9th Crete Regional Meeting in String Theory 2017

Self-Tuning Of The Cosmological Constant

And Holographic RG Flows

Lukas Witkowski Labo APC — Paris

with Jewel Kumar Ghosh, Elias Kiritsis & Francesco Nitti

Braneworlds offer a possible solution to the Cosmological Constant (CC) problem:

- Possible to reconcile a **flat** or **weakly curved** 4d spacetime despite a large 4d vacuum energy Λ_4 .
- Vacuum energy Λ_4 curves the higher dimensional bulk, while the 4d brane world volume may be flat or weakly curved.
- The setup allows for **self-tuning**: a flat or weakly curved brane world volume may emerge for generic values of $~\Lambda_4$.

Braneworlds offer a possible solution to the Cosmological Constant (CC) problem:

Previous work:

[Arkani-Hamed, Dimopoulos, Kaloper and Sundrum '00] [Kachru, Schulz, Silverstein '00] [Csaki, Erlich, Grojean, Hollowood '00]

• Here:

Work with a semi-holographic model by Kiritsis, Nitti.

The model has been discussed in the **talk by Francesco Nitti**. Self-tuning has been explored in [Charmousis, Kiritsis, Nitti '17]

5d gravity theory with a bulk scalar

$$S = M^{3} \int du \int d^{4}x \sqrt{-g} \left[R - \frac{1}{2} g^{ab} \partial_{a} \varphi \partial_{b} \varphi - V(\varphi) \right] + S_{GH}$$
$$+ M^{3} \int_{\Sigma} d^{4} \sigma \sqrt{-\gamma} \left[-W_{B}(\varphi) - \frac{1}{2} Z(\varphi) \gamma^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi + U(\varphi) R^{(\gamma)} + \mathcal{L}_{SM} \right]$$

4d QFT on a brane including SM

$$S = M^{3} \int du \int d^{4}x \sqrt{-g} \left[R - \frac{1}{2} g^{ab} \partial_{a} \varphi \partial_{b} \varphi - V(\varphi) \right] + S_{GH}$$
$$+ M^{3} \int_{\Sigma} d^{4} \sigma \sqrt{-\gamma} \left[-W_{B}(\varphi) - \frac{1}{2} Z(\varphi) \gamma^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi + U(\varphi) R^{(\gamma)} + \mathcal{L}_{SM} \right]$$

Address self-tuning in increasingly realistic setups:

I.) Establish self-tuning for a flat brane.

2.) Reinstate Higgs sector and study EW symmetry breaking.

3.) Establish self tuning for a curved brane.

$$S = M^{3} \int du \int d^{4}x \sqrt{-g} \left[R - \frac{1}{2} g^{ab} \partial_{a} \varphi \partial_{b} \varphi - V(\varphi) \right] + S_{GH}$$
$$+ M^{3} \int_{\Sigma} d^{4} \sigma \sqrt{-\gamma} \left[-W_{B}(\varphi) - \frac{1}{2} Z(\varphi) \gamma^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi + U(\varphi) R^{(\gamma)} + \mathcal{L}_{SM} \right]$$

Address self-tuning in **increasingly realistic** setups:

I.) Establish self-tuning for a flat brane.

See [Charmousis, Kiritsis, Nitti arXiv:1704.05075] and talk by Francesco Nitti

2.) Reinstate Higgs sector and state 3.) Establish Morning for a curved brane.

Outline

I.) Recap:

Review of the setup and self-tuning for a flat brane

- 2.) Self-tuning of the CC and EW symmetry breaking: Reinstate the Higgs sector
- 3.) Self-tuning for a curved brane:
 - Allow brane worldvolume to be maximally symmetric curved spacetime (dS, AdS)
 - Finding bulk solutions equivalent to studying holographic RG flows for QFTs on curved spacetime.

