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@ (2+1) dim systems of (nonrelativistic) electrons in strong magnetic field

@ Hall conductivity is quantized

J' = oudlkE;
v e
oy = ——
27 h

where v = filling fraction
v=1,2,--- forIQHE and v = 1/3,1/5, - - - for FQHE.

@ Framework for interesting ideas

o topological field theories (Chern-Simons effective actions)
e bulk-edge dynamics

e non-commutative geometries, fuzzy spaces
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BASIC FEATURES OF (2+1) DIM IQHE

Charged particle moving on 2d plane (or S?) in strong external magnetic field

(Landau problem)

@ Distinct Landau levels, separated by energy gap (~ B)
@ Each Landau level is degenerate

@ Lowest Landau level (LLL) :
¢1’l ~ Zne_lzlz/2

z=x+1y
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QUANTUM HALL DROPLETS

Many-body problem = quantum Hall droplets

@ Degeneracy of each LL is lifted by confining potential (V = ur?)

@ Exclusion principle = N-body ground state = incompressible droplet

@ Large N — sharp boundary

B/2x

1/N-effect
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CHIRAL ACTIONS

Low energy excitations of droplets <= area preserving boundary
fluctuations (edge excitations)

8D
O

Edge dynamics is collectively described by 1d chiral boson ¢

(WEN, STONE,..)

ov
Sage = [ (004 uono)ono,
oD

~ o
or boundary
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ELECTROMAGNETIC FLUCTUATIONS

In the presence of electromagnetic interactions
Au=a, +5A,
Constant B (/ Perturbation
@ The bulk dynamics is described by an effective action
174
Spulk = Scs = o= /D €uwrAu0L A
Scs is not gauge invariant in presence of boundaries.
@ The edge dynamics is described by
Sedge ~ gauged chiral action
Anomaly cancellation between bulk and edge actions,

dSpulk + ésedge =0
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TRANSPORT COEFFICIENTS

@ The effective action Scs captures the response of the system to

electromagnetic fluctuations

(55(:5 - _L
A, T o
6SCS - i 14 l] )
7 i

Coefficient in front of Scg is related to Hall conductivity.

@ What about other transport coefficients?

e How does the system respond to stress and strain?

o Calculate stress tensor <= couple theory to gravity
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EFFECTIVE ACTION IN BACKGROUND GAUGE FIELD AND METRIC

5[¢’¢T;Amgi,‘] = /dtdzx\/g |:i Q/JT Dy — ﬁgij (Di"/})T(D]"{/})]

exp [iSqg] / dy dtexp [iS[6, 615 A,,, g5]]

N-1
Seff = 41725/ [[A—l—(s—i—%)w] d[A—i—(s—l—%)w]—ll—zwdw] +--

w = spin connection s=0—LLL,s=1—1stLL,:--

3S.p
5wo

~ ng = Hall viscosity

ABANOV AND GROMOV, 2014

8/31



HIGHER DIMENSIONAL QHE

@ QHE on S* (Hu anp zHaNG)

Generalization to arbitrary even (spatial) dimensions

@ QHE on CP* (with V.P. NAIR)

_ SU(k+1)
CP' = —um

(2k dim space)

o U(k) ~ U(1) x SU(k) = We can have both U(1) and SU(k)
background magnetic fields

¢ Landau wavefunctions are functions on SU(k + 1) with particular
transformation properties under U(k).

e Each Landau level forms an irreducible SU(k + 1) representation,

whose degeneracy is easy to calculate.
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QHE ON CP*(continued)

Wavefunctions are functions on SU(k + 1); expressed in terms of Wigner D
functions

U ~ Dg}z (g ) - < L @ quantum numbers of states in J rep.

Right/left transformations: R4 §=8§Ta, Lag=Tag

° R, sz+2k — gauge transformations (U(k))
@ R,;,R_; — covariant derivatives (i=1,--- k) [IA{+,-,R_,'] e U(k)
®Iy— magnetic translations (AesUk+1)
@ How VU transforms under U(k)r depends on choice of background fields
@ Choose “constant” U(1) or U(k) background magnetic fields.

U(l): F=da=n, Q=Kahler 2 form

Uk): "~ R~ froBeel
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QHE ON CP(continued)

Wy~ m 3| R )
>
particular SU(k)g repr. J with fixed U(1)g charge ~ n

m=1,---dim] = counts degeneracy of LL

a = internal gauge index=1,--- ,N' = dim]

@ Hamiltonian

k
1 Ao
H= 2 ?_1 R4iR_; 4 constant

Lowest Landau level: R_;¥ =0  Holomorphicity condition

(| R) is lowest weight state)
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MATRIX FORMULATION OF LLL DYNAMICS

