◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Compressible quark matter in $\mathcal{N} = 4$ SYM

Christiana Pantelidou

University of Barcelona

To appear, with Anton Faedo, David Mateos, Javier Tarrio

Introduction: AdS/QCD

The strong nuclear interactions between quarks and gluons are described by **Quantum Chromodynamics (QCD)**.

- Non-perturbative aspects remain challeging: confinement, chiral symmetry breaking, phase transitions etc.
- Some progress achieved using lattice simulations: restrictions due to the *sign problem*.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

QCD string dual

Study using the gauge/string duality?

 \rightarrow String duals of many gauge theories are known, but QCD itself is difficult to construct.

 \rightarrow Try to extract 'universal' behaviour, predictions that are robust enough to apply to QCD as well.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In this talk

- Study **d=4 SYM** coupled to massless quarks at finite charge density and finite temperature.
- String dual described by the **D3-D7 system** with an **electric flux** on the D7's.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Outline

- 1. Introduce the various ingredients step-by-step:
 - D3 branes
 - Add D7 flavour branes
 - Add charge

2. Discuss thermodynamics of the system.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

4-dimensional SYM

 N_c D3-branes in flat space \Leftrightarrow d=4 \mathcal{N} =4 $SU(N_c)$ SYM theory

4-dimensional SYM

 N_c D3-branes in flat space \Leftrightarrow d=4 \mathcal{N} =4 $SU(N_c)$ SYM theory

- Susy can be reduced to $\mathcal{N}{=}1$ by generalising the internal manifold to a SE: quiver gauge theories.
- Dimensionless coupling constant: $g_{YM}^2 \sim (length)^{d-4}$, the gauge theory is conformal ($\beta = 0$).

 Degrees of freedom in the adjoint... quarks? Need to add D7 "flavour" branes. [Karch,Katz]

Adding flavour

Add N_f **D7 branes** corresponding to massless quarks.

	x^1	<i>x</i> ²	<i>x</i> ³	r	SE				
D3	×	Х	×	•	•	•	•	•	•
D7	×	×	×	\times	\times	\times	×	•	•

 \rightarrow To simplify, smear the D7's in the internal directions: introducing quarks with different quantum numbers. [Bigazzi et al.]

 \rightarrow Solving the BPS equations for $S = S_{sugra} + S_{sources}$, including backreaction, one finds that: $\beta \sim \frac{N_f}{N_c} > 0$ [Benini et al.]

- Flavour is irrelevant in the IR: (log) AdS₅ at low energies.
- The UV is altered significantly: the theory develops a Landau pole, described by a hyperscaling violating metric with $\theta = 7/2$.

Landau Pole physics: UV cut-off

Questions:

1. How is the UV **cut-off** manifested in the RG flow? the D = 5 metric, *g*, is non-monotonic. [CP et al.]

- maximum number of degrees of freedom $n \sim g_{xx}^{3/2}$.
- the radial proper distance is finite: $\int^{UV} \sqrt{g_{\rho\rho}} d\rho$ converges.

2. Are the solutions valid? Some of the effects of the Landau Pole are within the region where supergravity **can be trusted**.

Landau pole physics: Thermodynamics

- \rightarrow Add temperature (numerics).
- \rightarrow Study thermodynamics: regularise action.

- Specific heat: becomes negative, signaling an instability.
- Speed of sound: grows above 1/3 (conformal value) and, in fact, diverges at some finite temperature.

Adding charge

Turn on a chemical potential by adding N_{st} units of electric flux on the flavour branes: $F \sim dt \wedge dr$ [Witten]

- Include full backreaction with $S = S_{sugra} + S_{sources}$.
- Only parameter appearing in equations is $\rho \sim \frac{N_c^{1/4} N_{st}}{4 N_s^{1/2}}$.
- The charge is relevant in the UV: doesn't change the asymptotics.
- Conformality in the IR is broken by the new scale: the theory now flows to a Lif solution with z = 7: $t \to \lambda^7 t$, $x \to \lambda x$.

Pictorial representation RG flows

Constructing the flows

 \rightarrow Solve numerically a set of coupled ODEs, for various values of the quark density.

 \rightarrow We recover the expected behaviour:

Scaling power of the dilaton at the horizon:

$$c = rac{r(e^{\phi})'}{e^{\phi}}\Big|_{r=r_h}$$

• AdS:
$$e^{\phi} \sim const \Rightarrow c = 0$$

• LP:
$$e^{\phi} \sim r^4 \Rightarrow c = 4$$

• Lif:
$$e^{\phi} \sim r^6 \Rightarrow c = 6$$

(日)、

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Towards the Phase diagram

- \rightarrow Study thermodynamics: renormalise the action, like before.
- \rightarrow Stability properties?
 - Thermodynamic stability requirement: Hessian is positive definite.

$$C_Q = T \frac{\partial s}{\partial T}\Big|_{Q_{\rm st}} > 0, \qquad \chi = \frac{\partial Q_{\rm st}}{\partial \mu}\Big|_T > 0.$$

• Dynamical stability: How does the speed of sound, c_s^2 , behave?

$$c_{s}^{2} > 0$$
 .

The Phase diagram

- Unstable at high T due to LP, as in chargeless case.
- Unstable at low T and high Q_{st} : inhomogeneous phase.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

• $c_s^2 < 0$: the sound mode goes unstable.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conclusions

We managed to model a d=4 N=1 SYM theory with dynamical quarks at finite density and finite temperature.

- Hints toward spatially modulated phase transitions. Construct them?
- Study Colour Flavour Locking superconductors? consider instantons ($F \land F \neq 0$) on this background: desolved D3's in the D7's.

Thank you!

References:

- A. F. Faedo, A. Kundu, D. Mateos and J. Tarrio, "(Super)Yang-Mills at Finite Heavy- Quark Density," JHEP 1502 (2015) 010 [arXiv:1410.4466 [hep-th]].
- A. F. Faedo, D. Mateos and J. Tarrio, "Three-dimensional super Yang-Mills with unquenched flavor," arXiv:1505.00210 [hep-th].
- A. F. Faedo, A. Kundu, D. Mateos, C.Pantelidou and J. Tarrio, "Three-dimensional super Yang-Mills with compressible quark matter", JHEP 1603 (2016) 154 [arXiv:1511.05484 [hep-th]].
- A. F. Faedo, D. Mateos, C. Pantelidou and J. Tarrio, Holography with a Landau pole," JHEP 1702 (2017) 047 [arXiv:1611.05808 [hep-th]].