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Motivation: Cosmology in string theory

• Is it possible to understand (resolve) spacelike cosmological singularities
in string theory?

• Is there a set of possible consistent initial conditions of the Universe?

• What happens to spacetime as one approaches the singularity? Are there
any more fundamental physical notions behind space and time?

• Many works in the past related to these fundamental problems but no
conclusive answer...

We will be more modest and try to ask some of these deep questions in the
toy model of 2D string theory/c = 1 Matrix Quantum Mechanics where
concrete calculations are possible
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Reasonable motivation: Toy model of a Bang-Crunch Universe
• The main idea is to model a 2D Big Bang - Big Crunch universe using
Matrix Quantum Mechanics.

• One can relate Matrix Quantum Mechanics (MQM) to 2D string theory.
We will soon describe the emergence of an extra spacelike dimension φ
through the eigenvalues of the Matrix.

• We will try to model the Bang-Crunch Universe using an S1/Z2 orbifold
of Euclidean time with a subsequent analytic continuation. The
identification is: X0 ∼ −X0 and X0 ∼ X0 + 2πR.

0πR

0πR

• In string theory we get extra twisted states at the orbifold fixed points.
These might be related to the states at the Big-Bang and Big-Crunch
singularities of the 2D toy universe upon analytic continuation of
Euclidean time.
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What is Matrix Quantum Mechanics
Klebanov[9108019v2]

• MQM (gauged) is a 0 + 1 dimensional quantum mechanical theory of
N ×N Hermitian matrices M(t) and a non dynamical gauge field A(t).

• The Path Integral is:

e−iW =
∫
DMDA exp

[
−iN

∫ tf

tin

dtTr
(

1
2 (DtM)2 + 1

2M
2 − κ

3!M
3 + ...

)]
• One can diagonalise M by a unitary transformation
M(t) = U(t)Λ(t)U†(t) where Λ(t) is diagonal and U(t) unitary.

• One then picks up a Jacobian from the path integral measure (∀t)

DM = DU
N∏
i=1

dλi∆2(Λ), ∆(Λ) =
N∏
i<j

(λi − λj)

• This Vandermonde determinant will make the wavefunctions fermionic.
• We will return to the Path Integral in a while, let us now discuss the
Hamiltonian picture.
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Fermionic Well

Set the gauge field to zero - impose the gauss-law constraint
δS/δA = i[M,Ṁ ] = 0 (singlet sector projection).
• The Hamiltonian is:

H = − 1
2∆2(λ)

d

dλi
∆2(λ) d

dλi
+
∑
i<j

ΠijΠji

(λi − λj)2 + V (λi) ,

Constraint ⇒ Πij = 0 on physical states (momenta of SU(N) rotations)

• Upon rescaling λ→
√
N
κ λ and redefining the wavefunction as

Ψ̃(λ) ≡ ∆(λ)Ψ(λ), the Schrödinger equation now reads:(
−1

2
d2

dλ2
i

− 1
2λ

2
i +
√
~

3! λ
3
i + ...

)
Ψ̃(λ) = ~−1EΨ̃(λ), ~−1 = N

κ2

• This describes N non interacting fermions in the potential V (λ).
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Connection with string theory- Double scaling limit
[Kazakov, Migdal...]

• Consider an initial state where the energy states are populated up to
some Fermi energy EF below the top of the barrier, and send ~→ 0,
N →∞, such that EF → 0.

• The eigenvalues are about to spill over the top of the potential barrier.
• Enough to focus on the quadratic maximum of the potential. We hold
µ/~ = −EF /~ fixed in the limit.

• The result is quantum mechanics of free fermions in an inverted harmonic
oscillator potential, with Fermi level −µ < 0.

• At this limit the model is perturbatively stable in 1/N → 0 expansion,
since by WKB we can see that the tunneling probability is exponentially
suppressed.

μEF

U

λ
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Non-critical String theory

• The continuum limit of the matrix path integral is in the same
universality class as the 2D string theory defined via the worldsheet path
integral for Liouville theory coupled to c = 1.

◦ The double scaling limit produces
smooth surfaces while at the same time
keeping all higher genera. It is defined
by ~, µ→ 0 as we discussed, while
keeping µ

~ = g−1
st fixed.

• The string theory at play is called NCST or c=1 Liouville theory. It can
also be interpreted as a 2D critical string theory in a linear dilaton
background.

• It contains D0 branes whose excitations are a "Tachyon" and a 1-d gauge
field. MQM describes their dynamics. [McGreevy, Verlinde]

• The double scaling limit is the "analogue" of the Maldacena decoupling
limit. The matrix eigenvalues λ are related with the coordinate φ.
[Seiberg]
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c = 1 Liouville - (NCST) and 2d Critical String Theory
[Nakayama:0402009v7]

• Gauge fix only the worldsheet diffeos and keep the conformal mode of the
metric dynamical.hab = eφ(σ)ĥab.

