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(2+1) DIM QHE

(2+1) dim systems of (nonrelativistic) electrons in strong magnetic field

Hall conductivity is quantized

Ji = σHε
ijEj

σH =
ν

2π
e2

~

where ν = filling fraction

ν = 1, 2, · · · for IQHE and ν = 1/3, 1/5, · · · for FQHE.

Framework for interesting ideas

• topological field theories (Chern-Simons effective actions)

• bulk-edge dynamics

• non-commutative geometries, fuzzy spaces
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BASIC FEATURES OF (2+1) DIM IQHE

Charged particle moving on 2d plane (or S2) in strong external magnetic field

(Landau problem)

Distinct Landau levels, separated by energy gap (∼ B)

Each Landau level is degenerate

Lowest Landau level (LLL) :

ψn ∼ zne−|z|
2/2

z = x + iy
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QUANTUM HALL DROPLETS

Many-body problem =⇒ quantum Hall droplets

Degeneracy of each LL is lifted by confining potential (V = 1
2 ur2)

Exclusion principle→ N-body ground state = incompressible droplet

Large N→ sharp boundary
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CHIRAL ACTIONS

Low energy excitations of droplets⇐⇒ area preserving boundary

fluctuations (edge excitations)

Edge dynamics is collectively described by 1d chiral boson φ (WEN, STONE,..)

Sedge =

∫
∂D

(
∂tφ+ u ∂θφ

)
∂θφ, u ∼ ∂V

∂r2

]
boundary
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ELECTROMAGNETIC FLUCTUATIONS

In the presence of electromagnetic interactions

Aµ = aµ + δAµ

Constant B Perturbation

The bulk dynamics is described by an effective action

Sbulk = SCS =
ν

4π

∫
D
εµνλAµ∂νAλ

SCS is not gauge invariant in presence of boundaries.

The edge dynamics is described by

Sedge ∼ gauged chiral action

Anomaly cancellation between bulk and edge actions,

δSbulk + δSedge = 0
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TRANSPORT COEFFICIENTS

The effective action SCS captures the response of the system to

electromagnetic fluctuations

δSCS

δA0
= ρ =

ν

2π
δSCS

δAi
= Ji =

ν

2π
εijEj

Coefficient in front of SCS is related to Hall conductivity.

What about other transport coefficients?

• How does the system respond to stress and strain?

• Calculate stress tensor⇐⇒ couple theory to gravity
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EFFECTIVE ACTION IN BACKGROUND GAUGE FIELD AND METRIC

S[ψ,ψ†; Aµ, gij] =

∫
dtd2x

√
g
[

i ψ† Dt ψ −
1

2m
gij (Diψ)†(Djψ)

]
exp [iSeff ] =

∫
dψ dψ† exp

[
iS[ψ,ψ†; Aµ, gij]

]

Seff =
1

4π

N−1∑
s=0

∫ [
[A + (s + 1

2 )ω] d[A + (s + 1
2 )ω]− 1

12
ωdω

]
+ · · ·

ω = spin connection s = 0→ LLL , s = 1→ 1st LL, · · ·

δSeff

δω0
∼ nH = Hall viscosity

ABANOV AND GROMOV, 2014
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HIGHER DIMENSIONAL QHE

QHE on S4 (HU AND ZHANG)

Generalization to arbitrary even (spatial) dimensions

QHE on CPk
(with V.P. NAIR)

CPk =
SU(k + 1)

U(k)
(2k dim space)

• U(k) ∼ U(1)× SU(k) =⇒We can have both U(1) and SU(k)

background magnetic fields

• Landau wavefunctions are functions on SU(k + 1) with particular

transformation properties under U(k).

• Each Landau level forms an irreducible SU(k + 1) representation,

whose degeneracy is easy to calculate.
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QHE ON CPk(continued)

Wavefunctions are functions on SU(k + 1); expressed in terms of Wigner D
functions

Ψ ∼ D(J)
L,R(g) = 〈 L | ĝ | R 〉 quantum numbers of states in J rep.

Right/left transformations: R̂A ĝ = ĝ TA, L̂A ĝ = TA ĝ

R̂a, R̂k2+2k → gauge transformations (U(k))

R̂+i, R̂−i → covariant derivatives (i = 1, · · · , k) [R̂+i, R̂−j] ∈ U(k)

L̂A →magnetic translations (A ∈ SU(k + 1))

How Ψ transforms under U(k)R depends on choice of background fields

Choose “constant” U(1) or U(k) background magnetic fields.

