QFT, String Theory \& Cond-Mat Physics

Crete, September 2014

defect CFT and M-theory

Costas Bachas (ENS, Paris)

UPmC
put in context

In the 70's there was a spectacular convergence of interests of particle theorists and condensed-matter physicists, thanks to Quantum Field Theory and the Renormalization group:

- the Standard Model is a renormalizable QFT (after much 'wandering': Fermi theory, quark models, analytic S-matrix ...)
- Universality put some order in the zoo of phenomena of condensed-matter systems

A new convergence 40 years later?

Quantum Gravity (String Theory) led to new tools \& phenomena:

- black hole evaporation
- dualities, D-branes, holography, non-Lagrangian QFTs

Makes it possible to analyze a wealth of strong-coupling phenomena, in particular in 3 dimensions

But are these realized in condensed-matter systems?

in holography the story is blurred :

Is there a field theory? Does it describe real systems?

Use gravity to learn about strongly-coupled electrons

Shep: top-down

string theory

Where do (susy gauge) QFTs flow to?

Use QFT to learn about quantum gravity?

Shep: somewhere in middle

$$
-\mathcal{L}_{(11)}=R+\frac{1}{2 \cdot 4!} F^{2}+\frac{1}{6} A \wedge F \wedge F
$$

both IR and UV QFTs mysterious

- The QFTs describe collective modes of extended solitons/branes
- The near-horizon AdS describes the CFT at the IR fixed point

Basic critical theories with maximal susy:

To reduce supersymmetry must consider intersecting branes:

$$
p^{\prime}-\text { branes }
$$

$$
p-b r a n e s
$$

$$
\begin{gathered}
(d+1)-\operatorname{dim} \text { defect in }(p+1)-\operatorname{dim} C F T \\
\text { or } \operatorname{in}\left(p^{\prime}+1\right)-\operatorname{dim} C F T
\end{gathered}
$$

Special case: $\quad p=d+1, \&$ branes ending on branes:

(2) boundary

(1) 'domain-wall' defect

(3) (d+1)-dim CFT

Defect QFTs have rich coupled dynamics, RG flows \& fixed points.

e.g Kondo, external quark

Gravity duals often treated approximately:

- probe approximation (AdS probe brane in AdS bulk)
- (partial) smearing (restore translation symmetry)

In past five years, progress in obtaining fully back-reacting, localized solutions, describing strongly-coupled fixed points.

Work contained in hep-th/1103.2800, 1106.4253, 1210.2590 \& hep-th/1312.5477, on-going
my collaborators:

to summarize:

- I will describe some $1 / 2$-maximal susy solutions of 11 d (and 10d, IIB) supergravity, dual to critical dCFTs
- Strongly-coupled 3D critical theories; but far from any 'real' cond-mat systems (though little closer than ABJM or $\mathrm{N}=4 \mathrm{SYM}$)
- Simplest intersections of basic M2 \& M5 branes: learn about most mysterious $\mathrm{d}=6$ SCFT

REST OF THE TALK

1. General setup

2. Interfaces for $\mathbf{N}=4$ SYM

3. Conformal limits \& holography
4. The M2 - M5 - M5' system
5. Global solutions \& questions

1. General setup

Will (mainly) consider conformal codimension-1 defects

Their holographic duals are $A d S_{n+1}$ branes in $A d S_{n}$ bulk. In the 'thin-brane' approximation:

Karch-Randall '00

fixed-time slice of $A d S_{n+1}$:

- The boundary CFT is one of the maximally susy theories
- In the full solution, the thin brane is replaced by a smooth configuration, with the same underlying symmetry:

This large symmetry is encoded by the ansatz:

$$
\begin{array}{ll}
\mathrm{d}=10 \text { IIB supergravity: } \quad\left(A d S_{4} \times S^{2} \times S^{2}\right) \times{ }_{w} \\
\mathrm{~d}=11 \text { supergravity: } & \left(A d S_{3} \times S^{3} \times S^{3}\right) \times{ }_{w} \Sigma^{\text {Riemann surface }}
\end{array}
$$

Thus the (Killing-spinor) equations reduce to PDEs on a $d=2$ Riemann surface.

