Fractional quantum Hall effect In Graphene : from SU(4) to SO(5)

Th. Jolicoeur CNRS and Orsay University

Coworkers : F.C. Wu, I. Sodemann, Y. Araki, A. H. McDonald (Austin TX)

See arXiv : 1406.2330

Chania OAC - 2014

Outline :

- elementary facts about 2DEGs
- striking facts from FQHE (GaAs)
- Graphene and Landau levels
- SU(4) approximate symmetry
- explicit breaking of symmetry down to SO(5)
- aspects of ferromagnetism at filling factor 2
- conclusions

WHY study 2DEGs ???????

The answer is : HEMTs

HEMT ICs

Saturday, February 26, 2011 TriQuint and Skyworks Power iPhone 5

UMTS-LTE PA module Chow, MTT-S 2008

40 Gb/s modulator driver Carroll, MTT-S 2002

77 GHz transceiver Tessmann, GaAs IC 1999

Single-chip WLAN MMIC, Morkner, RFIC 2007

Single MOCVD growth 13

HEMT markets

- Biggest market: wireless communications
- Biggest applications: cell phone handsets, WLAN, base stations and CATV

Better transistors require better mobility :

This is good for fundamental physics !!!!

200 µm В $\begin{pmatrix} j_{x} \\ j_{y} \end{pmatrix} = \begin{pmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} \begin{pmatrix} E_{x} \\ E_{y} \end{pmatrix}, \quad \begin{pmatrix} E_{x} \\ E_{y} \end{pmatrix} = \begin{pmatrix} \rho_{xx} & \rho_{xy} \\ \rho_{yx} & \rho_{yy} \end{pmatrix} \begin{pmatrix} j_{x} \\ j_{y} \end{pmatrix}$

- The 2D situation under a field has no kinetic energy : instead highly degenerate Landau levels.
- Only interactions fix the nature of the ground state.
- Quasiholes and quasielectrons with fractional charge and statistics.

1/3	1/5	1/7	1/9	2/11	2/13	2/15	2/17	3/19	5/21	6/23	6/25
2/3	2/5	2/7	2/9	3/11	3/13	4/15	3/17	4/19	10/21	1	
4/3	3/5	3/7	4/9	4/11	4/13	7/15	4/17	5/19	2-2-2-		
5/3	4/5	4/7	5/9	5/11	5/13	8/15	5/17	9/19	I		
7/3	6/5	5/7	7/9	6/11	6/13	11/15	6/17	10/19			
8/3	7/5	9/7	11/9	7/11	7/13	22/15	8/17				
	8/5	10/7	13/9	8/11	10/13	23/15	9/17				
	9/5	11/7	14/9	14/11	19/13			-			
	11/5	12/7	25/9	16/11	20/13	§	1.0.0	1			
	12/5	16/7		17/11		·	÷				
	13/5(?)	19/7	1				1 1 1	11			5/2
	14/5	10 m 1-4.				,	1.111	11	1 1 1		7/2
	16/5	1.000	14	1		1 :	11-11	1.			3/8(?)
	19/5	11 - 1	12.000	1	-	1	1	1.		1	5/8(?)
	21/5	1				· · · · · ·	1.11	1		11	19/8
	24/5	11-1-1-1		b; 9			1).			3/10(?)

2+1 dimensional Dirac fermions with two flavors and real spin

Quantum Hall Ferromagnetism at neutrality

$$\Psi_{lpha,eta} = \prod_{k=1}^{N_{\phi}} c^{\dagger}_{klpha} c^{\dagger}_{keta} \ket{0}$$

spinors $\phi_{\alpha,\beta}$ are in Span{ $K \uparrow, K \downarrow K' \uparrow, K' \downarrow$ }

EXACT eigenstates of the fully SU(4) symmetric Coulomb interaction

Effective Hamiltonian in the nu = 0 Landau level :

$$\begin{split} H &= H_{\rm C} + H_{\rm v} + H_{\rm Z}, \\ H_{\rm C} &= \frac{1}{2} \sum_{i \neq j} \frac{e^2}{\epsilon |\vec{r_i} - \vec{r_j}|}, \\ H_{\rm v} &= \frac{1}{2} \sum_{i \neq j} \left(g_z \tau_z^i \tau_z^j + g_\perp (\tau_x^i \tau_x^j + \tau_y^i \tau_y^j) \right) \delta(\vec{r_i} - \vec{r_j}), \\ H_{\rm Z} &= -\epsilon_{\rm Z} \sum_i \sigma_z^i. \\ g_\perp &= g \cos \theta, \ g_z = g \sin \theta \end{split}$$