Outline

I.) Recap:

Review of the setup and self-tuning for a flat brane

- 2.) Self-tuning of the CC and EW symmetry breaking: Reinstate the Higgs sector
- 3.) Self-tuning for a curved brane:
 - Allow brane worldvolume to be maximally symmetric curved spacetime (dS, AdS)
 - Finding bulk solutions equivalent to studying holographic RG flows for QFTs on curved spacetime. Talk by Jewel Kumar Ghosh

Self-tuning: Flat Brane 5d gravity dual of 4d CFT

$$S = M^{3} \int du \int d^{4}x \sqrt{-g} \left[R - \frac{1}{2} g^{ab} \partial_{a} \varphi \partial_{b} \varphi - V(\varphi) \right] + S_{GH}$$
$$+ M^{3} \int_{\Sigma} d^{4} \sigma \sqrt{-\gamma} \mathcal{L}(\gamma_{\mu\nu}, \varphi, \text{ SM fields})$$

Self-tuning: Flat Brane 5d gravity dual of 4d CFT

$$S = M^{3} \int du \int d^{4}x \sqrt{-g} \left[R - \frac{1}{2} g^{ab} \partial_{a} \varphi \partial_{b} \varphi - V(\varphi) \right] + S_{GH}$$
$$+ M^{3} \int_{\Sigma} d^{4} \sigma \sqrt{-\gamma} \left[-W_{B}(\varphi) - \frac{1}{2} Z(\varphi) \gamma^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi + U(\varphi) R^{(\gamma)} + \mathcal{L}_{SM} \right]$$

Weakly coupled 4d QFT

$$S = M^{3} \int du \int d^{4}x \sqrt{-g} \left[R - \frac{1}{2} g^{ab} \partial_{a} \varphi \partial_{b} \varphi - V(\varphi) \right] + S_{GH}$$
$$+ M^{3} \int_{\Sigma} d^{4} \sigma \sqrt{-\gamma} \left[-W_{B}(\varphi) - \frac{1}{2} Z(\varphi) \gamma^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi + U(\varphi) R^{(\gamma)} + \mathcal{L}_{SM} \right]$$

Ansatz for a flat brane:

• Domain wall metric with flat slices:

$$ds^{2} = du^{2} + e^{2A(u)}\eta_{\mu\nu}dx^{\mu}dx^{\nu} \,.$$

• Bulk scalar:
$$\varphi = \varphi(u)$$
 .

The brane is located at a fixed u_0 which corresponds to a fixed $\varphi_0 = \varphi(u_0)$.

$$S = M^{3} \int du \int d^{4}x \sqrt{-g} \left[R - \frac{1}{2} g^{ab} \partial_{a} \varphi \partial_{b} \varphi - V(\varphi) \right] + S_{GH}$$
$$+ M^{3} \int_{\Sigma} d^{4} \sigma \sqrt{-\gamma} \left[-W_{B}(\varphi) - \frac{1}{2} Z(\varphi) \gamma^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi + U(\varphi) R^{(\gamma)} + \mathcal{L}_{SM} \right]$$

Ansatz for a flat brane:

• Domain wall metric with flat slices:

$$ds^{2} = du^{2} + e^{2A(u)}\eta_{\mu\nu}dx^{\mu}dx^{\nu} \,.$$

• Bulk scalar:
$$\varphi = \varphi(u)$$
 .

The brane is located at a fixed u_0 which corresponds to a fixed $\varphi_0 = \varphi(u_0)$.

Q: Is there are solution despite $W_B \neq 0$?

Strategy:

- Solve for scale factor and bulk scalar in **UV** region.
- Solve for scale factor and bulk scalar in **IR** region.
- Match solutions at brane position via Israel junction conditions.

Strategy:

• Convenient to define a new variable: the superpotential $W(\varphi)$.

$$W(\varphi(u)) = -2(d-1)\frac{dA}{du},$$
$$\frac{dW}{d\varphi}(\varphi(u)) = \frac{d\varphi}{du}.$$

Convention: Bulk spacetime (d+1)-dimensional.

Strategy:

• Convenient to define a new variable: the superpotential $W(\varphi)$.

$$W(\varphi(u)) = -2(d-1)\frac{dA}{du},$$
$$\frac{dW}{d\varphi}(\varphi(u)) = \frac{d\varphi}{du}.$$

• Einstein equations: above definitions together with eq. below:

$$-\frac{d}{4(d-1)}W^2 + \frac{1}{2}\left(\frac{dW}{d\varphi}\right)^2 = V.$$

Convention: Bulk spacetime (d+1)-dimensional.

Self-tuning solution:

- Solve for W_{IR} in IR region. Regularity fixes solution uniquely.
- Solve for W_{UV} in UV region up to an integration constant C_{UV} .
- Apply junction conditions:

$$W_{UV}(\varphi_0) - W_{IR}(\varphi_0) = -W_B(\varphi_0),$$
$$\frac{dW_{UV}}{d\varphi}(\varphi_0) - \frac{dW_{IR}}{d\varphi}(\varphi_0) = -\frac{dW_B}{d\varphi}(\varphi_0).$$

Solving these fixes C_{UV} and the brane position φ_0 .

