Fractional quantum Hall effect In Graphene : from SU(4) to SO(5)

Th. Jolicoeur CNRS and Orsay University

Coworkers : F.C. Wu, I. Sodemann, Y. Araki, A. H. McDonald (Austin TX)
See arXiv : 1406.2330

Outline :

- elementary facts about 2DEGs
- striking facts from FQHE (GaAs)
- Graphene and Landau levels
- SU(4) approximate symmetry
- explicit breaking of symmetry down to $\mathrm{SO}(5)$
- aspects of ferromagnetism at filling factor 2
- conclusions

WHY study 2DEGs ???????

The answer is: HEMTs

Single-chip WLAN MMIC, Morkner, RFIC 2007
Single MOCVD growth

HEMT markets

- Biggest market: wireless communications
- Biggest applications: cell phone handsets, WLAN, base stations and CATV

Better transistors require better mobility :

This is good for fundamental physics !!!!

$\binom{j_{x}}{j_{y}}=\left(\begin{array}{ll}\sigma_{x x} & \sigma_{x y} \\ \sigma_{y x} & \sigma_{y y}\end{array}\right)\binom{E_{x}}{E_{y}}, \quad\binom{E_{x}}{E_{y}}=\left(\begin{array}{ll}\rho_{x x} & \rho_{x y} \\ \rho_{y x} & \rho_{y y}\end{array}\right)\binom{j_{x}}{j_{y}}$

- The 2D situation under a field has no kinetic energy: instead highly degenerate Landau levels.
- Only interactions fix the nature of the ground state.
- For many rational fillings $\nu=p / q$ of the lowest Landau level, the ground state is a liquid with gapped excitations.
- Quasiholes and quasielectrons with fractional charge and statistics.

FILLING FACTOR ν

Pan et al, PRL90, 016801 (2003)

$1 / 3$	$1 / 5$	$1 / 7$	$1 / 9$	$2 / 11$	$2 / 13$	$2 / 15$	$2 / 17$	$3 / 19$	$5 / 21$	$6 / 23$	$6 / 25$
$2 / 3$	$2 / 5$	$2 / 7$	$2 / 9$	$3 / 11$	$3 / 13$	$4 / 15$	$3 / 17$	$4 / 19$	$10 / 21$		
$4 / 3$	$3 / 5$	$3 / 7$	$4 / 9$	$4 / 11$	$4 / 13$	$7 / 15$	$4 / 17$	$5 / 19$			
$5 / 3$	$4 / 5$	$4 / 7$	$5 / 9$	$5 / 11$	$5 / 13$	$8 / 15$	$5 / 17$	$9 / 19$			
$7 / 3$	$6 / 5$	$5 / 7$	$7 / 9$	$6 / 11$	$6 / 13$	$11 / 15$	$6 / 17$	$10 / 19$			
$8 / 3$	$7 / 5$	$9 / 7$	$11 / 9$	$7 / 11$	$7 / 13$	$22 / 15$	$8 / 17$				
	$8 / 5$	$10 / 7$	$13 / 9$	$8 / 11$	$10 / 13$	$23 / 15$	$9 / 17$				
	$9 / 5$	$11 / 7$	$14 / 9$	$14 / 11$	$19 / 13$						
	$11 / 5$	$12 / 7$	$25 / 9$	$16 / 11$	$20 / 13$						
	$12 / 5$	$16 / 7$		$17 / 11$							
	$13 / 5(?)$	$19 / 7$									$5 / 2$
	$14 / 5$										$7 / 2$
	$16 / 5$										$3 / 8(?)$
	$19 / 5$										$5 / 8(?)$
	$21 / 5$										$19 / 8$
	$24 / 5$										$3 / 9(?)$

2+1 dimensional Dirac fermions with two flavors and real spin

magnetic field B

Quantum Hall Ferromagnetism at neutrality

$$
\Psi_{\alpha, \beta}=\prod_{k=1}^{N_{\phi}} c_{k \alpha}^{\dagger} c_{k \beta}^{\dagger}|0\rangle
$$

spinors $\phi_{\alpha, \beta}$ are in $\operatorname{Span}\left\{K \uparrow, K \downarrow K^{\prime} \uparrow, K^{\prime} \downarrow\right\}$

EXACT eigenstates of the fully $S U(4)$ symmetric Coulomb interaction

Effective Hamiltonian in the nu $=0$ Landau level :

$$
\begin{aligned}
H & =H_{\mathrm{C}}+H_{\mathrm{v}}+H_{\mathrm{Z}} \\
H_{\mathrm{C}} & =\frac{1}{2} \sum_{i \neq j} \frac{e^{2}}{\epsilon\left|\vec{r}_{i}-\vec{r}_{j}\right|}, \\
H_{\mathrm{v}} & =\frac{1}{2} \sum_{i \neq j}\left(g_{z} \tau_{z}^{i} \tau_{z}^{j}+g_{\perp}\left(\tau_{x}^{i} \tau_{x}^{j}+\tau_{y}^{i} \tau_{y}^{j}\right)\right) \delta\left(\vec{r}_{i}-\vec{r}_{j}\right), \\
H_{\mathrm{Z}} & =-\epsilon_{\mathrm{Z}} \sum_{i} \sigma_{z}^{i} . \\
& g_{\perp}=g \cos \theta, \quad g_{z}=g \sin \theta
\end{aligned}
$$

$$
\begin{array}{ll}
S_{\alpha}=\frac{1}{2} \sum_{i} \sigma_{\alpha}^{i}, & T_{\alpha}=\frac{1}{2} \sum_{i} \tau_{\alpha}^{i}, \\
N_{\alpha}=\frac{1}{2} \sum_{i} \tau_{z}^{i} \sigma_{\alpha}^{i}, & \Pi_{\alpha}^{\beta}=\frac{1}{2} \sum_{i} \tau_{\beta}^{i} \sigma_{\alpha}^{i},
\end{array}
$$

