathrm{d} \theta_{1}}{2 \pi} \cdots \frac{\mathrm{~d} \theta_{n_{s}}}{2 \pi}\left|\langle 0| e^{i \bar{k} \phi(0,0)}\right| B_{m_{1}}\left(\theta_{1}\right) \ldots B_{m_{n_{s}}}\left(\theta_{n_{s}}\right)\right\rangle\left.\right|^{2} e^{-\sum_{j=1}^{n_{s}} E_{m_{j}}\left(\theta_{j}\right)|t|} \\
\downarrow \text { non-relativistic limit }
\end{gathered}
$$

$G(\tilde{k}, t) \simeq\left|\left\langle e^{i \tilde{k} \phi}\right\rangle\right|^{2} \sum_{n_{s}=0}^{\infty} \frac{\bar{c}^{n-n_{s}}}{n_{s}!} \prod_{j=1}^{n_{s}} \sum_{m_{j}=1}^{+\infty}\left[\frac{2}{\sqrt{\widetilde{c}}} \sin \left(\frac{\sqrt{\bar{c}}}{2} \tilde{k}\right)\right]^{2 m_{j}}$

$$
\times \prod_{j=1}^{n_{s}} \int \frac{\mathrm{~d} p_{j}}{2 \pi m_{j}} e^{-m_{j} M c_{t}^{2} t-\frac{\bar{z}^{2}}{12}\left(m_{j}-m_{j}^{3}\right) t-m_{j} p_{j}^{2} t} \Phi[p, m]
$$

$$
\Phi[p, m]=\prod_{1 \leq j<l \leq n_{s}} \frac{4\left(p_{i}-p_{j}\right)^{2}+\bar{c}^{2}\left(m_{i}-m_{j}\right)^{2}}{4\left(p_{i}-p_{j}\right)^{2}++^{2}\left(m_{i}+m_{j}\right)^{2}}
$$

2-point correlation function in SG

 Lehman formula:$$
G(\tilde{k}, t)=\langle 0| e^{i \tilde{k} \phi(0, t)} e^{-i \tilde{k} \phi(0,0)}|0\rangle
$$

$$
\begin{aligned}
\left.G(\tilde{k}, t) \simeq \sum_{n_{s}=0}^{\infty} \frac{1}{n_{s}!} \prod_{j=1}^{n_{s}} \sum_{m_{j}=1}^{m_{\max }} \int \frac{\mathrm{d} \theta_{1}}{2 \pi} \cdots \frac{\mathrm{~d} \theta_{n_{s}}}{2 \pi}\left|\langle 0| e^{i \bar{k} \phi(0,0)}\right| B_{m_{1}}\left(\theta_{1}\right) \ldots B_{m_{n_{s}}}\left(\theta_{n_{s}}\right)\right\rangle\left.\right|^{2} e^{-\sum_{j=1}^{n_{s}} E_{m_{j}}\left(\theta_{j}\right)|t|} \\
\downarrow \text { non-relativistic limit }
\end{aligned}
$$

$$
G(\tilde{k}, t) \simeq\left|\left\langle e^{i \tilde{k} \phi}\right\rangle\right|^{2} \sum_{n_{s}=0}^{\infty} \frac{\bar{c}^{n-n_{s}}}{n_{s}!} \prod_{j=1}^{n_{s}} \sum_{m_{j}=1}^{+\infty}\left[\frac{2}{\sqrt{\bar{c}}} \sin \left(\frac{\sqrt{c}}{2} \tilde{k}\right)\right]^{2 m_{j}}
$$

$$
\times \prod_{j=1}^{n_{s}} \int \frac{\mathrm{~d} p_{j}}{2 \pi m_{j}} e^{-m_{j} M c_{t}^{2} t-\frac{\bar{z}^{2}}{12}\left(m_{j}-m_{j}^{3}\right) t-m_{j} p_{j}^{2} t} \Phi[p, m]
$$

$$
g(u)=\left.\sum_{n=0}^{+\infty} \frac{(-u)^{n}}{n!} \overline{Z(t)^{n}}\right|_{K P Z}
$$

$$
\Phi[p, m]=\prod_{1 \leq j<l \leq n_{s}} \frac{4\left(p_{i}-p_{j}\right)^{2}+\bar{c}^{2}\left(m_{i}-m_{j}\right)^{2}}{4\left(p_{i}-p_{j}\right)^{2}+\bar{c}^{2}\left(m_{i}+m_{j}\right)^{2}}
$$