U(1) : F̄ = dā = nΩ, Ω = Kahler 2− form

U(k) : F̄a ∼ R̄a ∼ f aαβeαeβ
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QHE ON CPk(continued)

ΨJ
m;α ∼ 〈m | ĝ | R︸︷︷︸ 〉

particular SU(k)R repr. J̃ with fixed U(1)R charge ∼ n

m = 1, · · ·dimJ =⇒ counts degeneracy of LL

α = internal gauge index = 1, · · · ,N′ = dimJ̃

Hamiltonian

H =
1

2Mr2

k∑
i=1

R̂+iR̂−i + constant

Lowest Landau level: R̂−iΨ = 0 Holomorphicity condition

( | R 〉 is lowest weight state)
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MATRIX FORMULATION OF LLL DYNAMICS

QHE on a compact space M =⇒ LLL defines an N-dim Hilbert space

In the presence of confining potential =⇒ incompressible QH droplet

Density matrix for ground state droplet : ρ̂0

K filled states

Under time evolution: ρ̂0 → ρ̂ = Û ρ̂0 Û†

Û = N ×N unitary matrix ; ”collective” variable describing excitations

within the LLL
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MATRIX FORMULATION OF LLL DYNAMICS (continued)

The action for Û is

S0 =

∫
dt Tr

[
iρ̂0Û†∂tÛ − ρ̂0Û†V̂Û

]
which leads to the evolution equation for density matrix

i
dρ̂
dt

= [V̂, ρ̂]

S0 has no explicit dependence on properties of space on which QHE is

defined, abelian or nonabelian nature of fermions, etc.
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NONCOMMUTATIVE FIELD THEORY

S0 = action of a noncommutative field theory

S0 =

∫
dt Tr

[
iρ̂0Û†∂tÛ − ρ̂0Û†V̂Û

]
= N

∫
dµ dt

[
i(ρ0 ∗U† ∗ ∂tU) − (ρ0 ∗U† ∗ V ∗U)

]
ρ̂0, Û, V̂︸ ︷︷ ︸ =⇒ ρ0(~x),U(~x, t),V(~x)︸ ︷︷ ︸

(N ×N) matrices symbols

O(~x, t) = 1
N

∑
m,l Ψm(~x)Ôml(t)Ψ∗l (~x)

Matrix multiplication =⇒ ∗ product of symbols

Tr =⇒ N
∫

dµ

S0 = exact bosonic action describing the dynamics of LL fermions

SAKITA: 2 dim. context
DAS, DHAR, MANDAL, WADIA,...

14 / 31



RESPONSE TO GAUGE INTERACTIONS

Extend this to include fluctuating gauge fields by gauging S0

∂t → D̂t = ∂t + iÂ

S =

∫
dt Tr

[
iρ̂0Û†∂̂tÛ − ρ̂0Û†V̂Û − ρ̂0 Û†ÂÛ︸ ︷︷ ︸

]
gauge interactions

In terms of bosonic fields

S = N
∫

dt dµ tr
[
iρ0 ∗U† ∗ ∂tU − ρ0 ∗U† ∗ (V +A) ∗U

]

QUESTION: How is A related to the gauge fields coupled to the original

fermions?
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RESPONSE TO GAUGE INTERACTIONS (continued)

S is invariant under

δU = −iλ ∗U

δA(~x, t) = ∂tλ(~x, t)−i (λ ∗ (V +A)−(V +A) ∗ λ)
(1)

Since S describes gauge interactions it has to be invariant under usual gauge

transformations

δAµ = ∂µΛ + i[ Āµ + Aµ , Λ] , δĀµ = 0 (2)

Background Perturbation

we should choose

A = function(Aµ, Āµ,V)

λ = function(Λ,Aµ, Āµ)

such that the gauge transformation (2) induces δA in (1) ( generalized

Seiberg-Witten map)
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EDGE EFFECTIVE ACTION FOR CPk

Calculate S0 for large N,K with N � K� 1 ( n→∞ limit)

S0 = N
∫

dµ dt
[
i(ρ0 ∗U† ∗ ∂tU) − (ρ0 ∗U† ∗ V ∗U)

]
A. Abelian background magnetic field U(1)(

[X̂, Ŷ]
)

symbol →
i
n{X(~x, t), Y(~x, t)}PB = i

n (Ω−1)ij ∂iX(~x, t) ∂jY(~x, t)

