The Geometry of Quantum Hall Effect: An Effective Action for all Dimensions

DIMITRA KARABALI

Lehman College of the CUNY

9th Regional Meeting in String Theory
Kolymbari, Greece
July 12, 2017

- (2+1) dim systems of (nonrelativistic) electrons in strong magnetic field
- Hall conductivity is quantized

$$
\begin{aligned}
J^{i} & =\sigma_{H} \epsilon^{i j} E_{j} \\
\sigma_{H} & =\frac{\nu}{2 \pi} \frac{e^{2}}{\hbar}
\end{aligned}
$$

where $\nu=$ filling fraction
$\nu=1,2, \cdots$ for IQHE and $\nu=1 / 3,1 / 5, \cdots$ for FQHE.

- Framework for interesting ideas
- topological field theories (Chern-Simons effective actions)
- bulk-edge dynamics
- non-commutative geometries, fuzzy spaces

Charged particle moving on 2d plane (or S^{2}) in strong external magnetic field (Landau problem)

- Distinct Landau levels, separated by energy gap ($\sim B$)
- Each Landau level is degenerate
- Lowest Landau level (LLL) :

$$
\begin{aligned}
\psi_{n} & \sim z^{n} e^{-|z|^{2} / 2} \\
z & =x+i y
\end{aligned}
$$

Many-body problem \Longrightarrow quantum Hall droplets

- Degeneracy of each LL is lifted by confining potential $\left(V=\frac{1}{2} u r^{2}\right)$
- Exclusion principle $\rightarrow \mathrm{N}$-body ground state $=$ incompressible droplet
- Large $N \rightarrow$ sharp boundary

Low energy excitations of droplets \Longleftrightarrow area preserving boundary fluctuations (edge excitations)

Edge dynamics is collectively described by 1d chiral boson ϕ (Wen, Stone...)

$$
\left.S_{\text {edge }}=\int_{\partial D}\left(\partial_{t} \phi+u \partial_{\theta} \phi\right) \partial_{\theta} \phi, \quad u \sim \frac{\partial V}{\partial r^{2}}\right]_{\text {boundary }}
$$

In the presence of electromagnetic interactions

- The bulk dynamics is described by an effective action

$$
S_{\mathrm{bulk}}=S_{\mathrm{CS}}=\frac{\nu}{4 \pi} \int_{D} \epsilon_{\mu \nu \lambda} A_{\mu} \partial_{\nu} A_{\lambda}
$$

$S_{C S}$ is not gauge invariant in presence of boundaries.

- The edge dynamics is described by

$$
S_{\text {edge }} \sim \text { gauged chiral action }
$$

Anomaly cancellation between bulk and edge actions,

$$
\delta S_{\text {bulk }}+\delta S_{\text {edge }}=0
$$

- The effective action $S_{C S}$ captures the response of the system to electromagnetic fluctuations

$$
\begin{aligned}
& \frac{\delta S_{\mathrm{CS}}}{\delta A_{0}}=\rho=\frac{\nu}{2 \pi} \\
& \frac{\delta S_{\mathrm{CS}}}{\delta A_{i}}=J^{i}=\frac{\nu}{2 \pi} \epsilon^{i j} E_{j}
\end{aligned}
$$

Coefficient in front of $S_{C S}$ is related to Hall conductivity.

- What about other transport coefficients?
- How does the system respond to stress and strain?
- Calculate stress tensor \Longleftrightarrow couple theory to gravity

$$
\begin{gathered}
S\left[\psi, \psi^{\dagger} ; A_{\mu}, g_{i j}\right]=\int d t d^{2} x \sqrt{g}\left[i \psi^{\dagger} D_{t} \psi-\frac{1}{2 m} g^{i j}\left(D_{i} \psi\right)^{\dagger}\left(D_{j} \psi\right)\right] \\
\exp \left[i S_{\text {eff }}\right]=\int d \psi d \psi^{\dagger} \exp \left[i S\left[\psi, \psi^{\dagger} ; A_{\mu}, g_{i j}\right]\right] \\
S_{\text {eff }}=\frac{1}{4 \pi} \sum_{s=0}^{N-1} \int\left[\left[A+\left(s+\frac{1}{2}\right) \omega\right] d\left[A+\left(s+\frac{1}{2}\right) \omega\right]-\frac{1}{12} \omega d \omega\right]+\cdots \\
\omega=\operatorname{spin} \text { connection } \quad s=0 \rightarrow L L L, s=1 \rightarrow 1 \text { st LL }, \cdots \\
\frac{\delta S_{\text {eff }}}{\delta \omega_{0}} \sim n_{H}=\text { Hall viscosity }
\end{gathered}
$$

