
  

    

Series expansions 
● multi-variable expressions require careful attention
● single-scale expansion e.g.             or     
● double-scale expansion e.g.            - radius of convergence not stable with 
respect to the expansion procedure for small x:               or  

● correlated variables e.g.                      - order of two series for             
                   and                 matters (limit does not exist)  

Prototypical energy-level model of Anderson

Anderson-Hubbard model

Block tri-diagonal form:

Basis of nine antiferromagnetic electron configurations:

Exchange is defined as the energy difference between the lowest 
singlet and triplet configurations. Superexchange is the specific case
of kinetic exchange between separated electrons. In this case we
are study superexchange between lone spins on the Mn ions.

Models derived from non-convergent 
perturbation theory and misleading parameter 

estimates: the case of superexchange

●Studied electron kinetic exchange analytically 
● Found that double-scale series expansions are invalid as in multi-variable 
systems they are not generally convergent
● Fitting a model outside its convergence region to experimental data can lead to 
misleading conclusions about material parameters (hopping parameters, 
electron-transfer rates, etc.)
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● Order of expansions matters: starting from           
does not give the “Anderson” result

● From (a) we see that U<t can give excellent
agreement with the exact result

● A measured value of J=3.5 is obtained in (b) by
U=7.1 for the Anderson result, vs U=0.3 for the 
exact result, which places it out of the Mott-
Hubbard insulator picture

● Materials can thus be characterized fictitiously as 
Mott-Hubbard insulators when the parameter 
relationships are “mild”: 

● From (c) we see how [1]  can be deceptive, with Δ 
quantitatively incorrect

● Formula [1] also arises from other, parameter-
dependent expansions, e.g. x=t2/(UΔ) where either 
U or Δ may be small (e.g. <t)

● Thus, the limits                      , which arise from the 
use of perturbation theory, represent a subset of 
the applicability of the limiting form for J

Site-centred Wannier orbitals in MnO and associated energies for the Anderson-
Hubbard model. The site energy difference Δ is defined as εdεp. U is the Coulomb

repulsion and t is the nearest-neighbour hopping.

Solution methods

We employ effective Hamiltonians, derived exactly, for the calculation of the 
superexchange J=E(T)E(S). The purpose of effective Hamiltonians is to 

project the full system onto a small subset of the basis (here the H00 block). 

An exact projection is found using a resolvent approach (other methods such 
as e.g. Brillouin-Wigner perturbation theory are not exact):

The cost of the projection: an energy dependence. 
Exact only at the eigenvalue – two different effective Hamiltonians are thus 
used, for E(T) and E(S) respectively. 

Eigenvalue equation: with

By solving for the roots of λi(Ε)=Ε for i=S,T we find E(T) and E(S).

Mott-Hubbard insulator

Results
The expansion for            using               yields                                +O(x6)     [1]

Further expansion for              yields                               for                        or                 
                                    
                                       depending on the expansion procedure 

Radii of convergence

expanding with x*=t/(U+Δ) gives parameter-free radius
of convergence only for E(T): x*<0.36

[2]

[3]
● Again results in Eq. [1] for J
● Convergence condition for infinite order in x*: 

 t<2.1 for E(T) and t<1.3 for E(S)


	Slide 1

