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Summary and Results
We use holography to compute the conductivity in an inhomogeneous charged scalar background.
We work in the probe limit of the four-dimensional Einstein-Maxwell theory coupled to a charged
scalar. The background has zero charge density and is constructed by turning on a scalar source
deformation with a striped profile. We solve for the fluctuations by making use of a Fourier series
expansion. At zero temperature, the conductivity is computed analytically in a small amplitude
expansion. At finite temperature, it is computed numerically by truncating the Fourier series to
a relevant set of modes. In the real part of the conductivity along the direction of the stripe, we
find a Drude-like peak and a delta function with a negative weight. These features are understood
from the point of view of spectral weight transfer.

The Model
In the background of 4D AdS-Schwarzschid black hole,

ds2 =
L2

r2

(
−f (r)dt2 +

dr2

f (r)
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)
, f (r) = 1− r3

r3
h

,

we consider a Maxwell field Aµ and a charged complex scalar Φ of m2L2 = −2

S =

∫
d4x
√
−g
(
−1

4
FµνF

µν − |∂µΦ− iAµΦ|2 −m2Φ2

)
, F = dA .

The background is Aµ = 0 and Φ = φ(r, x)eiθ with θ = 0. According to the AdS/CFT
correspondence, field theory data are read off the UV asymptotics,

as r → 0 , φ(r, x) = φ1(x)r + φ2(x)r2 + · · · .

Φ(r, x) is dual to a charged scalar operator O(x). In the standard quantization dim O = 2,
φ1 is interpreted as the source and φ2 as 〈O〉. We then introduce a periodic source deformation
of the field theory by turning on φ1(x) = V cos(Qx). Since the Action is quadratic, φ(r, x) can
have the form φ(r, x) = ϕ(r) cos(Qx). The eq. of motion becomes(

∂2
r +

(
f ′

f
− 2

r

)
∂r −

m2 + r2Q2

r2f

)
ϕ(r) = 0,

The parameter Q is the momentum associated to the striped deformation.

We refer to the φ(r, x) profile as a“charged lattice”. Even though there is no background charge
density, Aµ = 0, and the average value of 〈O〉 vanishes, the scalar field is minimally coupled to
the gauge field. Applying an electric field will turn on the interactions between gauge and lattice
fluctuations. Alternatively, φ(r, x) may describe the effects caused by charged impurities.

Optical Conductivity

A boundary electric field ~E is obtained as Ej ≡ limr→0 fjt , where f is the bulk field strength
of gauge field fluctuation δA and j = x, y. Generic bulk perturbations of our charged lattice
solution have the form,

Aµ→ δAµ, Φ→ φ/
√

2 + (δη + iδψ)/
√

2 .

The consistent sets of perturbations in x- and y-directions are given as follows:

• When an electric field is applied in the direction transverse to the stripe,

δAy = ay(r, x)e−iωt .

• When an electric field is applied in the direction longitudinal to the stripe,

δAx = ax(r, x)e−iωt, δAt = at(r, x)e−iωt, δψ = ψ(r, x)e−iωt .

Comments: δψ produces a vibration of the lattice but plays a different role with respect to
the bulk phonon in massive gravity. δη decouples because Aµ = 0.

Working in the gauge δAr = 0, the current is

Ja = − lim
r→0

√
−ggrrgab∂rδAb , a, b = t, x, y

and the conductivity is obtained from the definition J i(~x) = σij(~x)Ej, where i, j = x, y.

We will focus on the average value of the condutivity.

The transverse channel: The Fourier series expansion of ay is

ay(r, x) = a(0)
y (r) + a(2)

y (r) cos(2Qx) + a(4)
y (r) cos(4Qx) + · · · .

We obtain the following infinite set of coupled ODEs,(
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)
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The novelty is the spatially dependent mass term proportional to φ(r, x)2 which couples the

Fourier modes with a specific patter: a
(2n)
y directly couples only to a

(2n±2)
y whereas a

(0)
y only

couples to a
(2)
y and not to a

(2l)
y with l > 2.

Boundary conditions imply a
(0)
y,0 = E/iω and a

(2n)
y,0 = 0 for n ≥ 1. The induced current

Jy(x) =
∑∞

n=0 a
(2n)
y,1 cos(2nQx) is a function of x, and so is the conductivity. We focus on

σT (ω) = − i
ω

a
(0)
y,1

a
(0)
y,0

.

The Longitudinal Channel

ax(r, x) = a(0)
x (r) + a(2)

x (r) cos(2Qx) + a(4)
x (r) cos(4Qx) + · · · ,

at(r, x) = a
(2)
t (r) sin(2Qx) + a

(4)
t (r) sin(4Qx) + · · · ,

ψ(r, x) = ψ(1)(r) sin(Qx) + ψ(3)(r) sin(3Qx) + · · · .
The pattern of interactions among the modes,
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Let’s see when the truncation to the {a(0)
x , ψ(1)} block works:(
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The interaction between a
(0)
x and ψ(1) dominates over that with a

(2)
x if the condition Q/V � 1

is satisfied. The field a
(2)
t is massive and not directly sourced by a

(0)
x . Assuming that a(2) ∝ f

at the horizon, the decoupling of a
(2)
t occurs at small frequencies.

NOTE: A homogeneous boundary electric field is obtained by
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Analytical and Numerical Calculations

At zero temperature the charged lattice has a simple analytic form, ϕ(r) = V re−Qr. This
makes it possible to carry out a perturbative expansion in small V/Q. Furthermore, at each
order the perturbative calculation is analytic and automatically implements a truncation to a
finite set of Fourier modes, i.e. heavy Fourier modes are suppressed by powers of V/Q.

• In the Transverse Channel: ω < Q
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(
V 4
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)
.

• In the Longitudinal Channel: ω < Q
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There are new features in σL(ω): Compared to the V = 0 case, Re σL is enhanced at ω � Q
→ Drude-like peak. There is delta function with negative spectral weight, yet the sum rule
is satisfied → spectral weight is missing in Re σL: The would-be homogeneous superfluid
density is reduced by lattice effects. Impurities and phase modulation induce decoherence

At finite temperature we show our numerical results. The gray/orange dashed lines are

obtained for Q/V =∞, 0, respectively. For the transverse conductivity, we keep a
(0)
y and a

(2)
y .

For the longitudinal conductivity, we keep only a
(0)
x and ψ(1).

Optical conductivity in the longitudinal direction when T/V = 0.25 and for various values of Q/V . (Left
panel, from bottom to top Q/V = 4, 2, 1, 0.5). For the value Q/V = 0.5, Re σL(0+) = 4.05.
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The behavior of ReσL(0+) = 1 + (V/Q)2/4 at small frequencies, the same behavior found at T=0

Optical conductivity in the transverse direction when T/V = 0.25 and for various values of Q/V . (Left panel,

from bottom to top Q/V = 4, 2, 1, 0.5).
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