- QHE on S^{4} (hu and zhang) Generalization to arbitrary even (spatial) dimensions
- QHE on $\mathbb{C P}^{k}{ }^{k}$ (with V.P. NAIR)

$$
\mathbb{C P}^{k}=\frac{S U(k+1)}{U(k)} \quad(2 k \operatorname{dim} \text { space })
$$

- $U(k) \sim U(1) \times S U(k) \Longrightarrow$ We can have both $U(1)$ and $S U(k)$ background magnetic fields
- Landau wavefunctions are functions on $\operatorname{SU}(k+1)$ with particular transformation properties under $U(k)$.
- Each Landau level forms an irreducible $S U(k+1)$ representation, whose degeneracy is easy to calculate.

Wavefunctions are functions on $S U(k+1)$; expressed in terms of Wigner \mathcal{D} functions

$$
\Psi \sim \mathcal{D}_{L, R}^{(J)}(g)=\langle\left. L \underbrace{|\hat{g}|}\right|_{R}\rangle \quad \text { quantum numbers of states in } \mathrm{r} \text { rep. }
$$

Right/left transformations: $\quad \hat{R}_{A} \hat{g}=\hat{g} T_{A}, \quad \hat{L}_{A} \hat{g}=T_{A} \hat{g}$

- $\hat{R}_{a}, \hat{R}_{k^{2}+2 k} \rightarrow$ gauge transformations
(U(k))
- $\hat{R}_{+i}, \hat{R}_{-i} \rightarrow$ covariant derivatives $(i=1, \cdots, k)\left[\hat{R}_{+i}, \hat{R}_{-j}\right] \in U(k)$
- $\hat{L}_{A} \rightarrow$ magnetic translations $\quad(A \in S U(k+1))$
- How Ψ transforms under $U(k)_{R}$ depends on choice of background fields
- Choose "constant" $U(1)$ or $U(k)$ background magnetic fields.

$$
\begin{array}{ll}
U(1): & \bar{F}=d \bar{a}=n \Omega, \quad \Omega=\text { Kahler } 2-\text { form } \\
U(k): & \bar{F}^{a} \sim \bar{R}^{a} \sim f^{a \alpha \beta} e^{\alpha} e^{\beta}
\end{array}
$$

$$
\Psi_{m ; \alpha}^{J} \sim\langle m| \hat{g}|\underbrace{R}_{\searrow}\rangle
$$

$$
\text { particular } S U(k)_{R} \text { repr. } \tilde{J} \text { with fixed } U(1)_{R} \text { charge } \sim n
$$

$m=1, \cdots \operatorname{dim} J \Longrightarrow$ counts degeneracy of LL
$\alpha=$ internal gauge index $=1, \cdots, N^{\prime}=\operatorname{dim} \tilde{J}$

- Hamiltonian

$$
H=\frac{1}{2 M r^{2}} \sum_{i=1}^{k} \hat{R}_{+i} \hat{R}_{-i}+\text { constant }
$$

Lowest Landau level: $\hat{R}_{-i} \Psi=0 \quad$ Holomorphicity condition
($|R\rangle$ is lowest weight state)

- QHE on a compact space $M \Longrightarrow$ LLL defines an N-dim Hilbert space In the presence of confining potential \Longrightarrow incompressible QH droplet
- Density matrix for ground state droplet : $\hat{\rho}_{0}$

$$
\hat{\rho}_{0}=\left[\begin{array}{lllllll}
1 & & & & & & \\
& 1 & & & & & \\
& 1 & & & & & \\
& & \ddots & & & & \\
& & & 1 & 0 & & \\
& & & & & \ddots & \\
& & & & & & \\
& & & & & \\
&
\end{array}\right] \begin{aligned}
& \\
& \\
&
\end{aligned}
$$

K filled states

- Under time evolution: $\hat{\rho}_{0} \rightarrow \hat{\rho}=\hat{U} \hat{\rho}_{0} \hat{U}^{\dagger}$
$\hat{U}=N \times N$ unitary matrix ; "collective" variable describing excitations within the LLL