Self-tuning solution:

- Solve for W_{IR} in IR region. Regularity fixes solution uniquely.
- Solve for W_{UV} in UV region up to an integration constant C_{UV} .
- Apply junction conditions:

$$W_{UV}(\varphi_0) - W_{IR}(\varphi_0) = -W_B(\varphi_0),$$
$$\frac{dW_{UV}}{d\varphi}(\varphi_0) - \frac{dW_{IR}}{d\varphi}(\varphi_0) = -\frac{dW_B}{d\varphi}(\varphi_0).$$

Self-tuning: both C_{UV} and φ_0 adjust to allow for a **flat brane solution** despite $W_B \neq 0$.

Self-tuning: Flat Brane + Higgs Sector 5d gravity dual of 4d CFT

$$S = M^{3} \int du \int d^{4}x \sqrt{-g} \left[R - \frac{1}{2} g^{ab} \partial_{a} \varphi \partial_{b} \varphi - V(\varphi) \right] + S_{GH}$$
$$+ M^{3} \int_{\Sigma} d^{4} \sigma \sqrt{-\gamma} \mathcal{L}(\gamma_{\mu\nu}, \varphi, \text{ SM fields})$$
$$\text{Weakly coupled 4d QFT}$$

Let H be the Higgs doublet.

Write down the Higgs sector explicitly.

$$S = M^{3} \int du \int d^{4}x \sqrt{-g} \left[R - \frac{1}{2} g^{ab} \partial_{a} \varphi \partial_{b} \varphi - V(\varphi) \right] + S_{GH}$$
$$+ M^{3} \int_{\Sigma} d^{4} \sigma \sqrt{-\gamma} \left[-W_{B}(\varphi) - \frac{1}{2} Z(\varphi) \gamma^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi + U(\varphi) R^{(\gamma)} \right]$$
$$- X(\varphi) |H|^{2} - Y(\varphi) |H|^{4} + P(\varphi) R^{(\gamma)} |H|^{2} + \dots \right]$$

Let H be the Higgs doublet.

Write down the Higgs sector explicitly.

Study how this impacts the self-tuning solution.

$$S = M^{3} \int du \int d^{4}x \sqrt{-g} \left[R - \frac{1}{2} g^{ab} \partial_{a} \varphi \partial_{b} \varphi - V(\varphi) \right] + S_{GH}$$
$$+ M^{3} \int_{\Sigma} d^{4} \sigma \sqrt{-\gamma} \left[-W_{B}(\varphi) - \frac{1}{2} Z(\varphi) \gamma^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi + U(\varphi) R^{(\gamma)} \right]$$
$$- X(\varphi) |H|^{2} - Y(\varphi) |H|^{4} + P(\varphi) R^{(\gamma)} |H|^{2} + \dots \right]$$

The brane action can be written more compactly as:

$$S_b = M^3 \int_{\Sigma} d^4 \sigma \sqrt{-\gamma} \left[-\hat{W}_B(\varphi, |H|) - \frac{1}{2} Z(\varphi) \gamma^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi + \hat{U}(\varphi, |H|) R^{(\gamma)} + \mathcal{L}_{\rm SM} \right],$$

with $\hat{W}_B(\varphi, |H|) = W_B(\varphi) + X(\varphi)|H|^2 + Y(\varphi)|H|^4$,

and $\hat{U}(\varphi, |H|) = U(\varphi) + P(\varphi)|H|^2$.

$$S = M^{3} \int du \int d^{4}x \sqrt{-g} \left[R - \frac{1}{2} g^{ab} \partial_{a} \varphi \partial_{b} \varphi - V(\varphi) \right] + S_{GH}$$

+
$$M^{3} \int_{\Sigma} d^{4}\sigma \sqrt{-\gamma} \left[-\hat{W}_{B}(\varphi, |H|) - \frac{1}{2} Z(\varphi) \gamma^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi + \hat{U}(\varphi, |H|) R^{(\gamma)} + \dots \right]$$

Again, use ansatz for a flat brane:

• Domain wall metric with flat slices:

$$ds^2 = du^2 + e^{2A(u)} \eta_{\mu\nu} dx^{\mu} dx^{\nu} \,.$$

• Bulk scalar: $\varphi = \varphi(u)$.

