A Simple Holographic Model of a Charged Lattice FRANCESCO APRILE AND TAKAAKI ISHII, ARXIV:1406.7193

Crete Center for Theoretical Physics, Department of Physics, University of Crete

Summary and Results

We use holography to compute the conductivity in an inhomogeneous charged scalar background. We work in the probe limit of the four-dimensional Einstein-Maxwell theory coupled to a charged scalar. The background has zero charge density and is constructed by turning on a scalar source deformation with a striped profile. We solve for the fluctuations by making use of a Fourier series expansion. At zero temperature, the conductivity is computed analytically in a small amplitude expansion. At finite temperature, it is computed numerically by truncating the Fourier series to a relevant set of modes. In the real part of the conductivity along the direction of the stripe, we find a Drude-like peak and a delta function with a negative weight. These features are understood from the point of view of spectral weight transfer.

The Model

In the background of 4D AdS-Schwarzschid black hole,

L^2 (dr^2)

The Longitudinal Channel

 $a_x(r,x) = a_x^{(0)}(r) + a_x^{(2)}(r)\cos(2Qx) + a_x^{(4)}(r)\cos(4Qx) + \cdots,$ $\begin{aligned} a_t(r,x) &= & a_t^{(2)}(r)\sin(2Qx) + a_t^{(4)}(r)\sin(4Qx) + \cdots, \\ \psi(r,x) &= & \psi^{(1)}(r)\sin(Qx) + \psi^{(3)}(r)\sin(3Qx) + \cdots. \end{aligned}$

The pattern of interactions among the modes,

$$ds^{2} = \frac{L}{r^{2}} \left(-f(r)dt^{2} + \frac{\alpha}{f(r)} + dx^{2} + dy^{2} \right), \quad f(r) = 1 - \frac{r}{r_{h}^{3}}$$

we consider a Maxwell field A_{μ} and a charged complex scalar Φ of $m^2L^2 = -2$

$$S = \int d^4x \sqrt{-g} \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - |\partial_\mu \Phi - iA_\mu \Phi|^2 - m^2 \Phi^2 \right), \qquad F = dA$$

The background is $A_{\mu} = 0$ and $\Phi = \phi(r, x)e^{i\theta}$ with $\theta = 0$. According to the AdS/CFT correspondence, field theory data are read off the UV asymptotics,

as $r \to 0$, $\phi(r, x) = \phi_1(x)r + \phi_2(x)r^2 + \cdots$.

 $\Phi(r, x)$ is dual to a charged scalar operator $\mathcal{O}(x)$. In the standard quantization dim $\mathcal{O}=2$, ϕ_1 is interpreted as the source and ϕ_2 as $\langle \mathcal{O} \rangle$. We then introduce a periodic source deformation of the field theory by turning on $\phi_1(x) = V \cos(Qx)$. Since the Action is quadratic, $\phi(r, x)$ can have the form $\phi(r, x) = \varphi(r) \cos(Qx)$. The eq. of motion becomes

$$\left(\partial_r^2 + \left(\frac{f'}{f} - \frac{2}{r}\right)\partial_r - \frac{m^2 + r^2Q^2}{r^2f}\right)\varphi(r) = 0,$$

The parameter Q is the momentum associated to the striped deformation.

We refer to the $\phi(r, x)$ profile as a "charged lattice". Even though there is no background charge density, $A_{\mu} = 0$, and the average value of $\langle \mathcal{O} \rangle$ vanishes, the scalar field is minimally coupled to the gauge field. Applying an electric field will turn on the interactions between gauge and lattice fluctuations. Alternatively, $\phi(r, x)$ may describe the effects caused by charged impurities.

