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Self-Tuning Of The Cosmological Constant



Motivation

• Possible to reconcile a flat or weakly curved 4d space-
time despite a large 4d vacuum energy      .

• Vacuum energy      curves the higher dimensional bulk, while
the 4d brane world volume may be flat or weakly curved.

• The setup allows for self-tuning:  a flat or weakly curved
brane world volume may emerge for generic values of       .

⇤4

⇤4

⇤4

Braneworlds offer a possible solution to the 
Cosmological Constant (CC) problem:



Braneworlds offer a possible solution to the 
Cosmological Constant (CC) problem:

Motivation

• Previous work:
[Arkani-Hamed, Dimopoulos, Kaloper and Sundrum ’00]
[Kachru, Schulz, Silverstein ’00]
[Csaki, Erlich, Grojean, Hollowood ’00]

• Here:
Work with a semi-holographic model by Kiritsis, Nitti.
The model has been discussed in the talk by Francesco Nitti.
Self-tuning has been explored in [Charmousis, Kiritsis, Nitti ’17]
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Motivation
5d gravity theory with a bulk scalar

4d QFT on a brane including SM 
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Motivation

Address self-tuning in increasingly realistic setups:

1.) Establish self-tuning for a flat brane.

2.) Reinstate Higgs sector and study  
EW symmetry breaking.

3.) Establish self tuning for a curved brane.
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Motivation

Address self-tuning in increasingly realistic setups:

1.) Establish self-tuning for a flat brane.

2.) Reinstate Higgs sector and study  
EW symmetry breaking.

3.) Establish self tuning for a curved brane.

See [Charmousis, Kiritsis, Nitti arXiv:1704.05075] and talk by Francesco Nitti

Work in progress



Outline
1.) Recap:  

Review of the setup and self-tuning for a flat brane

2.) Self-tuning of the CC and EW symmetry breaking:  
Reinstate the Higgs sector

3.) Self-tuning for a curved brane: 

• Allow brane worldvolume to be maximally  
symmetric curved spacetime (dS, AdS)

• Finding bulk solutions equivalent to studying
holographic RG flows for QFTs on curved  
spacetime.



Outline
1.) Recap:  

Review of the setup and self-tuning for a flat brane

2.) Self-tuning of the CC and EW symmetry breaking:  
Reinstate the Higgs sector

3.) Self-tuning for a curved brane: 

• Allow brane worldvolume to be maximally  
symmetric curved spacetime (dS, AdS)

• Finding bulk solutions equivalent to studying
holographic RG flows for QFTs on curved  
spacetime.           Talk by Jewel Kumar Ghosh
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Self-tuning: Flat Brane
5d gravity dual of 4d CFT
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UV IR

Weakly coupled 4d QFT 



S = M

3

Z
du

Z
d

4
x

p
�g


R� 1

2
g

ab
@a'@b'� V (')

�
+ SGH

+M

3

Z

⌃
d

4
�

p
��


�WB(')�

1

2
Z(')�µ⌫

@µ'@⌫'+ U(')R(�) + LSM

�

5d gravity dual of 4d CFT

Weakly coupled 4d QFT 

u

⌃

u0

UV IR

Self-tuning: Flat Brane



Ansatz for a flat brane:

• Domain wall metric with flat slices:

• Bulk scalar :                   .

ds

2 = du

2 + e

2A(u)
⌘µ⌫dx

µ
dx

⌫
.

' = '(u)

The brane is located at a fixed      which corresponds to a fixed                 .'0 = '(u0)u0
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Self-tuning: Flat Brane



Ansatz for a flat brane:

• Domain wall metric with flat slices:

• Bulk scalar :                   .

ds

2 = du

2 + e

2A(u)
⌘µ⌫dx

µ
dx

⌫
.

' = '(u)

The brane is located at a fixed      which corresponds to a fixed                 .'0 = '(u0)u0
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Q: Is there are solution despite              ?WB 6= 0

Self-tuning: Flat Brane



Strategy:

• Solve for scale factor and bulk scalar in UV region.

u

⌃

u0

UV IR

• Solve for scale factor and bulk scalar in IR region.
• Match solutions at brane position via Israel junction

conditions.

Self-tuning: Flat Brane



Strategy:

• Convenient to define a new variable: the superpotential         .

dW

d'
('(u)) =

d'

du
.

W (')

W ('(u)) = �2(d� 1)
dA

du
,

Convention: Bulk spacetime           -dimensional. (d+ 1)

Self-tuning: Flat Brane



Strategy:

• Convenient to define a new variable: the superpotential         .

dW

d'
('(u)) =

d'

du
.