Coulomb interaction is SU(4) symmetric : 15 generators

	Symmetry of $H_{\rm C} + H_{\rm v}$	generators
$g_{\perp} = 0$	$\mathrm{SU}(2)_{\mathrm{s}}^{K} \times \mathrm{SU}(2)_{\mathrm{s}}^{K'} \times \mathrm{U}(1)_{\mathrm{v}}$	S_lpha,N_lpha,T_z
$g_{\perp} = g_z$	$SU(2)_s \times SU(2)_v$	S_lpha,T_lpha
$g_{\perp} + g_z = 0$	SO(5)	$S_{lpha},T_z,\Pi^x_{lpha},\Pi^y_{lpha}$

SU(2) X U(1) elsewhere....

SU(2)_K X SU(2)_{K'} X U(1)

Mean-field phase diagram

 $H_v + H_z$ lifts the SU(4) degeneracy

SO(5) group

 $\{\vec{S}, T_z, \vec{\Pi}^x, \vec{\Pi}^y\} \text{ generators of SO(5) group}$ $\{T_x, T_y, N_x, N_y, N_z\} \text{ 5D vector}$ Rotation in 5D space: $\vec{S} : \{N_x, N_y, N_z\}$ $T_y \quad T_z; \{T_x, T_y\}$

 $\Pi:\{N_x,N_y,N_z\} \rightleftharpoons \{T_x,T_y\}$

 $\begin{array}{l} \{T_x,T_y\} \rightarrow \mbox{Kekule distortion state} \\ \{N_x,N_y,N_z\} \rightarrow \mbox{Antiferromagnetic state} \end{array}$

graphene vs d-wave superconductor

A Unified Theory Based on SO(5) Symmetry of Superconductivity and Antiferromagnetism

Shou-Cheng Zhang

The complex phase diagram of high-critical temperature (T_c) superconductors can be deduced from an SO(5) symmetry principle that unifies antiferromagnetism and *d*-wave superconductivity. The approximate SO(5) symmetry has been derived from the micro-scopic Hamiltonian, and it becomes exact under renormalization group flow toward a bicritical point. This symmetry enables the construction of a SO(5) quantum nonlinear σ model that describes the phase diagram and the effective low-energy dynamics of the system. This model naturally explains the basic phenomenology of the high- T_c super-conductors from the insulating to the underdoped and the optimally doped region.

Shou-Cheng Zhang, Science 275, 1089 (1997).

(b) 3 S = $T_z = 0$ 0 \mp 2345678 Ö $\mathbf{2}$ 0+0 9 E_v/g Ģ 1 ++0++ 0+ 0 P ++0++ + 0+ 000 0 + 0+ + 0 + ð 9 õ+ 5 +0++0+ + 0 + + 0 + to t 0 + 0 + + 0 + + 0+ +0+ 0 † Ö 0 + 0 + 4 Ŗ 0. +0++ 0++0++ ¤ + + + 0 10 10 1 0.00 Ŧ • • • • • o • -1 Š. 9 $5\pi/4$ $\pi/2$ $3\pi/4$ π θ_{g}

symmetry breaking pattern

Finite size scaling analysis @ SO(5) point

• For any finite size system, the ground state is an SO(5) singlet and nondegenerate.

• In the thermodynamic limit, ground states become degenerate, resulting in spontaneous SO(5) symmetry breaking.

Summary

- Competing phases at graphene neutrality with rich symmetry-breaking pattern
- Anderson's Tower of states signature of symmetry breaking
- SO(5) symmetry relating Kekule and AF states for a realistic Hamiltonian
- MFT is true in this 2+1 system
- All phases CDW, AF, CAF and KD are gapped : not clear yet what is the choice of Nature
- Under way is the study of fractions 5/3 and 4/3

<u>Summary</u>

- SO(5) symmetry
- v=0 quantum hall states finite-size effect; numerical results agrees with mean-field theory
- fractional filling factors

I. Sodemann and A. H. MacDonald, arXiv:1310.1642.

Parameter	Kekulé-distortion state	<i>d</i> -wave state
Order Parameter	(T_x, T_y)	(Δ_x, Δ_y)
U(1) generator	T_z	Charge Q
External Potential	Staggered potential $\epsilon_{\rm v}$	Chemical potential μ

IQHE

IQHE

<u>v=0 quantum Hall ferromagnetism</u>

v=0 Coulomb ground states: 2 spinors are occupied at each LL orbital

SU(4) multiplet structure