The general local solution of these equations was derived

- for type-IIB sugra, in a series of beautiful papers by D'Hoker, Estes \& Gutperle '08
(based also on earlier work by Gomis \& Romelsberger; Lunin)
Everything depends on two harmonic functions h_{1}, h_{2}

D'Hoker, Estes, Gutperle \& Krym '09

- for 11d sugra by

Estes, Feldman \& Krym '12
CB, D’Hoker, Estes \& Krym '13
Everything depends on a harmonic function h, and a complex function $\quad G$ obeying: $\quad h \partial G=\operatorname{Re}(G) \partial h$
for example, in type-IIB:
metric : $\quad d s^{2}=f_{4}^{2} d s_{\mathrm{AdS}_{4}}^{2}+f_{1}^{2} d s_{\mathrm{S}_{1}^{2}}^{2}+f_{2}^{2} d s_{\mathrm{S}_{2}^{2}}^{2}+4 \rho^{2} d z d \bar{z}$,

$$
\begin{aligned}
& f_{4}^{8}=16 \frac{N_{1} N_{2}}{W^{2}}, \quad f_{1}^{8}=16 h_{1}^{8} \frac{N_{2} W^{2}}{N_{1}^{3}}, \quad f_{2}^{8}=16 h_{2}^{8} \frac{N_{1} W^{2}}{N_{2}^{3}} \\
& \rho^{8}=\frac{N_{1} N_{2} W^{2}}{h_{1}^{4} h_{2}^{4}} \\
& \text { dilaton : } e^{4 \phi}=\frac{N_{2}}{N_{1}} \\
& \text { where } W=\partial h_{1} \bar{\partial} h_{2}+\bar{\partial} h_{1} \partial h_{2}=\partial \bar{\partial}\left(h_{1} h_{2}\right), \\
& N_{1}=2 h_{1} h_{2}\left|\partial h_{1}\right|^{2}-h_{1}^{2} W, \quad N_{2}=2 h_{1} h_{2}\left|\partial h_{2}\right|^{2}-h_{2}^{2} W
\end{aligned}
$$

and in 11d supergravity:

$$
d s^{2}=f_{1}^{2} d s_{A d S_{3}}^{2}+f_{2}^{2} d s_{S_{2}^{3}}^{2}+f_{3}^{2} d s_{S_{3}^{3}}^{2}+\rho^{2}|d w|^{2}
$$

$$
\begin{array}{cc}
f_{1}^{6}=\frac{h^{2} W_{+} W_{-}}{c_{1}^{6}(G \bar{G}-1)^{2}}, & f_{2}^{6}=\frac{h^{2}(G \bar{G}-1) W_{-}}{c_{2}^{3} c_{3}^{3} W_{+}^{2}}, \\
\rho^{6}=\frac{\left|\partial_{w} h\right|^{6}}{c_{2}^{3} c_{3}^{3} h^{4}}(G \bar{G}-1) W_{+} W_{-}, & f_{3}^{6}=\frac{h^{2}(G \bar{G}-1) W_{+}}{c_{2}^{3} c_{3}^{3} W_{-}^{2}},
\end{array}
$$

where

$$
\begin{array}{rc}
W_{+}=|G+i|^{2}+\gamma(G \bar{G}-1) & W_{-}=|G-i|^{2}+\frac{1}{\gamma}(G \bar{G}-1) \\
c_{1}+c_{2}+c_{3}=0 & \frac{c_{2}}{c_{3}}=\gamma
\end{array}
$$

There is also an expression for the 4 -form field.

The task is then to find:

- The admissible singularities on the surface Σ
asymptotic regions, or coordinate sings

\author{

- Global solutions
}
- Their interpretation in QFT

2. Interfaces of $\mathbf{N}=4 \mathrm{SYM}$

Gaiotto \& Witten ‘08 proposed a classification of non-trivial IR fixed points

Starting point: realize as intersections of D3-branes with D5, NS5-branes

3d theory on the interface

To preserve $1 / 2$ supersymmetry, the (probe) branes must be oriented as follows:

	012	3	456	789
D3				
D5				
NS5				

The superconformal symmetry is:

$$
P S U(2,2 \mid 4) \supset O S p(4 \mid 4, R) \supset S O(2,3) \times S O(3) \times S O(3)
$$

Some standard string-theory technology allows to read off the microscopic (UV) Lagrangian(s). Instrumental for this is the

Hanany-Witten move:

Using such moves, can bring the ('good’) configurations to one of 3 equivalent standard forms:

D5-branes have no D3-branes ending or emanating from them

$$
M_{\hat{p}-1}
$$

'electric'

NS5-branes have no D3-branes ending or emanating from them

All NS5-branes lie to the left of all D5-branes

'democratic'

Here, the configuration is described by two partitions,

$$
\rho \text { of } N-n_{L} \text {, and } \quad \hat{\rho} \text { of } N-n_{R}
$$

The microscopic (UV) field theory can be read off the first two, equivalent (in the IR) pictures, e.g.