Self-tuning: Flat Brane + Higgs Sector Solution:

- Solve for W_{IR} and W_{UV} in the bulk as before.
- The junction conditions now become:

 $W_{UV}(\varphi_0) - W_{IR}(\varphi_0) = -\hat{W}_B(\varphi_0, |H|),$

$$\frac{dW_{UV}}{d\varphi}(\varphi_0) - \frac{dW_{IR}}{d\varphi}(\varphi_0) = -\frac{d\hat{W}_B}{d\varphi}(\varphi_0, |H|).$$

• In addition, varying w.r.t. the Higgs gives:

$$\left[X(\varphi_0) + 2Y(\varphi_0)|H|^2\right]H = 0.$$

EW symmetry breaking:

- Solve for $C_{UV}, \varphi_0, |H|$.
- Have successful EW symmetry breaking if $X(\varphi_0) < 0$:

$$\Rightarrow |H|^2 = -\frac{X(\varphi_0)}{2Y(\varphi_0)} \,.$$

- The self-tuning mechanism neutralises any contribution to the vacuum energy due to the Higgs sector.
- Interestingly, in this setup the physics of EW symmetry breaking and the self-tuning of the CC are intertwined.

Open questions:

- For EW symmetry breaking it is important that $X(\varphi)$ can become negative. Need to understand the microscopic origin of $X(\varphi)$ to check whether this can occur.
- What about the EW hierarchy problem? Can the solution reproduce the observed value of the Higgs vev? I.e. does this setup generate a hierarchy between the Higgs vev and the Planck scale and / or the cutoff?

$$|H|^2 = -\frac{X(\varphi_0)}{2Y(\varphi_0)} \,.$$

Self-tuning: Curved Brane 8 Holographic RG Flows

Self-tuning: Curved Brane

So far: only considered metric ansatz with **flat slicing**:

$$\varphi = \varphi(u)$$
 and $ds^2 = du^2 + e^{2A(u)} \eta_{\mu\nu} dx^{\mu} dx^{\nu}$.

Self-tuning: Curved Brane

So far: only considered metric ansatz with flat slicing:

$$\varphi = \varphi(u)$$
 and $ds^2 = du^2 + e^{2A(u)} \eta_{\mu\nu} dx^{\mu} dx^{\nu}$

Now: allow for curved slices with maximal symmetry:

$$\varphi = \varphi(u)$$
 and $ds^2 = du^2 + e^{2A(u)} \zeta_{\mu\nu} dx^{\mu} dx^{\nu}$,

i.e. $\zeta_{\mu\nu}$ describes a *d*-dimensional maximally symmetric spacetime:

$$R_{\mu\nu}^{(\zeta)} = \kappa \zeta_{\mu\nu}, \quad R^{(\zeta)} = d\kappa, \quad \text{and} \quad \kappa = \begin{cases} \frac{(d-1)}{\alpha^2} & dS_d \\ 0 & \text{Minkowski} \\ -\frac{(d-1)}{\alpha^2} & \text{AdS}_d \end{cases}$$

Self-tuning: Curved Slicing

Strategy as before:

- Solve the bulk e.o.m. in the UV and the IR.
- Apply matching conditions at brane locus.

However:

- Note that the bulk e.o.m. are modified compared to the case with flat slicing
- **Ignore** the presence of the **brane** at first and study solutions to the bulk e.o.m. first.

$$\begin{array}{ll} \textbf{Self-tuning: Curved Slicing}\\ S = & M^3 \int du \int d^d x \, \sqrt{-g} \left[R - \frac{1}{2} g^{ab} \partial_a \varphi \partial_b \varphi - V(\varphi) \right] + S_{GH} \,,\\ \text{subject to} & \varphi = \varphi(u) \quad \text{and} \quad ds^2 = du^2 + e^{2A(u)} \zeta_{\mu\nu} dx^{\mu} dx^{\nu} \,, \end{array}$$

Closely related to study of Holographic RG flows for field theories on **curved manifolds**.

Self-tuning: Curved Slicing

$$S = M^{3} \int du \int d^{d}x \sqrt{-g} \left[R - \frac{1}{2} g^{ab} \partial_{a} \varphi \partial_{b} \varphi - V(\varphi) \right] + S_{GH},$$
subject to $\varphi = \varphi(u)$ and $ds^{2} = du^{2} + e^{2A(u)} \zeta_{\mu\nu} dx^{\mu} dx^{\nu},$

Closely related to study of Holographic RG flows for field theories on **curved manifolds**.