@ QHE on a compact space M = LLL defines an N-dim Hilbert space

In the presence of confining potential = incompressible QH droplet
@ Density matrix for ground state droplet : o

| |
1
1 K
po =

._10
O-.. lN—K
0

K filled states

@ Under time evolution: jy — p = U po U'
U =N x N unitary matrix ; “collective” variable describing excitations

within the LLL
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MATRIX FORMULATION OF LLL DYNAMICS (continued)

The action for U is
So= [T [ipplilalt — iV
which leads to the evolution equation for density matrix
2 10,

Sp has no explicit dependence on properties of space on which QHE is

defined, abelian or nonabelian nature of fermions, etc.
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NONCOMMUTATIVE FIELD THEORY

Sp = action of a noncommutative field theory
S= [T [ipplitolt - i1V

=N/dudt [i(pg*UT*ﬁtU) — (po*UT*V*U)]

ﬁ()) a» ‘7 = /o (f)7 U(f, t)’ V(f)
—_——— —
(N x N) matrices symbols

© O(F,t) = & s Uin(®) O ()] (2)
@ Matrix multiplication = * product of symbols
oTr — N [du

Sp = exact bosonic action describing the dynamics of LL fermions

sakiTa: 2 dim. context
DAs, DHAR, MANDAL, WADIA, ...
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RESPONSE TO GAUGE INTERACTIONS

Extend this to include fluctuating gauge fields by gauging So
(9t — ﬁt = at + ZA
5= [T w0 - wlr' v - g U A
——
gauge interactions

In terms of bosonic fields

SzN/dtd,utr lipo * UT % U — po* U % (V + A) x U]

QUESTION: How is A related to the gauge fields coupled to the original

fermions?
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RESPONSE TO GAUGE INTERACTIONS (continued)

S is invariant under
ou=—ixxU 1)
SAX ) = OANE ) —i(Ax (V+A)—(V+ A) %))

Since S describes gauge interactions it has to be invariant under usual gauge

transformations
5Au:5uA+i[A,, + AH\A?, 6A, =0 ()
Background Perturbation

we should choose
A = function(A,, A.,V)
A = function(A,A,,A,)

such that the gauge transformation (2) induces 4 in (1) ( generalized

Seiberg-Witten map)
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EDGE EFFECTIVE ACTION FOR CP*

Calculate S for large N, K with N > K > 1 (n — oo limit)

SozN/d,udt [i(pg*UT*ﬁtU) — (po*x UM+ VU]

A. Abelian background magnetic field U(1)

° ([X) ?]) — %{X(fa t)’ Y(Ea t)}PB = (Q_l)ij 81X(fa t) ajy(fa t)

i
symbol n

@ p— 6 (R%) - rz), Rp= droplet radius

So ~ / (6t¢ +u £¢)£¢
aD
(2k — 1) (space) dim chiral action defined on droplet boundary

L= (1 j?jai@ ro { derivative along boundary of droplet

— Oy in2dim.
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EDGE EFFECTIVE ACTION (continued)

B. Nonabelian background magnetic field U(k)

Symbol = (N” x N’) matrix valued function — action in terms of G € U(N’)

So :417 / tr [(GTG tu GT£G) GTLG}
oD
[ d (iAdGG! + iAGdG) + (Gucﬂ o\
T 3 2m (k—1)!
=Swzw (AL = AR = A) WZW-term in 2k + 1 dim

L = (Q71)7#D; = covariant derivative along the boundary of droplet

— ]
' N
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BOSONIC ACTION WITH GAUGE INTERACTIONS

@ In the presence of gauge fluctuations (D)
S = N/dtd,utr [lipo + Ut % OU — po+ Ut (V + A) * U]

= Sedge + Spulk

Sedge ~ Swzw(AL =A+A ,AR = A)

Chirally gauged WZW
action in 2k dim
(2k + 1) dim CS action

Sbui ~ Sgg (A) + -

A= (Ag+V,a; + A+ A) = background + fluctuations
@ Gauge Invariance = Anomaly Cancellation

0Sedge # 0, Spu # 0
5Sedge =+ 6Sbulk =0
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WHAT ABOUT METRIC PERTURBATIONS?

@ Universal matrix action describing dynamics within each Landau level

@ single-particle spectrum + large N limit —-

(bulk + edge) effective actions
@ gauge invariance is automatically built in

@ Questions:
e How important is precise knowledge of single particle spectrum?

o Can we deviate from CP*?

¢ How do we introduce metric perturbations?
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INDEX THEOREM

@ The lowest Landau level obeys the holomorphicity condition

R_i¥w=0
@ The number of normalizable solutions is given by the Dolbeault index.