Coulomb interaction is $\operatorname{SU}(4)$ symmetric : 15 generators

	Symmetry of $H_{\mathrm{C}}+H_{\mathrm{v}}$	generators
$g_{\perp}=0$	$\mathrm{SU}(2)_{\mathrm{s}}^{K} \times \mathrm{SU}(2)_{\mathrm{s}}^{K^{\prime}} \times \mathrm{U}(1)_{\mathrm{v}}$	$S_{\alpha}, N_{\alpha}, T_{z}$
$g_{\perp}=g_{z}$	$\mathrm{SU}(2)_{\mathrm{s}} \times \mathrm{SU}(2)_{\mathrm{v}}$	S_{α}, T_{α}
$g_{\perp}+g_{z}=0$	$\mathrm{SO}(5)$	$S_{\alpha}, T_{z}, \Pi_{\alpha}^{x}, \Pi_{\alpha}^{y}$

$$
g_{\perp}=g \cos \theta, \quad g_{z}=g \sin \theta
$$

$$
S U(2)_{K} X S U(2)_{K} X U(1)
$$

$S U(2) \times U(1)$ elsewhere....

Mean-field phase diagram

$H_{\mathrm{v}}+H_{\mathrm{Z}}$ lifts the $\mathrm{SU}(4)$ degeneracy

SO(5) group

$\left\{T_{x}, T_{y}\right\} \rightarrow$ Kekule distortion state
$\left\{N_{x}, N_{y}, N_{z}\right\} \rightarrow$ Antiferromagnetic state

graphene vs d-wave superconductor

A Unified Theory Based on SO(5) Symmetry of Superconductivity and Antiferromagnetism

Shou-Cheng Zhang

The complex nhase diagram of high-critinal temneratu ure (T) superconductors nan be deduced from an $S O(5)$ symmetry principle that unifies antiferromagnetism and d-wave superconductivity. The approximate $S O(5)$ symmetry has been derived from the microscopic Hamiltonian, and it becomes exact under renormalization group flow toward a bicritical point. This symmetry enables the construction of a $S O(5)$ quantum nonlinear or model that describes the phase diagram and the effective low-energy dynamics of the system. This model naturally explains the basic phenomenology of the high- T_{c} superconductors from the insulating to the underdoped and the optimally doped region.

Shou-Cheng Zhang, Science 275, 1089 (1997).

SO(5) in $N=0$ LL of graphene AFM

Kekule-distortion state
 AFM

How do we know it is true beyond mean field ??

symmetry breaking pattern

AF
$\begin{array}{rlrl}\pi / 2 \mathrm{SU}(2)_{\mathrm{s}} 3 \pi / 4 & \mathrm{U}(1)_{\mathrm{v}} & 5 \pi / 4 \\ \mathrm{SO}(5) & & \end{array}$

Finite size scaling analysis @ SO(5) point

$$
E_{\mathrm{v}} / g \theta_{g}=3 \pi / 4
$$

-For any finite size system, the ground state is an $\mathrm{SO}(5)$ singlet and nondegenerate.

- In the thermodynamic limit, ground states become degenerate, resulting in spontaneous $\mathrm{SO}(5)$ symmetry breaking.

Summary

- Competing phases at graphene neutrality with rich symmetry-breaking pattern
- Anderson's Tower of states signature of symmetry breaking
- SO(5) symmetry relating Kekule and AF states for a realistic Hamiltonian
- MFT is true in this $2+1$ system
- All phases CDW, AF, CAF and KD are gapped : not clear yet what is the choice of Nature
- Under way is the study of fractions $5 / 3$ and $4 / 3$

Summary

- SO(5) symmetry
- $v=0$ quantum hall states
finite-size effect;
numerical results agrees with mean-field theory
- fractional filling factors

Fermi :
$\nu=1 / 3$

Bose :

$$
\begin{aligned}
& \nu=1 / 2
\end{aligned}
$$

Parameter	Kekulé-distortion state	d-wave state
Order Parameter	$\left(T_{x}, T_{y}\right)$	$\left(\Delta_{x}, \Delta_{y}\right)$
$\mathrm{U}(1)$ generator	T_{z}	Charge Q
External Potential	Staggered potential ϵ_{v}	Chemical potential μ

IQHE

FQHE

IQHE

FQHE

$v=0$ quantum Hall ferromagnetism
$v=0$ Coulomb ground states: 2 spinors are occupied at each LL orbital

SU(4) multiplet structure