\# $\mathrm{A} \mathrm{U}(\mathrm{Na})$ gauge theory for each set of D3-branes
\# A fundamental 'electric quark' (hypermultiplet) for each intersecting D5
\# A bi-fundamental $\mathrm{U}(\mathrm{Na}) \times \mathrm{U}(\mathrm{Na}+1)$ hyper for each NS5

There is a dual ('magnetic') theory with blue exchanged with red.
The gauge-group ranks and numbers of matter fields are also determined by ρ and $\hat{\rho}$, and are denoted by hats.

After all the dust has settled, one is left with a rich set of linear-quiver, (defect) QFTs that live on the branes:

NB: Setting $\quad n_{L}=n_{R}=0$ gives a d=3 QFT

3. IR fixed-points \& holography

Consider for simplicity $\quad n_{L}=n_{R}=0$
$\mathrm{d}=3$ gauge theories flow in general to strong coupling in the IR

Gaiotto \& Witten guessed a simple criterion for the existence of a (non-trivial) superconformal IR theory:

$$
\rho^{T}>\hat{\rho}
$$

where the (partial) ordering of Young tableaux is defined by:
(\# of boxes in first n columns of ρ) $>($ \# boxes in first n rows of $\hat{\rho}$) $\forall n$
e.g.
$>$

These conjectured $\mathbf{N}=4$ 3d SCFTs are dubbed $T_{\rho}^{\hat{\rho}}(S U(N))$

Global supergravity solutions with the required topology are in 1-to-1 correspondence with these putative IR theories

Assel, CB, Estes \& Gomis
Aharony, Berdichevsky, Berkooz \& Shamir

\sum has topology of disk. Regularity requires that $h_{1}, h_{2}>0$ in in the interior, while on $\partial \Sigma$:

(one of the two S^{2} shrinks to zero)

3 types of admissible singularities on the boundary:

Stack of \hat{M} NS5 with linking \# $\hat{\ell}$

$$
\begin{aligned}
& h_{1} \simeq-i \pi \hat{M} \hat{\ell}+\cdots+c . c . \\
& h_{2} \simeq-\hat{M} \log w+\cdots+c . c .
\end{aligned}
$$

Page charge

Stack of M D5 with linking \# ℓ

$$
\begin{gathered}
h_{1} \simeq-M \log w+\cdots+c . c . \\
h_{2} \simeq-i \pi M \ell+\cdots+c . c .
\end{gathered}
$$

Stack of $\quad n=\frac{a_{2} b_{1}-a_{1} b_{2}}{2 \pi} \quad$ semi-infinite D3

$$
\begin{aligned}
& h_{1} \simeq a_{1} w^{-\frac{1}{2}}+b_{1} w^{\frac{1}{2}}+\cdots+c . c . \\
& h_{2} \simeq a_{2} w^{-\frac{1}{2}}+b_{2} w^{\frac{1}{2}}+\cdots+c . c .
\end{aligned}
$$

Important point: $a_{1}=a_{2}=0$ gives just a coordinate singularity

The full solution :

$$
\begin{gathered}
h_{1}=-i \alpha \sinh (2 z-\beta)-\sum_{a=1}^{q} M_{a} \log \left[\tanh \left(\frac{i \pi}{2}-\left(z-\delta_{a}\right)\right)\right] \\
h_{2}=\hat{\alpha} \cosh (2 z-\hat{\beta})-\sum_{b=1}^{q} \hat{M}_{b} \log \left[\tanh \left(z-\hat{\delta}_{b}\right)\right]
\end{gathered}
$$

\diamond
The linking numbers of the 5-brane stacks are functions of the positions of the localized 5-branes: dimensional transmutation

\checkmark
They obey automatically the conditions of Gaiotto \& Witten, confirming their conjecture!

$$
\text { sugra 'knows' about } \rho^{T}>\hat{\rho}
$$Global (flavor) symmetries are realized, on the string theory side, as gauge symmetries on the 5-brane stacks.

Can be generalized to circular-quiver $d=3$ SCFTs

- Tests holography for a rich set of (top down) $A d S_{4}$ backgrounds $\longrightarrow \mathrm{N}=4$ SCFT
- Several open questions, e.g. weak-rank link:

'approximate wormhole' background

4. M2 - M5 - M5'

Consider next the $1 / 4$-BPS configurations of M theory:

	012	3	4567	78910
M2				
M5				
M5'				

The dual defect field theory is either (i) a domain wall of ABJM, or (ii) a self-dual string of the $d=6$ theory, or (iii) a $d=2(4,4)$ SCFT.