$$
\left\langle e^{i \tilde{k}(\phi(0,0)-\phi(0, t))}\right\rangle /\left\langle e^{i \tilde{k} \phi(0,0)}\right\rangle^{2} \rightarrow_{N R L} g(u)
$$

$$
u=-\left(\frac{2}{\sqrt{\bar{c}}} \sin \left(\frac{\sqrt{\bar{c}}}{2}\right)\right)^{2} e^{-M c_{c}^{2} t}
$$

$$
\left\langle e^{\tilde{k}(\phi(0,0)-\phi(0, t))}\right\rangle /\left\langle e^{\tilde{k} \phi(0,0)}\right\rangle^{2} \rightarrow_{N R L} g(u)
$$

$$
u=\left(\frac{2}{\sqrt{\bar{c}}} \sinh \left(\frac{\sqrt{\bar{c}}}{2}\right)\right)^{2} e^{-M c_{c}^{2} t}
$$

2-point correlation in SG \longrightarrow point to point (droplet) KPZ moments

Perspectives/other works

- replica BA method
all times: stationary KPZ Sasamoto Inamura (2013)
Airy process $A_{2}(y)$
only infinite time: - 2 space points $\operatorname{Prob}\left(h\left(x_{1}, t\right), h\left(x_{2}, t\right)\right)$ Prohlac-Spohn (2011) $t \rightarrow \infty$

2 times (still open) $\operatorname{Prob}\left(h(0, t), h\left(0, t^{\prime}\right)\right)$ Dotsenko (2012)

- sine-Gordon FT
- rigorous replica..

Borodin, Corwin, Quastel, O Neil, ..
avoids moment problem $\quad \overline{Z^{n}} \sim e^{c n^{3}}$

Martin Hairer

(Warwick)
Fields medal 2014 intern. math. union:
In a spectacular achievement, Hairer overcame these difficulties by describing a new approach to the KPZ equation that allows one to give a mathematically precise meaning to the equation and its solutions. What is more, in subsequent work he used the ideas he developed for the KPZ
 equation to build a general theory, the theory of regularity structures, that can be applied to a broad class of stochastic PDEs. In particular, Hairer's theory can be used in higher dimensions.

Ultraviolet KPZ
 counterterms

Alexei Borodin

Infrared KPZ integrability

1) Macdonald processes
(Ascending) Macdonald processes are probability measures on interlacing triangular arrays (Gelfand-Tsetlin patterns)

$$
\begin{aligned}
& \lambda_{j}^{(m)} \in \mathbb{Z}_{\geqslant 0} \quad \begin{array}{lll}
& \lambda_{2}^{(2)} & \lambda_{1}^{(2)} \\
& \left.\lambda_{1}^{(1)}\right)_{1}
\end{array}
\end{aligned}
$$

Borodin, Corwin, 2013

2) side of triangle=particles in q-TASEP
rows distributed as random matrix eigenvalues
3) Macdonald processes
(Ascending) Macdonald processes are probability measures on interlacing triangular arrays (Gelfand-Tsetlin patterns)
Borodin, Corwin, 2013
rows distributed as
random matrix eigenvalues

4) side of triangle=particles in q-TASEP moments of particle positions in q-TASEP as nested contour integrals

$$
\begin{array}{ll}
\mathbb{E} q^{\left(x_{N}(t)+N_{1}\right)+\ldots+\left(x_{N_{k}}(t)+N_{k}\right)} & =\frac{(-1)^{k} q^{\frac{k(k-1)}{2}}}{(2 \pi i)^{k}} \oint \cdots \oint \prod_{A<B} \frac{z_{A}-z_{B}}{z_{A}-q z_{B}} \prod_{j=1}^{k} \frac{e^{(q-1) t^{k}}}{\left(1-z_{j}\right)^{N_{j}}} \frac{d z_{j}}{z_{j}} \\
\left(N_{1} \geqslant N_{2} \geqslant \ldots \geqslant N_{k}\right) & \left.* 0\left(z_{i} \cdots z_{k}\right) z_{k-1} \cdots\right) z_{1}
\end{array}
$$

$0<q<1$ moments define distribution uniquely
3) $q \rightarrow 1 \quad$ Bose gas, KPZ moments !
mapping LIS to optimal directed path

1) throw points randomly in square
(Poisson)
$\mathrm{N}=10$
mapping LIS to optimal directed path
2) label points in increasing order along each axis
it defines a permutation

$$
\{8,2,7, \underline{1}, \underline{3}, \underline{4}, 10, \underline{6}, \underline{9}, 5\}
$$

mapping LIS to optimal directed path

mapping LIS to optimal directed path