The action for \hat{U} is

$$
S_{0}=\int d t \operatorname{Tr}\left[i \hat{\rho}_{0} \hat{U}^{\dagger} \partial_{t} \hat{U}-\hat{\rho}_{0} \hat{U}^{\dagger} \hat{V} \hat{U}\right]
$$

which leads to the evolution equation for density matrix

$$
i \frac{d \hat{\rho}}{d t}=[\hat{V}, \hat{\rho}]
$$

S_{0} has no explicit dependence on properties of space on which QHE is defined, abelian or nonabelian nature of fermions, etc.
$S_{0}=$ action of a noncommutative field theory

$$
\begin{aligned}
S_{0} & =\int d t \operatorname{Tr}\left[i \hat{\rho}_{0} \hat{U}^{\dagger} \partial_{t} \hat{U}-\hat{\rho}_{0} \hat{U}^{\dagger} \hat{V} \hat{U}\right] \\
& =N \int d \mu d t\left[i\left(\rho_{0} * U^{\dagger} * \partial_{t} U\right)-\left(\rho_{0} * U^{\dagger} * V * U\right)\right]
\end{aligned}
$$

$\underbrace{\hat{\rho}_{0}, \hat{U}, \hat{V}}_{(\times N) \text { matrices }} \Longrightarrow \underbrace{\rho_{0}(\vec{x}), U(\vec{x}, t), V(\vec{x})}_{\text {symbols }}$

- $O(\vec{x}, t)=\frac{1}{N} \sum_{m, l} \Psi_{m}(\vec{x}) \hat{O}_{m l}(t) \Psi_{l}^{*}(\vec{x})$
- Matrix multiplication \Longrightarrow * product of symbols
- $\operatorname{Tr} \Longrightarrow N \int d \mu$
$S_{0}=$ exact bosonic action describing the dynamics of LL fermions
Sakita: 2 dim. context
Das, Dhar, Mandal, Wadia,...

Extend this to include fluctuating gauge fields by gauging S_{0}

$$
\begin{aligned}
\partial_{t} & \rightarrow \hat{D}_{t}=\partial_{t}+i \hat{\mathcal{A}} \\
S & =\int d t \operatorname{Tr}[i \hat{\rho}_{0} \hat{U}^{\dagger} \hat{\partial}_{t} \hat{U}-\hat{\rho}_{0} \hat{U}^{\dagger} \hat{V} \hat{U}-\underbrace{\hat{\rho}_{0} \hat{U}^{\dagger} \hat{\mathcal{A}} \hat{U}}]
\end{aligned}
$$

gauge interactions

In terms of bosonic fields

$$
S=N \int d t d \mu \operatorname{tr}\left[i \rho_{0} * U^{\dagger} * \partial_{t} U-\rho_{0} * U^{\dagger} *(V+\mathcal{A}) * U\right]
$$

Question: How is \mathcal{A} related to the gauge fields coupled to the original fermions?
S is invariant under

$$
\begin{gather*}
\delta U=-i \lambda * U \\
\delta \mathcal{A}(\vec{x}, t)=\partial_{t} \lambda(\vec{x}, t)-i(\lambda *(V+\mathcal{A})-(V+\mathcal{A}) * \lambda) \tag{1}
\end{gather*}
$$

Since S describes gauge interactions it has to be invariant under usual gauge transformations

$$
\delta A_{\mu}=\partial_{\mu} \Lambda+i[\underbrace{}_{\text {Background }} \bar{A}_{\mu}+A_{\mu} \underbrace{\Lambda]}_{\text {Perturbation }}, \quad \delta \bar{A}_{\mu}=0
$$

we should choose

$$
\begin{aligned}
\mathcal{A} & =\text { function }\left(A_{\mu}, \bar{A}_{\mu}, V\right) \\
\lambda & =\text { function }\left(\Lambda, A_{\mu}, \bar{A}_{\mu}\right)
\end{aligned}
$$

such that the gauge transformation (2) induces $\delta \mathcal{A}$ in (1) (generalized Seiberg-Witten map)

Calculate S_{0} for large N, K with $N \gg K \gg 1$ ($n \rightarrow \infty$ limit)

$$
S_{0}=N \int d \mu d t\left[i\left(\rho_{0} * U^{\dagger} * \partial_{t} U\right)-\left(\rho_{0} * U^{\dagger} * V * U\right)\right]
$$