• Dh is not invariant under hab → eρ(σ)hab.
• Exponentiating the conformal anomaly from the measure, the total
action becomes

SCFT = 1
4π

∫
d2σ
√
ĥ
[
ĥab(∂aXµ∂bXµ + ∂aφ∂bφ) +QR̂φ+ µeγφ

]
+ghosts

• Q =
√

25−d
6 . This is a conformal theory under the simultaneous

transformation hab → eρ(σ)hab, φ(σ)→ φ(σ)− ρ(σ) iff
γ = − 1

6
(√

25− d−
√

1− d
)
which is real up to d = c = 1.

• Consider the arbitrary background sigma model

S = 1
4π

∫
d2σ
√
h
[
hab∂aX

µ∂bX
νGµν(X) + ΛT (X) +RΦ(X)

]
• The two actions match upon identifying Gµν = ηµν , Φ = 2φ,

ΛT (φ) = µeγφ and X0, X1 = φ are the two coordinates.
• This linear dilaton background is an exact CFT background.
Let us now move on to the Orbifold.
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S1/Z2 - Liouville computation
We will now discuss the torus contribution to the partition function
computed from Liouville.
• The modular partition function has the following form:

Zorb (R, τ) = 1
2Zcir (R, τ) +

{∣∣∣∣ η (τ)
θ00 (0, τ)

∣∣∣∣+
∣∣∣∣ η (τ)
θ01 (0, τ)

∣∣∣∣+
∣∣∣∣ η (τ)
θ10 (0, τ)

∣∣∣∣}
• The full torus partition function comes from coupling the above with the
ghost and the Liouville modes and integrating over the torus moduli τ .

Zorb (R) = Vφ
2

∫
d2 τ

(
|η (τ)|4

2τ2

)(
2π
√

2τ2 |η (τ)|2
)−1

Zorb (R, τ)

• Performing the integration one gets:

Zorb (R) = 1
2Zcirc (R) + C, Zcirc (R) = − 1

24

(
R+ 1

R

)
logµ

• Using the fact that Zorb (R = 1, τ) = Zcir (R = 2, τ) [Ginsparg], we
finally get

Zorb = − 1
48

(
R+ 1

R

)
logµ− 1

16 logµ
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S1/Z2 - MQM

• To implement orbifolding on the matrix model we gauge the Z2 reflection
symmetry t↔ −t by combining it with a Z2 subgroup of the gauge
group [Ramgoolam, Waldram, Gürsoy, Liu]:

Ω =
(
−1n×n 0

0 1(N−n)×(N−n)

)
∗ with, ∗f(t) = f(−t)∗, 0 ≤ n ≤ N

2

and then requiring:

ΩA(t)Ω−1 = −A(t), ΩM(t)Ω−1 = M(t)

• This naturally splits the matrices into (even/odd) blocks under t→ −t
that satisfy different boundary conditions.

M(t) =
(
even odd
odd even

)
A(t) =

(
odd even
even odd

)
• The breaking U(N)→ U(n)× U(N − n) at the endpoints, will lead to
two separate sets of n and N − n fermions.
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MQM Path Integrals
• We study MQM in an inverted harmonic oscillator (H.O.) potential that
captures the universal physics in the double scaling limit.

• We define KN (λi;λ′j , β) = 〈λ′j , β|λi, 0〉 the oscillator propagator
between the N eigenvalues.

• S1 partition function (M ′(β) = M(0))

Z =
∫
DM(0)DU〈UM(0)U†|M(0)〉 = 1

N !

∫ N∏
i=1

dλidetKN (λi;λj)

• Orbifold for generic n (where
∏n
i=1 dxi ≡ dnx, x = (x, y))

Z ∼
∫
dnxdN−nydnx′dN−ny′

∆(x)∆(y)∏
i,j(xi − yj)

detK(xi;x′j)
∆(x′)∆(y′)∏
i,j(x′i − y′j)

We get two kinds of fermions (with qi = ±1 charge - or spin).
• This structure admits a natural analytic continuation to a transition
amplitude

〈Ψout;T |Ψin〉 =
∫
dxdx′Ψout(x′) det

[
〈x′j ;T |xi〉

]
Ψin(x)
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Orbifold Partition function (n = N/2 is special!)
• Wavefunctions of the form

∏
i,j(λi − λj)qiqj have arisen in studies of

Quiver/Super Matrix Models. [Dijkgraaf, Vafa, Kostov..]

• The most special case is n = N/2 (regular representation). The
wavefunctions are square integrable as λi →∞ in this case. (Zero
-charge condition of the 1-d Coulomb gas).

• The breaking of U(N)→ U(N/2)× U(N/2) at the end points is also
encountered in studies of D̂m quiver matrix models. [Kostov, Moriyama..]

• Our description is implementing the same gauge symmetry breaking at
the end-points and holds for arbitrary radius.