Let's see when the truncation to the $\{a_x^{(0)}, \psi^{(1)}\}$ block works:

$$\begin{pmatrix} \partial_r^2 + \frac{f'}{f} \partial_r - \left(\frac{\varphi^2}{2r^2 f} - \frac{\omega^2}{f^2}\right) \end{pmatrix} a_x^{(0)} = -\frac{Q}{f} \frac{\varphi}{r^2} \psi^{(1)} + \frac{1}{4f} \frac{\varphi^2}{r^2} a_x^{(2)} , \\ \left(\partial_r^2 + \left(\frac{f'}{f} - \frac{2}{r}\right) \partial_r - \left(\frac{m}{r^2 f} + \frac{Q^2}{f} - \frac{\omega^2}{f^2}\right) \right) \psi^{(1)} = -2 \frac{Q\varphi}{f} a_x^{(0)} + \frac{i\omega\varphi}{2f^2} a_t^{(2)} .$$

The interaction between $a_x^{(0)}$ and $\psi^{(1)}$ dominates over that with $a_x^{(2)}$ if the condition $Q/V \gg 1$ is satisfied. The field $a_t^{(2)}$ is massive and not directly sourced by $a_x^{(0)}$. Assuming that $a^{(2)} \propto f$ at the horizon, the decoupling of $a_t^{(2)}$ occurs at small frequencies.

<u>NOTE</u>: A homogeneous boundary electric field is obtained by

$$a_{x,0}^{(0)} = \frac{E}{i\omega} , \quad \left(i\omega a_{x,0}^{(2n)} + 2n \, Q a_{t,0}^{(2n)} \right) = 0 , \quad \forall n \ge 1 \quad \to \quad \sigma_L(\omega) = -\frac{i \, a_{x,1}^{(0)}}{\omega a_{x,0}^{(0)}}$$

Analytical and Numerical Calculations

At zero temperature the charged lattice has a simple analytic form, $\varphi(r) = Vre^{-Qr}$. This makes it possible to carry out a perturbative expansion in small V/Q. Furthermore, at each order the perturbative calculation is analytic and automatically implements a truncation to a finite set of Fourier modes, i.e. heavy Fourier modes are suppressed by powers of V/Q. • In the Transverse Channel: $\omega < Q$

> V^2 $\sim (V^4)$ iQ^2

Optical Conductivity

A boundary electric field \vec{E} is obtained as $E_j \equiv \lim_{r \to 0} f_{jt}$, where f is the bulk field strength of gauge field fluctuation δA and j = x, y. Generic bulk perturbations of our charged lattice solution have the form,

 $A_{\mu} \to \delta A_{\mu}, \qquad \Phi \to \phi/\sqrt{2} + (\delta \eta + i \delta \psi)/\sqrt{2}.$

The consistent sets of perturbations in x- and y-directions are given as follows:

• When an electric field is applied in the direction transverse to the stripe,

 $\delta A_{\mu} = a_{\mu}(r, x) e^{-i\omega t} .$

• When an electric field is applied in the direction longitudinal to the stripe,

 $\delta A_x = a_x(r, x)e^{-i\omega t}, \quad \delta A_t = a_t(r, x)e^{-i\omega t}, \quad \delta \psi = \psi(r, x)e^{-i\omega t}.$

Comments: $\delta \psi$ produces a vibration of the lattice but plays a different role with respect to the bulk phonon in massive gravity. $\delta\eta$ decouples because $A_{\mu} = 0$.

Working in the gauge $\delta A_r = 0$, the current is

 $J^{a} = -\lim_{r \to 0} \sqrt{-g} g^{rr} g^{ab} \partial_{r} \delta A_{b} , \qquad a, b = t, x, y$

and the conductivity is obtained from the definition $J^{i}(\vec{x}) = \sigma^{ij}(\vec{x})E_{j}$, where i, j = x, y.

We will focus on the average value of the condutivity.