@ The Dolbeault index is given by

Tndex(dy) = /M td(TeM) A ch(V)

e td(T.M) = Todd class (for complex tangent space) = given in terms

of traces of curvatures
o ch (V) = Chern character = Tr (¢/f/27)

21/31



INDEX THEOREM (continued)

@ For a fully filled LLL (each particle carries ¢ = 1):

degeneracy = charge = index density = charge density

@ So we can use

dSef
0Ao
and integrate up to get Sy

= Jo = Dolbeault Index Density
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2+1 DIMENSIONS: LOWEST LANDAU LEVEL

@ Consider QHE on CP' = SU(2)/U(1) ~ $2
- iF iR
Index(0y) = 2t

The background values for the gauge fields and curvatures are

dzdz zdz zdz ]

F=—inQ, Rlpx=—i29, Q:'[ _ -
" Tk ! T+= (1+2z)?

Index(dy) = degeneracy of LLL = n + 1 as expected HaLoane

@ Charge density including fluctuations

iF iR

I0=27T+E

@ This leads to the effective action

2
SHLL — L;—W/A[P+R}+ngv+m
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2+1 DIMENSIONS: HIGHER LANDAU LEVELS

@ For higher Landau levels there is no holomorphicity condition,

Dolbeault index is problematic

@ The wave functions in the s-th LL for CP! = SU(2)/U(1) ~ S? are

\Ilm(g)'\'<]am|g|])_n/2>a ]=1’l/2+S
They satisfy R3¥ = —n/2 ¥, but do not satisfy holomorphicity R_¥ = 0

@ The lowest weight state in the same representation

\i/m(g) ~ <I7m|g”7 —11/2 - S>

which satisfy the holomorphicity condition R_¥ = 0 = LLL

24 /31



2+1 DIMENSIONS: HIGHER LANDAU LEVELS (continued)

@ It couples to a U(1) background field

F=-i(n+25)Q=F+sR=F+ R,

@ So we have a mapping

Particle with spin-0 in s-th LL = Particle with spin-s in LLL
@ counting of states same = use Dolbeault index for degeneracy

@ Chern character : Tr (¢/f/2™) — Tr (¢/(Re+5)/2m)
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2+1 DIMENSIONS: ANY LANDAU LEVEL

@ For s-th Landau level on CP' = SU(2)/U(1) ~ S* we find
2\ iF 1, iR
Index(dy) = / [E +(s+ E)ﬂ]

@ Sy can be determined from this

2
ngi):i—ﬁ/A[F—i—(Zs—l—l)R]—l—Sgrav—i----

@ The purely gravitational term can be obtained from the gravitational

part of the index density in 2k + 2 dim following the descent approach
[Index Density],, , =d[ -]

@ Derive the full topological effective action
2
i
s = E/{ [A+ (s+ %)w]d[A+ (s+ %)w] - %wdw}
ABANOV,GROMOV; KLETSOV, MA, MARINESCU, WIEGMANN; BRADLYN, READ; CAN, LASKIN,

WIEGMANN
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HIGHER DIMENSIONS

@ In 2k + 1 dimensions (fluctuations around CP* = SU(k + 1) /U (k)
background fields)

e We have curvatures in the algebra of U(k)
R=-i[R1+R%|, R'=du’ R=do+®A®

e Abelian and/or nonabelian gauge fields

e Nonzero spin to include higher Landau levels

Rs = —i[sR"1 + R"T,]
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FULL TOPOLOGICAL EFFECTIVE ACTION

The full topological bulk effective action capturing both gauge and metric

fluctuations is
S§§<)+1 /[td(TcK) A Z(CS)ZP+1 (ws + A)LH1 +27 / 0
P
where
27

A(TeK) A ch(S)ey = AT, + 5 [1(TR) A S(CS ()]
p

Gives correct expressions for degeneracies in all cases we know QHE

wavefunctions: CP* (abelian and nonabelian gauge fields), S2 x S2, etc
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EXAMPLES

@ 2+1 dim, s-th Landau level
(s)——/{A—I- S—I— ]d{A-I—(S-i-%)W]—ll—zwdw}

@ 4+1 dim, s-th Landau level
CP? = SU(3)/U(2); Abelian gauge field

s = P [ 1) o 0]

_%(A + (s + 1)w0> [(dWO)Z _ [((S + 1)2 . S}Tr(f{ /\R)l }
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EXAMPLES

@ 6+1 dim, lowest Landau level
CP® = SU(4)/U(3); Abelian gauge field

st = g [l (1432) (a3
116 (A L300 ) d (A + gw") [(dwo)z + %Tr(R A R)]

O 1 [ 7(dw®)? + 14Te(R A R)} bR ARA R)}

1920 720
1

120 (CS)7(w)
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SUMMARY

@ Extend QHE to higher dimensions; physical realizations of fuzzy spaces

@ Universal matrix action — noncommutative field theory description of

LL dynamics

@ Atlarge N limit action describes dynamics of abelian/nonabelian

quantum Hall droplets with gauge fluctuations
@ anomaly free bulk/edge dynamics
@ Use index theorems to introduce metric perturbations

@ Applications to fluids and higher dim transport coefficients ?
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