The story looks very similar to type-IIB, but there are notable differences.

First: little is known on the field theory side. In particular, the degrees of freedom on the M2-M5 intersection are not understood.

```
cf Howe, Lambert & West '97;
    Harvey & Basu '04; ....
    Niarchos & Siampos '12
```

Second: the superconformal algebra $D(2,1 ; \gamma) \oplus D(2,1 ; \gamma)$ depends on a real parameter γ. The bosonic part is $S O(2,2) \times S O(4) \times S O(4)$;
γ enters only in the fermionic part, as well as in its affine $N=(4,4)$
extension. In this latter $\quad|\gamma|=\frac{k_{1}}{k_{2}}$ is the ratio of Kac-Moody levels.

Gunaydin, Sierra, Townsend '86
Sevrin, Troost, Van Proeyen '88
$\gamma \rightarrow 1 / \gamma$ is a symmetry. Furthermore, for special values of γ
$D(2,1 ; \gamma) \oplus D(2,1 ; \gamma)$ can be embedded in a bigger superalgebra:

$$
\gamma=1 \quad D(2,1 ; \gamma, 0) \oplus D(2,1 ; \gamma, 0) \subset O S p(8 \mid 4, R)
$$

$$
A d S_{4} \times S^{7}
$$

\square

$$
D(2,1 ; \gamma, 0) \oplus D(2,1 ; \gamma, 0) \subset O S p\left(8^{*} \mid 4\right)
$$

$$
A d S_{7} \times S^{4}
$$

The γ-moduli space :

Recall: we are now solving the 11d supergravity equations:

$$
\begin{gathered}
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=T_{\mu \nu}(F) \\
d \wedge^{*} F=F \wedge F
\end{gathered}
$$

or, more exactly, the Killing spinor equations:

$$
\nabla_{\mu} \epsilon+\frac{1}{2^{6} 3^{2}}\left[-\gamma_{\mu}(F \cdot \gamma)+3(F \cdot \gamma) \gamma_{\mu}\right] \epsilon=0
$$

with isometries $\quad S O(2,2) \times S O(4) \times S O(4)$

The general form of the solutions is a fibration of $A d S_{3} \times S^{3} \times S^{3}$ over a Riemann surface Σ. The background is determined by the harmonic function h and the complex function G obeying

$$
\partial \bar{\partial} h=0, \quad h \partial G=\operatorname{Real}(G) \partial h
$$

and the regularity conditions:

One immediate corollary:

All solutions come in continuous families parametrized by $|\gamma|$.

This includes the basic AdS4xS7 and AdS7xS4 backgrounds

In solutions with both M5 and M5' charges, changing
$|\gamma|$ rescales these charges in opposite directions.

The sign of labels two distinct branches of solutions.

To proceed, we solved completely the problem locally, and characterized admissible singularities \& asymptotics.

There are 4 types of allowed singularity near $\quad \partial \Sigma$:

- $\left(A d S_{4} / Z_{2}\right) \times S^{7}$: semi-infinite M2-brane asymptotics $\forall \gamma$
- $A d S_{7}^{\prime} \times S^{4} \quad:$ M5-brane asymptotics $\forall \gamma$
- M5-brane wraping $A d S_{3} \times S^{3}$ for $\quad \gamma>0$ (no higher-dim conformal boundary)

A coordinate singularity ('the cap')
$\forall \gamma$
(n semi-infinite M 2 with $n=0$)

Note:

$$
A d S_{n} \sim\left(A d S_{3} \times S^{n-4}\right) \times_{w} \mathbb{R}^{+}
$$

$$
\begin{gathered}
\left(-t_{1}^{2}-t_{2}^{2}+x_{1}^{2}+x_{2}^{2}\right)+\left(x_{3}^{2}+\cdots x_{n-1}^{2}\right)=-1 \\
-\left(r^{2}+1\right)
\end{gathered}
$$

Thus, in the first two types of singularity (where the conformal boundary is higher-dimensional) the scale factor $\quad f_{1}$ must diverge.