ρ0 → Θ
(

R2
D − r2

)
, RD= droplet radius

S0 ∼
∫
∂D

(
∂tφ+ u Lφ

)
Lφ

(2k− 1) (space) dim chiral action defined on droplet boundary

Lφ = (Ω−1)ijr̂j∂iφ, L =

derivative along boundary of droplet

→ ∂θ in 2 dim.
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EDGE EFFECTIVE ACTION (continued)

B. Nonabelian background magnetic field U(k)

Symbol = (N′ ×N′) matrix valued function −→ action in terms of G ∈ U(N′)

S0 =
1

4π

∫
∂D

tr
[(

G†Ġ + u G†LG
)

G†LG
]

+
1

4π

∫
D

tr
[
−d
(
iĀdGG† + iĀG†dG

)
+

1
3
(
G†dG

)3
]( Ω

2π

)k−1 1
(k− 1)!︸ ︷︷ ︸

≡SWZW(AL = AR = Ā) WZW-term in 2k + 1 dim

L = (Ω−1)ijr̂jDi = covariant derivative along the boundary of droplet
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BOSONIC ACTION WITH GAUGE INTERACTIONS

In the presence of gauge fluctuations (DK)

S = N
∫

dt dµ tr
[
iρ0 ∗U† ∗ ∂tU − ρ0 ∗U† ∗ (V +A) ∗U

]
= Sedge + Sbulk

Sedge ∼ SWZW
(
AL = A + Ā ,AR = Ā

)
= Chirally gauged WZW

action in 2k dim

Sbulk ∼ S2k+1
CS (Ã) + · · · = (2k + 1) dim CS action

Ã = (A0 + V, āi + Āi + Ai) = background + fluctuations

Gauge Invariance =⇒ Anomaly Cancellation

δSedge 6= 0, δSbulk 6= 0

δSedge + δSbulk = 0
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WHAT ABOUT METRIC PERTURBATIONS?

Universal matrix action describing dynamics within each Landau level

single-particle spectrum + large N limit =⇒
(bulk + edge) effective actions

gauge invariance is automatically built in

Questions:

• How important is precise knowledge of single particle spectrum?

• Can we deviate from CPk?

• How do we introduce metric perturbations?
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INDEX THEOREM

The lowest Landau level obeys the holomorphicity condition

R̂−iΨ = 0

The number of normalizable solutions is given by the Dolbeault index.

The Dolbeault index is given by

Index(∂̄V) =

∫
M

td(TCM) ∧ ch(V)

• td(TcM) = Todd class (for complex tangent space) = given in terms

of traces of curvatures

• ch (V) = Chern character = Tr
(
eiF/2π

)
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INDEX THEOREM (continued)

For a fully filled LLL (each particle carries e = 1):

degeneracy = charge =⇒ index density = charge density

So we can use

δSeff

δA0
= J0 = Dolbeault Index Density

and integrate up to get Seff .
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2+1 DIMENSIONS: LOWEST LANDAU LEVEL

Consider QHE on CP1 = SU(2)/U(1) ∼ S2

Index(∂̄V) =

∫
M

iF
2π

+
iR
4π

The background values for the gauge fields and curvatures are

F̄ = −inΩ, R̄|TMK = −i2Ω, Ω = i
[ dzdz̄

1 + zz̄
− z̄dz zdz̄

(1 + zz̄)2

]
Index(∂̄V) = degeneracy of LLL = n + 1 as expected HALDANE

Charge density including fluctuations

J0 =
iF
2π

+
iR
4π

This leads to the effective action

SLLL
3d =

i2

4π

∫
A
[
F + R

]
+Sgrav + · · ·
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2+1 DIMENSIONS: HIGHER LANDAU LEVELS

For higher Landau levels there is no holomorphicity condition,

Dolbeault index is problematic

The wave functions in the s-th LL for CP1 = SU(2)/U(1) ∼ S2 are

Ψm(g) ∼ 〈J,m|g|J,−n/2〉, J = n/2 + s

They satisfy R3Ψ = −n/2 Ψ, but do not satisfy holomorphicity R−Ψ 6= 0

The lowest weight state in the same representation

Ψ̃m(g) ∼ 〈J,m|g|J,−n/2− s〉

which satisfy the holomorphicity condition R−Ψ̃ = 0 =⇒ LLL
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2+1 DIMENSIONS: HIGHER LANDAU LEVELS (continued)