W (')

W ('(u)) = �2(d� 1)
dA

du
,

• Einstein equations:  above definitions together with eq. below:

� d

4(d� 1)
W 2 +

1

2

✓
dW

d'

◆2

= V .

Self-tuning: Flat Brane

Convention: Bulk spacetime           -dimensional. (d+ 1)



Self-tuning solution:
• Solve for         in IR region.  Regularity fixes solution uniquely.WIR

• Solve for         in UV region up to an integration constant        .WUV CUV

• Apply junction conditions: 

dWUV

d'
('0)�

dWIR

d'
('0) = �dWB

d'
('0) .

WUV ('0)�WIR('0) = �WB('0) ,

Solving these fixes         and the brane position      .CUV '0

Self-tuning: Flat Brane



Self-tuning solution:
• Solve for         in IR region.  Regularity fixes solution uniquely.WIR

• Solve for         in UV region up to an integration constant        .WUV CUV

• Apply junction conditions: 

dWUV

d'
('0)�

dWIR

d'
('0) = �dWB

d'
('0) .

WUV ('0)�WIR('0) = �WB('0) ,

Self-tuning: both        and      adjust to allow for a 
flat brane solution despite             .

CUV '0

Self-tuning: Flat Brane

WB 6= 0



Self-tuning: 
Flat Brane + Higgs Sector
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Self-tuning: Flat Brane + Higgs Sector
5d gravity dual of 4d CFT

Weakly coupled 4d QFT 

Let      be the Higgs doublet.
Write down the Higgs sector explicitly.

H
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Self-tuning: Flat Brane + Higgs Sector

Let      be the Higgs doublet.
Write down the Higgs sector explicitly.

H

Study how this impacts the self-tuning solution.
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Self-tuning: Flat Brane + Higgs Sector

The brane action can be written more compactly as:

with

and 

ŴB(', |H|) = WB(') +X(')|H|2 + Y (')|H|4 ,

Û(', |H|) = U(') + P (')|H|2 .
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Again, use ansatz for a flat brane:

• Domain wall metric with flat slices:

• Bulk scalar :                   .

ds

2 = du

2 + e

2A(u)
⌘µ⌫dx

µ
dx

⌫
.

' = '(u)

Self-tuning: Flat Brane + Higgs Sector



⇥
X('0) + 2Y ('0)|H|2

⇤
H = 0 .

Solution:
• Solve for         and          in the bulk as before.WIR

• The junction conditions now become: 

Self-tuning: Flat Brane + Higgs Sector

WUV

• In addition, varying w.r.t. the Higgs gives:

dWUV

d'
('0)�

dWIR

d'
('0) = �dŴB

d'
('0, |H|) .

WUV ('0)�WIR('0) = �ŴB('0, |H|) ,



) |H|2 = � X('0)

2Y ('0)
.

EW symmetry breaking:

• Solve for   

Self-tuning: Flat Brane + Higgs Sector

CUV , '0, |H|.

• Have successful EW symmetry breaking if                 :X('0) < 0

• The self-tuning mechanism neutralises any contribution 
to the vacuum energy due to the Higgs sector.

• Interestingly, in this setup the physics of EW symmetry 
breaking and the self-tuning of the CC are intertwined.



|H|2 = � X('0)

2Y ('0)
.

Open questions:

Self-tuning: Flat Brane + Higgs Sector

• What about the EW hierarchy problem?
Can the solution reproduce the observed value of the Higgs 
vev? I.e. does this setup generate a hierarchy between the 
Higgs vev and the Planck scale and / or the cutoff? 

X(')

• For EW symmetry breaking it is important that          can 
become negative. Need to understand the microscopic
origin of          to check whether this can occur. 

X(')



Self-tuning: 
Curved Brane

& 
Holographic RG Flows



So far: only considered metric ansatz with flat slicing:

Self-tuning: Curved Brane

ds

2 = du

2 + e

2A(u)
⌘µ⌫dx

µ
dx

⌫
.

' = '(u) and



Self-tuning: Curved Brane

ds

2 = du

2 + e

2A(u)
⌘µ⌫dx

µ
dx

⌫
.

' = '(u) and

Now: allow for curved slices with maximal symmetry:

ds

2 = du

2 + e

2A(u)
⇣µ⌫dx

µ
dx

⌫
,

' = '(u) and

i.e.       describes a   -dimensional maximally symmetric spacetime:⇣µ⌫ d

R(⇣)
µ⌫ = ⇣µ⌫ , R(⇣) = d ,  =

8
<

:

(d�1)
↵2

0

� (d�1)
↵2

and
dSd

Minkowski
AdSd

So far: only considered metric ansatz with flat slicing:



Self-tuning: Curved Slicing

Strategy as before:

• Solve the bulk e.o.m. in the UV and the IR.