The topology of these local solutions is as follows:

$$
\begin{array}{cc}
\\
I \times S^{3} \times S^{3} \sim & S^{7} \quad \text { if } G \\
& \text { flips from } i \text { to }-i \text { on } \partial \Sigma \\
S^{3} \times S^{4} & \text { if no flip }
\end{array}
$$

The wraped M5 has divergent G and a simple zero of h
The other three have finite G and a simple pole of h

Combine these Lego pieces in global solutions?

5. Global solutions \& questions

... in progress

Possible conformal boundaries (\times time):

ABJM on half-space

$S^{1} \subset S^{5}$
self-dual string

Proof: From the metric expressions one finds

```
radii of 3 (pseudo)spheres
```

$$
\begin{gathered}
c_{1} c_{2} c_{3} f_{1} f_{2} f_{3}= \pm h \\
\left(c_{1} f_{1}\right)^{2} \geq\left(c_{2} f_{2}\right)^{2}+\left(c_{3} f_{3}\right)^{2}
\end{gathered}
$$

This implies that singularities of h are loci where the $A d S_{3}$ radius blows up. So, if we want the conformal boundary to be 2-dimensional, then h must be everywhere smooth. This means that $h=0$
or \sum has no boundary and $h=$ constant.

The corresponding solutions are $A d S_{3} \times S^{3} \times S^{3} \times\left(\mathbb{R}^{2} / \Gamma\right)$ (this is the near-horizon geometry of configurations with 5-branes smeared in their common transverse coordinate).

Boonstra, Peeters, Skenderis '98

All information on the two partitions is lost, unlike IIB

A consequence of the Mermin-Wagner theorem?

Two more 'general' statements:

No solutions with disconnected boundary ('wormholes').

For $\gamma<0$ we can prove this; for $\gamma>0$ have found no solutions.

cf Witten \& Yau, hep-th/9910245;
Galloway, Schleich, Witt, Woolgar hep-th/9912119

This excludes also solutions extrapolating between $A d S_{7} \times S^{4}$ and $\quad A d S_{4} \times S^{7} \quad\left({ }^{\prime}\right.$ rigidity')

G finite

For $\gamma<0$ one can prove a stronger result: h has at most one singularity, so at most one stack of semi-infinite M2-branes.

No interface CFT3 for negative γ

interfaces excluded

Solutions with one asymptotic region

$\gamma<0$

Self-dual strings $\quad h=-i(w-\bar{w}), \quad G=-i\left(1+\sum_{j=1}^{2 n+2}(-)^{j} \frac{w-\xi_{j}}{\left|w-\xi_{j}\right|}\right)$
Semi-infinite M2 $\quad h=-i(w-\bar{w}), \quad G=-i \sum_{j=1}^{2 n+1}(-)^{j} \frac{w-\xi_{j}}{\left|w-\xi_{j}\right|}$

Self-dual strings $\quad h=-i w+$ c.c.,$\quad \pm G=i+\sum_{a=1}^{n+1} \frac{\zeta_{a} \operatorname{Im}(w)}{\left(\bar{w}-x_{a}\right)\left|w-x_{a}\right|}$
Semi-infinite M2 $\quad h=-i w+$ c.c.,$\quad \pm G=i w /|w|+\sum_{a=1}^{n+1} \frac{\zeta_{a} \operatorname{Im}(w)}{\left(\bar{w}-x_{a}\right)\left|w-x_{a}\right|}$

$$
M 5 \text { or semi - infinite } M 2 \text { at } \infty
$$

Can calculate the charges of these solutions. For all of them, they seem to be in one-to-one correspondence with Young tableaux; reminiscent of the study of Wilson lines in N=4 SYM

Yamaguchi '06;
Gomis \& Passerini '06;
Okuda \& Trancanelli '08;
D'Hoker, Estes, Gutperle '07

These solutions describe the long-sought IR limit of localized M2-branes ending on M5-branes.

They exist for all γ, both from the M2-brane perspective (ABJM boundaries) and from the M5-brane perspective (self-dual strings in 6d)

There is a $\quad \gamma=0 \quad$ transition at which the coordinate singularities become wraped M5-brane singularities.

- Have not found general intersecting M2-M5 solutions (ABJM interfaces) Only a smooth, Janus solution with no 5-brane charge

D'Hoker, Estes, Gutperle, Krym '09
Bobev, Pilch, Warner '13

Much remains to be done :

- Finish the task of finding all solutions ?
- Count degrees of freedom, put at finite T
- Understand these dCFTs from the QFT side
- 6d-3d defect duality?

What do we learn about M theory ? Can these be used for CMT ?
!! many thanks to the local organizers !!