It couples to a U(1) background field

F̄ = −i
(
n + 2s)Ω = F̄ + sR̄ = F̄ + R̄s

So we have a mapping

Particle with spin-0 in s-th LL =⇒ Particle with spin-s in LLL

counting of states same =⇒ use Dolbeault index for degeneracy

Chern character : Tr
(
eiF/2π

)
→ Tr

(
ei(Rs+F)/2π

)

25 / 31



2+1 DIMENSIONS: ANY LANDAU LEVEL

For s-th Landau level on CP1 = SU(2)/U(1) ∼ S2 we find

Index(∂̄V) =

∫ [
iF
2π

+ (s + 1
2 )

iR
2π

]
Seff can be determined from this

S(s)
3d =

i2

4π

∫
A [F + (2s + 1)R] + Sgrav + · · ·

The purely gravitational term can be obtained from the gravitational

part of the index density in 2k + 2 dim following the descent approach

[Index Density]2k+2 = d [· · · ]

Derive the full topological effective action

S(s)
3d =

i2

4π

∫ {[
A + (s + 1

2 )ω
]
d
[
A + (s + 1

2 )ω
]
− 1

12ω dω

}
ABANOV,GROMOV; KLETSOV, MA, MARINESCU, WIEGMANN; BRADLYN, READ; CAN, LASKIN,

WIEGMANN
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HIGHER DIMENSIONS

In 2k + 1 dimensions (fluctuations around CPk = SU(k + 1)/U(k)

background fields)

• We have curvatures in the algebra of U(k)

R = −i
[
R01 + R̃ata

]
, R0 = dω0, R̃ = dω̃ + ω̃ ∧ ω̃

• Abelian and/or nonabelian gauge fields

• Nonzero spin to include higher Landau levels

Rs = −i
[
sR01 + R̃aTa

]
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FULL TOPOLOGICAL EFFECTIVE ACTION

The full topological bulk effective action capturing both gauge and metric

fluctuations is

S(s)
2k+1 =

∫ [
td(TcK) ∧

∑
p

(CS)2p+1(ωs + A)
]

2k+1
+ 2π

∫
Ω

grav
2k+1

where

[td(TcK) ∧ ch(S)]2k+2 = d Ω
grav
2k+1 +

1
2π

d
[
td(TcK) ∧

∑
p

(CS)2p+1(ωs)
]

2k+1

Gives correct expressions for degeneracies in all cases we know QHE

wavefunctions: CPk (abelian and nonabelian gauge fields), S2 × S2, etc
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EXAMPLES

2+1 dim, s-th Landau level

S(s)
3d =

i2

4π

∫ {[
A + (s +

1
2

)ω
]
d
[
A + (s +

1
2

)ω
]
− 1

12
ω dω

}

4+1 dim, s-th Landau level

CP2 = SU(3)/U(2); Abelian gauge field

S(s)
5d =

i3(s + 1)

(2π)2

∫ {
1
3!

(
A + (s + 1)ω0

)[
d
(

A + (s + 1)ω0
)]2

− 1
12

(
A + (s + 1)ω0

)[
(dω0)2 −

[
((s + 1)2 − 3

2

]
Tr(R̃ ∧ R̃)

]}
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EXAMPLES

6+1 dim, lowest Landau level

CP3 = SU(4)/U(3); Abelian gauge field

SLLL
7d =

1
(2π)3

∫ {
1
4!

(
A +

3
2
ω0
)[

d
(

A +
3
2
ω0
)]3

− 1
16

(
A +

3
2
ω0
)

d
(

A +
3
2
ω0
)[

(dω0)2 +
1
3

Tr(R̃ ∧ R̃)

]
+

1
1920

ω0dω0
[
17(dω0)2 + 14Tr(R̃ ∧ R̃)

]
+

1
720

ω0Tr(R̃ ∧ R̃ ∧ R̃)

}

+
1

120

∫
(CS)7(ω̃)
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SUMMARY

Extend QHE to higher dimensions; physical realizations of fuzzy spaces

Universal matrix action→ noncommutative field theory description of

LL dynamics

At large N limit action describes dynamics of abelian/nonabelian

quantum Hall droplets with gauge fluctuations

anomaly free bulk/edge dynamics

Use index theorems to introduce metric perturbations

Applications to fluids and higher dim transport coefficients ?
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