• Apply matching conditions at brane locus.

However:

• Note that the bulk e.o.m. are modified compared to the case
with flat slicing

• Ignore the presence of the brane at first and study solutions
to the bulk e.o.m. first.



Self-tuning: Curved Slicing
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Closely related to study of Holographic RG flows for field
theories on curved manifolds.



Self-tuning: Curved Slicing
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Closely related to study of Holographic RG flows for field
theories on curved manifolds.

• The solution         is interpreted as the running coupling.

• Given a solution                the beta function is:

• The bulk scalar     will be dual to a scalar operator     .

A(u),'(u)

' O
'(u)

� =
d'

dA
.

• The space of solutions to                 will be in one-to-one 
correspondence with the space of possible RG-flows.

A(u),'(u)



Self-tuning: Curved Slicing

ds
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Closely related to study of Holographic RG flows for field
theories on curved manifolds.

• We will consider asymptotically AdS(d+1) solutions.

• Consider negative potentials only          .V < 0

Here:

• Hence we will study RG flows for CFTs deformed by a relevant 
operator, defined on a maximally symmetric curved manifold.



Holographic RG Flows

• Restrict focus on dSd slicings only, i.e.        is a metric on dSd.

• WLOG we choose     to increase along a flow.
Can also choose         to be monotonically decreasing along the 
flow.

Use an example to illustrate our results: 

• Let V = �d(d� 1)

`2
� 1

2
m2'2 +

�

4
'4 .

⇣µ⌫

u
A(u)



To make contact with literature on holographic RG flows rewrite
the e.o.m. as coupled 1st order differential equations:

• Define “superpotentials”: W ('(u)) = �2(d� 1)Ȧ(u) ,

S('(u)) = '̇(u) ,

T ('(u)) = R⇣e�2A(u) .

Holographic RG Flows

˙⌘ d

du
, 0 ⌘ d

d'
.



To make contact with literature on holographic RG flows rewrite
the e.o.m. as coupled 1st order differential equations:

• Define “superpotentials”: W ('(u)) = �2(d� 1)Ȧ(u) ,

S('(u)) = '̇(u) ,

T ('(u)) = R⇣e�2A(u) .

• E.o.m.: 2(d� 1)Ä+ '̇2 +
2

d
e�2AR(⇣) = 0 ,

d(d� 1)Ȧ2 � 1

2
'̇2 + V � e�2AR(⇣) = 0 ,

'̈+ dȦ'̇� V 0 = 0 .

Holographic RG Flows

˙⌘ d

du
, 0 ⌘ d

d'
.



To make contact with literature on holographic RG flows rewrite
the e.o.m. as coupled 1st order differential equations:

• Define “superpotentials”: W ('(u)) = �2(d� 1)Ȧ(u) ,

S('(u)) = '̇(u) ,

T ('(u)) = R⇣e�2A(u) .

• E.o.m.: S2 � SW 0 +
2

d
T = 0 ,

d

2(d� 1)
W 2 � S2 � 2T + 2V = 0 ,

S0 � d

2(d� 1)
SW � V 0 = 0 .

Holographic RG Flows

˙⌘ d

du
, 0 ⌘ d

d'
.



Extrema of the potential:  Maxima

• The bulk geometry will asymptote to AdS(d+1).

• Each maximum allows for a family of solutions, parameterised
by two constants     and     .  C R

• Maxima will correspond to
UV fixed points.

• Scale factor         diverges there.eA(u)

Holographic RG Flows



• Maxima will correspond to
UV fixed points.

• The bulk geometry will asymptote to AdS(d+1).

• Each maximum allows for a family of solutions, parameterised
by two constants     and     .  C R

UV

C1,R1

C2,R2

C3,R3...

• Scale factor         diverges there.eA(u)

Holographic RG Flows
Extrema of the potential:  Maxima



hOi = Cd`

��
'�+/��
�

'(u) =
u!�1

'�e
��u/` +

hOi
2�+ � d

e�+u/` ,

• In the vicinity of the UV fixed point               the solutions for
       and the metric become:  '(u)

u ! �1

ds

2 =
u!�1

du

2 + e

�2u/`
�̃µ⌫dx

µ
dx

⌫

�± =
d

2
±

r
d2

4
�m2`2

• Given a source      : 

Boundary curvature:      VEV:       

'�

R�̃ = R'2/��
�

Holographic RG Flows
Extrema of the potential:  Maxima

.