A. Abelian background magnetic field $U(1)$

- $([\hat{X}, \hat{Y}])_{\text {symbol }} \rightarrow \frac{i}{n}\{X(\vec{x}, t), Y(\vec{x}, t)\}_{\mathrm{PB}}=\frac{i}{n}\left(\Omega^{-1}\right)^{i j} \partial_{i} X(\vec{x}, t) \partial_{j} Y(\vec{x}, t)$
- $\rho_{0} \rightarrow \Theta\left(R_{D}^{2}-r^{2}\right), \quad R_{D}=$ droplet radius

$$
S_{0} \sim \int_{\partial D}\left(\partial_{t} \phi+u \mathcal{L} \phi\right) \mathcal{L} \phi
$$

$(2 k-1)$ (space) dim chiral action defined on droplet boundary

$$
\mathcal{L} \phi=\left(\Omega^{-1}\right)^{i j} \hat{r}_{j} \partial_{i} \phi, \quad \mathcal{L}=\left\{\begin{array}{c}
\text { derivative along boundary of droplet } \\
\rightarrow \partial_{\theta} \text { in } 2 \mathrm{dim} .
\end{array}\right.
$$

B. Nonabelian background magnetic field $U(k)$

Symbol $=\left(N^{\prime} \times N^{\prime}\right)$ matrix valued function \longrightarrow action in terms of $G \in U\left(N^{\prime}\right)$

$$
\begin{aligned}
S_{0}= & \frac{1}{4 \pi} \int_{\partial D} \operatorname{tr}\left[\left(G^{\dagger} \dot{G}+u G^{\dagger} \mathcal{L} G\right) G^{\dagger} \mathcal{L} G\right] \\
& +\frac{1}{4 \pi} \int_{D} \operatorname{tr}[-d\left(i \bar{A} d G G^{\dagger}+i \bar{A} G^{\dagger} d G\right)+\underbrace{\left.\frac{1}{3}\left(G^{\dagger} d G\right)^{3}\right]\left(\frac{\Omega}{2 \pi}\right)^{k-1} \frac{1}{(k-1)!}}
\end{aligned}
$$

$$
\equiv S_{\mathrm{WZW}}\left(A^{L}=A^{R}=\bar{A}\right) \quad \text { WZW-term in } 2 k+1 \operatorname{dim}
$$

$\mathcal{L}=\left(\Omega^{-1}\right)^{i} \hat{r}_{j} D_{i}=$ covariant derivative along the boundary of droplet

- In the presence of gauge fluctuations (DK)

$$
\begin{aligned}
S & =N \int d t d \mu \operatorname{tr}\left[i \rho_{0} * U^{\dagger} * \partial_{t} U-\rho_{0} * U^{\dagger} *(V+\mathcal{A}) * U\right] \\
& =S_{\text {edge }}+S_{\text {bulk }}
\end{aligned}
$$

$$
\begin{aligned}
S_{\text {edge }} \sim S_{\mathrm{WZW}}\left(A^{L}=A+\bar{A}, A^{R}=\bar{A}\right)= & \text { Chirally gauged WZW } \\
& \text { action in } 2 k \operatorname{dim} \\
S_{\text {bulk }} \sim S_{\mathrm{CS}}^{2 k+1}(\tilde{A})+\cdots & (2 k+1) \operatorname{dim} \mathrm{CS} \text { action }
\end{aligned}
$$

$$
\tilde{A}=\left(A_{0}+V, \bar{a}_{i}+\bar{A}_{i}+A_{i}\right)=\text { background }+ \text { fluctuations }
$$

- Gauge Invariance \Longrightarrow Anomaly Cancellation

$$
\begin{gathered}
\delta S_{\text {edge }} \neq 0, \quad \delta S_{\text {bulk }} \neq 0 \\
\delta S_{\text {edge }}+\delta S_{\text {bulk }}=0
\end{gathered}
$$

- Universal matrix action describing dynamics within each Landau level
- single-particle spectrum + large N limit \Longrightarrow
(bulk + edge) effective actions
- gauge invariance is automatically built in
- Questions:
- How important is precise knowledge of single particle spectrum?
- Can we deviate from $\mathbb{C P}^{k}$?
- How do we introduce metric perturbations?
- The lowest Landau level obeys the holomorphicity condition

$$
\hat{R}_{-i} \Psi=0
$$

- The number of normalizable solutions is given by the Dolbeault index.
- The Dolbeault index is given by

$$
\operatorname{Index}\left(\bar{\partial}_{V}\right)=\int_{M} \operatorname{td}\left(T_{C} M\right) \wedge \operatorname{ch}(V)
$$

- $\operatorname{td}\left(T_{c} M\right)=$ Todd class (for complex tangent space) $=$ given in terms of traces of curvatures
- $\operatorname{ch}(\mathrm{V})=$ Chern character $=\operatorname{Tr}\left(e^{i F / 2 \pi}\right)$
- For a fully filled LLL (each particle carries $e=1$): degeneracy $=$ charge \Longrightarrow index density $=$ charge density
- So we can use

$$
\frac{\delta S_{e f f}}{\delta A_{0}}=J_{0}=\text { Dolbeault Index Density }
$$

and integrate up to get $S_{\text {eff }}$.