- The bulk scalar φ will be dual to a scalar operator $\mathcal O$.
- The solution $\varphi(u)$ is interpreted as the running coupling.
- Given a solution $A(u), \varphi(u)$ the beta function is: $\beta = \frac{d\varphi}{dA}$.
- The space of solutions to $A(u), \varphi(u)$ will be in one-to-one correspondence with the space of possible RG-flows.

Self-tuning: Curved Slicing

$$S = M^{3} \int du \int d^{d}x \sqrt{-g} \left[R - \frac{1}{2} g^{ab} \partial_{a} \varphi \partial_{b} \varphi - V(\varphi) \right] + S_{GH},$$
subject to $\varphi = \varphi(u)$ and $ds^{2} = du^{2} + e^{2A(u)} \zeta_{\mu\nu} dx^{\mu} dx^{\nu},$

Closely related to study of Holographic RG flows for field theories on **curved manifolds**.

Here:

- Consider negative potentials only V < 0.
- We will consider asymptotically $AdS_{(d+1)}$ solutions.
- Hence we will study RG flows for CFTs deformed by a relevant operator, defined on a maximally symmetric curved manifold.

Use an example to illustrate our results:

- Restrict focus on dS_d slicings only, i.e. $\zeta_{\mu\nu}$ is a metric on dS_d .
- WLOG we choose u to increase along a flow. Can also choose A(u) to be monotonically decreasing along the flow.

To make contact with literature on holographic RG flows rewrite the e.o.m. as coupled 1st order differential equations:

Define "superpotentials":

 $W(\varphi(u)) = -2(d-1)\dot{A}(u),$ $S(\varphi(u)) = \dot{\varphi}(u),$ $T(\varphi(u)) = R^{\zeta}e^{-2A(u)}.$

$$\dot{} \equiv \frac{d}{du} , \qquad \ \ ' \equiv \frac{d}{d\varphi} .$$

To make contact with literature on holographic RG flows rewrite the e.o.m. as coupled 1st order differential equations:

• Define "superpotentials":

$$\begin{split} W(\varphi(u)) &= -2(d-1)\dot{A}(u) \,, \\ S(\varphi(u)) &= \dot{\varphi}(u) \,, \\ T(\varphi(u)) &= R^{\zeta} e^{-2A(u)} \,. \end{split}$$

• E.o.m.:
$$\begin{aligned} 2(d-1)\ddot{A}+\dot{\varphi}^2+\frac{2}{d}e^{-2A}R^{(\zeta)}&=0\,,\\ d(d-1)\dot{A}^2-\frac{1}{2}\dot{\varphi}^2+V-e^{-2A}R^{(\zeta)}&=0\,,\\ \ddot{\varphi}+d\dot{A}\dot{\varphi}-V'&=0\,. \end{aligned}$$

$$\dot{} \equiv \frac{d}{du} , \qquad \ \ ' \equiv \frac{d}{d\varphi} .$$

To make contact with literature on holographic RG flows rewrite the e.o.m. as coupled 1st order differential equations:

• Define "superpotentials":

$$W(\varphi(u)) = -2(d-1)\dot{A}(u),$$
$$S(\varphi(u)) = \dot{\varphi}(u),$$
$$T(\varphi(u)) = R^{\zeta}e^{-2A(u)}.$$

• E.o.m.:
$$S^2 - SW' + \frac{2}{d}T = 0,$$
$$\frac{d}{2(d-1)}W^2 - S^2 - 2T + 2V = 0,$$
$$S' - \frac{d}{2(d-1)}SW - V' = 0.$$
$$\cdot = \frac{d}{du}, \quad \ ' \equiv \frac{d}{d\varphi}.$$

Extrema of the potential: Maxima

- Maxima will correspond to UV fixed points.
- Scale factor $e^{A(u)}$ diverges there.

- The bulk geometry will asymptote to **AdS**(d+1).
- Each maximum allows for a family of solutions, parameterised by two constants C and \mathcal{R} .

Extrema of the potential: Maxima

- Maxima will correspond to UV fixed points.
- Scale factor $e^{A(u)}$ diverges there.
- The bulk geometry will asymptote to **AdS**(d+1).
- Each maximum allows for a family of solutions, parameterised by two constants C and \mathcal{R} .