The transverse channel: The Fourier series expansion of a_u is

$$\sigma_T(\omega) = 1 + \frac{i \cdot \varphi}{4\omega(Q - i\omega)} \frac{i}{Q^2} + \mathcal{O}\left(\frac{i}{Q^4}\right).$$

• In the Longitudinal Channel: $\omega < Q$

$$\sigma_L(\omega) = 1 + \frac{i\omega + 2(Q + \sqrt{Q^2 - \omega^2})}{4(Q - i\omega)(2Q^2 - \omega^2 + 2Q\sqrt{Q^2 - \omega^2})} V^2 + \mathcal{O}\left(\frac{V^4}{Q^4}\right)$$

= 1 + $\left(\frac{1}{4} + \frac{5i\omega}{16Q} + \mathcal{O}(\omega^2)\right) \frac{V^2}{Q^2} + \left(\frac{19}{512} - \frac{i\omega}{128\omega} + \mathcal{O}(\omega)\right) \frac{V^4}{Q^4} + \cdots$

There are new features in $\sigma_L(\omega)$: Compared to the V = 0 case, Re σ_L is enhanced at $\omega \ll Q$ \rightarrow Drude-like peak. There is delta function with negative spectral weight, yet the sum rule is satisfied \rightarrow spectral weight is missing in Re σ_L : The would-be homogeneous superfluid density is reduced by lattice effects. Impurities and phase modulation induce decoherence

At finite temperature we show our numerical results. The gray/orange dashed lines are obtained for $Q/V = \infty$, 0, respectively. For the transverse conductivity, we keep $a_u^{(0)}$ and $a_u^{(2)}$. For the longitudinal conductivity, we keep only $a_x^{(0)}$ and $\psi^{(1)}$.

Optical conductivity in the longitudinal direction when T/V = 0.25 and for various values of Q/V. (Left panel, from bottom to top Q/V = 4, 2, 1, 0.5). For the value Q/V = 0.5, Re $\sigma_L(0^+) = 4.05$.

$a_y(r,x) = a_u^{(0)}(r) + a_u^{(2)}(r)\cos(2Qx) + a_u^{(4)}(r)\cos(4Qx) + \cdots$

We obtain the following infinite set of coupled ODEs,

$$\left(\partial_r^2 + \frac{f'}{f}\partial_r + \left(\frac{\omega^2}{f^2} - \frac{\varphi^2}{2r^2f}\right)\right)a_y^{(0)} - \frac{\varphi^2}{4r^2f}a_y^{(2)} = 0, \\ \left(\partial_r^2 + \frac{f'}{f}\partial_r + \left(\frac{\omega^2}{f^2} - \frac{4n^2Q^2}{f} - \frac{\varphi^2}{2r^2f}\right)\right)a_y^{(2n)} - \frac{\varphi^2}{4r^2f}\left(c_{2n-2}a_y^{(2n-2)} + a_y^{(2n+2)}\right) = 0,$$

The novelty is the spatially dependent mass term proportional to $\phi(r, x)^2$ which couples the Fourier modes with a specific patter: $a_y^{(2n)}$ directly couples only to $a_y^{(2n\pm 2)}$ whereas $a_y^{(0)}$ only couples to $a_y^{(2)}$ and not to $a_y^{(2l)}$ with l > 2.

Boundary conditions imply $a_{y,0}^{(0)} = E/i\omega$ and $a_{y,0}^{(2n)} = 0$ for $n \ge 1$. The induced current $J^{y}(x) = \sum_{n=0}^{\infty} a_{y,1}^{(2n)} \cos(2nQx)$ is a function of x, and so is the conductivity. We focus on

 $\sigma_T(\omega) = -rac{i}{\omega} rac{a_{y,1}^{(0)}}{a_{y,1}^{(0)}}$

The behavior of Re $\sigma_L(0^+) = 1 + (V/Q)^2/4$ at small frequencies, the same behavior found at T=0

Optical conductivity in the transverse direction when T/V = 0.25 and for various values of Q/V. (Left panel, from bottom to top Q/V = 4, 2, 1, 0.5).