- Consider QHE on $\mathbb{C P}^{1}=S U(2) / U(1) \sim S^{2}$

$$
\operatorname{Index}\left(\bar{\partial}_{V}\right)=\int_{M} \frac{i F}{2 \pi}+\frac{i R}{4 \pi}
$$

The background values for the gauge fields and curvatures are

$$
\bar{F}=-i n \Omega,\left.\quad \bar{R}\right|_{T_{M} K}=-i 2 \Omega, \quad \Omega=i\left[\frac{d z d \bar{z}}{1+z \bar{z}}-\frac{\bar{z} d z z d \bar{z}}{(1+z \bar{z})^{2}}\right]
$$

Index $\left(\bar{\partial}_{V}\right)=$ degeneracy of LLL $=n+1$ as expected Haldane

- Charge density including fluctuations

$$
J_{0}=\frac{i F}{2 \pi}+\frac{i R}{4 \pi}
$$

- This leads to the effective action

$$
S_{3 d}^{L L L}=\frac{i^{2}}{4 \pi} \int A[F+R]+S_{\text {grav }}+\cdots
$$

- For higher Landau levels there is no holomorphicity condition, Dolbeault index is problematic
- The wave functions in the s-th LL for $\mathbb{C P}^{1}=S U(2) / U(1) \sim S^{2}$ are

$$
\Psi_{m}(g) \sim\langle J, m| g|J,-n / 2\rangle, \quad J=n / 2+s
$$

They satisfy $R_{3} \Psi=-n / 2 \Psi$, but do not satisfy holomorphicity $R_{-} \Psi \neq 0$

- The lowest weight state in the same representation

$$
\tilde{\Psi}_{m}(g) \sim\langle J, m| g|J,-n / 2-s\rangle
$$

which satisfy the holomorphicity condition $R_{-} \tilde{\Psi}=0 \Longrightarrow$ LLL

- It couples to a $U(1)$ background field

$$
\overline{\mathcal{F}}=-i(n+2 s) \Omega=\bar{F}+s \bar{R}=\bar{F}+\overline{\mathcal{R}}_{s}
$$

- So we have a mapping

Particle with spin-0 in s-th LL \Longrightarrow Particle with spin-s in LLL

- counting of states same \Longrightarrow use Dolbeault index for degeneracy
- Chern character : $\operatorname{Tr}\left(e^{i F / 2 \pi}\right) \rightarrow \operatorname{Tr}\left(e^{i\left(\mathcal{R}_{s}+F\right) / 2 \pi}\right)$
- For s-th Landau level on $\mathbb{C P}^{1}=S U(2) / U(1) \sim S^{2}$ we find

$$
\operatorname{Index}\left(\bar{\partial}_{V}\right)=\int\left[\frac{i F}{2 \pi}+\left(s+\frac{1}{2}\right) \frac{i R}{2 \pi}\right]
$$

- $S_{\text {eff }}$ can be determined from this

$$
S_{3 d}^{(s)}=\frac{i^{2}}{4 \pi} \int A[F+(2 s+1) R]+S_{\text {grav }}+\cdots
$$

- The purely gravitational term can be obtained from the gravitational part of the index density in $2 k+2$ dim following the descent approach

$$
[\text { Index Density }]_{2 k+2}=d[\cdots]
$$

- Derive the full topological effective action

$$
S_{3 d}^{(s)}=\frac{i^{2}}{4 \pi} \int\left\{\left[A+\left(s+\frac{1}{2}\right) \omega\right] d\left[A+\left(s+\frac{1}{2}\right) \omega\right]-\frac{1}{12} \omega d \omega\right\}
$$