Maxima = UV fixed points

• The bulk geometry will asymptote to AdS(d+1).

• Each maximum allows for a family of solutions, parameterised
by two constants     and     .  C R

C1,R1

C2,R2

C3,R3...

• Scale factor         diverges there.eA(u)

UV
'�

Holographic RG Flows



Where do flows end? What is the IR?

1.) Flat slicing:

IR fixed points = minima of the potential. 

(Flows to infinity are also allowed if sufficiently well-behaved.) 

R(⇣) = 0

Only have a finite number of solutions at most. 

Holographic RG Flows

• IR: the scale factor          vanishes and the flow stops:          .eA(u) '̇ = 0



Where do flows end? What is the IR?

1.) Flat slicing:

IR fixed points = minima of the potential. 

(Flows to infinity are also allowed if sufficiently well-behaved.) 

R(⇣) = 0

Have a unique solution in IR. 

UV
...

IR

C1

C2

C3'�

Holographic RG Flows

• IR: the scale factor          vanishes and the flow stops:          .eA(u) '̇ = 0



Where do flows end? What is the IR?

1.) Curved slicing:

A solution with              ,            exists for every value of    ,
as long as             there.  Every point     except extrema
of the potential can be an IR.

R(⇣) 6= 0

'

V 0 6= 0 '

At an IR point at some       the bulk geometry asymptotes 
to AdS(d+1) with AdS length        given by                          .

'?

V ('?) = �d(d�1)
`2IR

`IR

Holographic RG Flows

• IR: the scale factor          vanishes and the flow stops:          .eA(u) '̇ = 0

'̇ ! 0eA ! 0



Where do flows end? What is the IR?

1.) Curved slicing: R(⇣) 6= 0

Again, find a unique solutions per IR.

UV

C1,R1

C2,R2

C3,R3

...

IR at '?

'�

Holographic RG Flows

• IR: the scale factor          vanishes and the flow stops:          .eA(u) '̇ = 0



Summary: plot          vs.      for various IR points     .

r
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Holographic RG Flows



Summary: plot          vs.      for various IR points     .

'

W (�) ' '?

'?Given: Solution selects C,R
UV

r
�4(d� 1)

d
V (')

Holographic RG Flows



Summary: plot          vs.      for various IR points     .

'

W (�) ' '?

UV

'�
Fix

R�̃ 01

r
�4(d� 1)

d
V (')

Holographic RG Flows



Summary: plot          vs.      for various IR points     .

'

W (�) ' '?

UV
'�Fix R�̃

r
�4(d� 1)

d
V (')

and
'?

Solution selects     . C

Holographic RG Flows



Outlook
Holographic RG flows can exhibit exotic phenomena:

Talk by Leandro Silva Pimenta

• Fixed points can be skipped
•     can change direction along the flow can reverse (bounce)'

These phenomena persist at finite curvature.
Talk by Jewel Kumar Ghosh

The F-theorem is concerned with the change of an appropriately 
defined function along the RG flow for QFTs on a sphere in d=3.

Test the F-theorem in a holographic setup.
[c.f.  M. Taylor,  W. Woodhead 2016]



Many Thanks!



Summary: plot          vs.      for various IR points     .
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Many Thanks!



The model:

Back-Up: Setup

• a strongly coupled large-N CFT, deformed by a relevant operator, 

Consider a model with a UV conformal fixed point including 

• the weakly coupled Standard Model fields, and 

• some heavy messengers with mass scale    , coupling the first two. ⇤

Integrating out the messengers leaves as an EFT the (broken) 
CFT coupled to the SM, with some effective couplings set by    .⇤



⇤

Semi-holographic description:

Integrating out the messengers leaves as an EFT the (broken) 
CFT coupled to the SM, with some effective couplings set by    .

Strongly coupled 
large-N CFT

5d gravity with
metric      and
bulk scalars

gab
'i

Weakly coupled SM degrees of freedom have a standard 
field theoretical description, occupying the worldvolume
of a 4d defect (brane).

Back-Up: Setup
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Semi-holographic description:

Integrating out the messengers leaves as an EFT the (broken) 
CFT coupled to the SM, with some effective couplings set by    .

Strongly coupled 
large-N CFT

5d gravity with
metric      and
bulk scalars

gab
'i

Weakly coupled SM degrees of freedom have a standard 
field theoretical description, occupying the worldvolume
of a 4d defect (brane).

Back-Up: Setup