Extrema of the potential: Maxima

$$\Delta_{\pm} = \frac{d}{2} \pm \sqrt{\frac{d^2}{4} - m^2 \ell^2}$$

• In the vicinity of the UV fixed point $u \to -\infty$ the solutions for $\varphi(u)$ and the metric become:

$$\varphi(u) \underset{u \to -\infty}{=} \varphi_{-} e^{\Delta_{-} u/\ell} + \frac{\langle \mathcal{O} \rangle}{2\Delta_{+} - d} e^{\Delta_{+} u/\ell} ,$$

$$ds^2 =_{u \to -\infty} du^2 + e^{-2u/\ell} \tilde{\gamma}_{\mu\nu} dx^{\mu} dx^{\nu} \, .$$

• Given a source φ_{-} :

VEV:
$$\langle \mathcal{O} \rangle = \frac{Cd\ell}{\Delta_-} \varphi_-^{\Delta_+/\Delta_-}$$
 Boundary curvature: $R^{\tilde{\gamma}} = \mathcal{R} \varphi_-^{2/\Delta_-}$

Maxima = UV fixed points

- Scale factor $e^{A(u)}$ diverges there.
- The bulk geometry will asymptote to **AdS**(d+1).
- Each maximum allows for a family of solutions, parameterised by two constants C and \mathcal{R} .

Where do flows end? What is the IR?

- IR: the scale factor $e^{A(u)}$ vanishes and the flow stops: $\dot{\varphi} = 0$.
- **I.)** Flat slicing: $R^{(\zeta)} = 0$

IR fixed points = minima of the potential.

(Flows to infinity are also allowed if sufficiently well-behaved.)

Only have a finite number of solutions at most.

Where do flows end? What is the IR?

- IR: the scale factor $e^{A(u)}$ vanishes and the flow stops: $\dot{\varphi} = 0$.
- **I.)** Flat slicing: $R^{(\zeta)} = 0$

IR fixed points = minima of the potential.

(Flows to infinity are also allowed if sufficiently well-behaved.)

Have a unique solution in IR.

Where do flows end? What is the IR?

- IR: the scale factor $e^{A(u)}$ vanishes and the flow stops: $\dot{\varphi} = 0$.
- **I.)** Curved slicing: $R^{(\zeta)} \neq 0$

A solution with $e^A \to 0$, $\dot{\varphi} \to 0$ exists for every value of φ , as long as $V' \neq 0$ there. Every point φ except extrema of the potential can be an IR.

At an IR point at some φ_{\star} the bulk geometry asymptotes to $AdS_{(d+1)}$ with AdS length ℓ_{IR} given by $V(\varphi_{\star}) = -\frac{d(d-1)}{\ell_{IR}^2}$.

Where do flows end? What is the IR?

- IR: the scale factor $e^{A(u)}$ vanishes and the flow stops: $\dot{\varphi} = 0$.
- **I.)** Curved slicing: $R^{(\zeta)} \neq 0$

Again, find a unique solutions per IR.

Outlook

Holographic RG flows can exhibit **exotic** phenomena:

Talk by Leandro Silva Pimenta

- Fixed points can be skipped
- φ can change direction along the flow can reverse (bounce)

These phenomena persist at finite curvature.

Talk by Jewel Kumar Ghosh

The **F-theorem** is concerned with the change of an appropriately defined function along the RG flow for QFTs on a sphere in d=3.

Test the F-theorem in a holographic setup.

[c.f. M.Taylor, W.Woodhead 2016]

Many Thanks!

Many Thanks!

Back-Up: Setup

The model:

Consider a model with a **UV conformal fixed point** including

- a strongly coupled large-N CFT, deformed by a relevant operator,
- the weakly coupled Standard Model fields, and
- some heavy messengers with mass scale Λ , coupling the first two.

Integrating out the messengers leaves as an EFT the (broken) CFT coupled to the SM, with some effective couplings set by Λ .

Back-Up: Setup

Integrating out the messengers leaves as an EFT the (broken) CFT coupled to the SM, with some effective couplings set by Λ .

Semi-holographic description:

5d gravity with metric g_{ab} and bulk scalars φ_i

Weakly coupled SM degrees of freedom have a standard field theoretical description, occupying the worldvolume of a 4d defect (brane).

Back-Up: Setup

Integrating out the messengers leaves as an EFT the (broken) CFT coupled to the SM, with some effective couplings set by Λ .

Semi-holographic description:

Strongly coupled large-N CFT

5d gravity with metric g_{ab} and bulk scalars φ_i

Weakly coupled SM degrees of freedom have a standard field theoretical description, occupying the worldvolume of a 4d defect (brane).