Abanov, Gromov; Kletsov, Ma, Marinescu, Wiegmann; Bradlyn, Read; Can, Laskin,

- In $2 k+1$ dimensions (fluctuations around $\mathbb{C P}^{k}=S U(k+1) / U(k)$ background fields)
- We have curvatures in the algebra of $U(k)$

$$
R=-i\left[R^{0} \mathbf{1}+\tilde{R}^{a} t_{a}\right], \quad R^{0}=d \omega^{0}, \quad \tilde{R}=d \tilde{\omega}+\tilde{\omega} \wedge \tilde{\omega}
$$

- Abelian and/or nonabelian gauge fields
- Nonzero spin to include higher Landau levels

$$
\mathcal{R}_{s}=-i\left[s R^{0} \mathbf{1}+\tilde{R}^{a} T_{a}\right]
$$

The full topological bulk effective action capturing both gauge and metric fluctuations is

$$
S_{2 k+1}^{(s)}=\int\left[\operatorname{td}\left(T_{c} K\right) \wedge \sum_{p}(C S)_{2 p+1}\left(\omega_{s}+A\right)\right]_{2 k+1}+2 \pi \int \Omega_{2 k+1}^{\mathrm{grav}}
$$

where

$$
\left[\operatorname{td}\left(T_{c} K\right) \wedge \operatorname{ch}(S)\right]_{2 k+2}=d \Omega_{2 k+1}^{\text {grav }}+\frac{1}{2 \pi} d\left[\operatorname{td}\left(T_{c} K\right) \wedge \sum_{p}(C S)_{2 p+1}\left(\omega_{s}\right)\right]_{2 k+1}
$$

Gives correct expressions for degeneracies in all cases we know QHE wavefunctions: $\mathbb{C P}^{k}$ (abelian and nonabelian gauge fields), $S^{2} \times S^{2}$, etc

- 2+1 dim, s-th Landau level

$$
S_{3 d}^{(s)}=\frac{i^{2}}{4 \pi} \int\left\{\left[A+\left(s+\frac{1}{2}\right) \omega\right] d\left[A+\left(s+\frac{1}{2}\right) \omega\right]-\frac{1}{12} \omega d \omega\right\}
$$

- 4+1 dim, s-th Landau level $\mathbb{C P}^{2}=S U(3) / U(2)$; Abelian gauge field

$$
\begin{aligned}
S_{5 d}^{(s)}= & \frac{i^{3}(s+1)}{(2 \pi)^{2}} \int\left\{\frac{1}{3!}\left(A+(s+1) \omega^{0}\right)\left[d\left(A+(s+1) \omega^{0}\right)\right]^{2}\right. \\
& -\frac{1}{12}\left(A+(s+1) \omega^{0}\right)\left[\left(d \omega^{0}\right)^{2}-\left[\left((s+1)^{2}-\frac{3}{2}\right] \operatorname{Tr}(\tilde{R} \wedge \tilde{R})\right]\right\}
\end{aligned}
$$

- 6+1 dim, lowest Landau level

$$
\mathbb{C P}^{3}=S U(4) / U(3) ; \text { Abelian gauge field }
$$

$$
\begin{aligned}
S_{7 d}^{\mathrm{LLL}}= & \frac{1}{(2 \pi)^{3}} \int\left\{\frac{1}{4!}\left(A+\frac{3}{2} \omega^{0}\right)\left[d\left(A+\frac{3}{2} \omega^{0}\right)\right]^{3}\right. \\
& -\frac{1}{16}\left(A+\frac{3}{2} \omega^{0}\right) d\left(A+\frac{3}{2} \omega^{0}\right)\left[\left(d \omega^{0}\right)^{2}+\frac{1}{3} \operatorname{Tr}(\tilde{R} \wedge \tilde{R})\right] \\
& \left.+\frac{1}{1920} \omega^{0} d \omega^{0}\left[17\left(d \omega^{0}\right)^{2}+14 \operatorname{Tr}(\tilde{R} \wedge \tilde{R})\right]+\frac{1}{720} \omega^{0} \operatorname{Tr}(\tilde{R} \wedge \tilde{R} \wedge \tilde{R})\right\} \\
& +\frac{1}{120} \int(C S)_{7}(\tilde{\omega})
\end{aligned}
$$

- Extend QHE to higher dimensions; physical realizations of fuzzy spaces
- Universal matrix action \rightarrow noncommutative field theory description of LL dynamics
- At large N limit action describes dynamics of abelian/nonabelian quantum Hall droplets with gauge fluctuations
- anomaly free bulk/edge dynamics
- Use index theorems to introduce metric perturbations
- Applications to fluids and higher dim transport coefficients ?