U(2N)

U(N)

U(N)

x

y

x'

y'

Matrix models defined on the Âm quiver: Integrand is a determinant.
[Marino..]
Matrix models defined on the D̂m quiver: Integrand is a Pfaffian.
[Moriyama..]
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Orbifold Partition function
Taking inspiration of this we use the Cauchy identity∏

i<j(xi − xj)
∏
i<j(yi − yj)∏

i,j(xi − yj)
= det 1

xi − yj
,

then

Z ∼
∫
dnxdnx′ det

n×n

(
1

xi − yj

)
det

2n×2n

(
Kn(xi, x′j) Kn(xi, y′j)
Kn(yi, x′j) Kn(yi, y′j)

)
det
n×n

(
1

x′i − y′j

)
We integrate over (y, y′)[Andreief, Moriyama] (Determinant Id).
To perform the x′ integrations one uses a formula by de Bruijn(Pfaffian Id)
to get

Z ∼ (−1)n+ 1
2 (n−1)n

∫
dnx pf P, P =

(
P11 P12
P21 P22

)
,

P11 = −(K ◦N •K + K •N ◦K), P12 = (K ◦N •K + K •N ◦K) •M,

P21 = −M • (K ◦N •K + K •N ◦K), P22 = M • (K ◦N •K + K •N ◦K) •M.

where K the H.O. propagator, • stands for either the y integration or the
y′ integration distinguished by M(xi, y) = 1

xi−y , N(y′, x′j) = 1
y′−x′

j
.
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Grand-Canonical ensemble
Introduce the chemical potential µ (to perform the double scaling).

The Grand Free Energy is (Borodin, Ishikawa)

eJo(β,µ) =
∞∑
n=0

zn
∫
dnx

n! (−1) 1
2 (n−1)n pf P = pf(Ω + zP̂ ) =

√
det
(
I − z ρ̂

)
,

with Ω =
(

0 I
−I 0

)
, I =

(
I 0
0 I

)
, ρ̂ = Ω P̂ , z = −eβµ.

On the right-hand we have simultaneously the 2× 2 and Fredholm
determinant of the kernel ρ̂.

It is instructive to compare this result with the one obtained for the circle
which is just a Fredholm determinant of the H.O. propagator as kernel

eJc(β,µ) = det
(
I + zK̂

)
=
∞∏
n=0

(
1 + zqn+ 1

2

)
with q = e−βω and K̂ = e−βĤ .
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Kernel
Let us analyse the kernel. If we define the bi-local operator 〈x|Ô|y〉 = 1

x−y
the kernel is written as

ρ̂ =
(
−Ôe−

β
2 ĤÔe−

β
2 Ĥ Ôe−

β
2 ĤÔe−

β
2 ĤÔ

e−
β
2 ĤÔe−

β
2 Ĥ −e−

β
2 ĤÔe−

β
2 ĤÔ

)
,

Using the Mehler resolution 〈x|K̂|x′〉 =
∑∞
n=0 q

n+ 1
2ψn(

√
ωx)ψ?n(

√
ωx′)

with
ψn(
√
ωx) = N e−ω2 x2

Hn(
√
ωx) and Hn the Hermite polynomials, we find

that (principal value prescription)

〈x|Ô|ψn〉 = P
∫ ∞
−∞

dy
ψn(y)
x− y

• The effect of the bi-local operator acting at the endpoints is a
Hilbert-transform of the H.O. wavefunctions. O relates odd with even
modes in the energy basis.

• Remember that we further need to send ω → iω in order to discuss the
inverse H.O. This has the effect of turning Hermite functions into
Parabolic cylinder functions.
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Alternative description
Diagonalise U and integrate out M ’s in the previous expression

Z =
∫
DMDM ′DU〈UM ′U†, β|M, 0〉 =

∫
DUI(U)

We define A = 1/ tanh(ωβ), B = 1/ sinh(ωβ). The measure for DU can
be found by defining the metric on the tangent space of the group
ds2 = tr(UdU†UdU†) and then computing its determinant to get

J =
n∏
i<j

sin2(θi − θj) sin2(θi + θj)
n∏
i=1

sin 2θi sin2(N−2n) θi

Again we see that n = N
2 is special. By defining q = e−ωβ and xi = eiθi

and using Schur’s Pfaffian identity

Zn = 1
n!

∫ π

0

n∏
k=1

dθk

n∏
k=1

1√
(cosh(β)− cos(2θk))

pf

 q1/2(xi−xj)
1−qxixj

q1/2(xi−x∗j )
1−qxix∗j

q1/2(x∗i−xj)
1−qx∗

i
xj

q1/2(x∗i−x
∗
j )

1−qx∗
i
x∗
j
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Kernel in the new variables

• We can again pass to the grand canonical ensemble
e−Jo =

√
det(1 + zρ̂).

• It is useful to write the action of ρ̂ to functions X(θ).

ρ̂

[(
X1
X2

)]
(θ) =

∫ π

0
dµ(θ′)

(
ρ11(θ, θ′) ρ11(θ,−θ′)
−ρ11(−θ, θ′) −ρ11(−θ,−θ′)

)(
X1(θ′)
X2(θ′)

)
ρ11(θ, θ′) = 1

q−1/2eiθ − q1/2eiθ′
+ 1
q1/2e−iθ − q−1/2e−iθ′

,

and dµ(θ′) = qdθ′√
(1−qei2θ′ )(1−qe−i2θ′ )

.

• The square root in the measure introduces branch cuts in the complex
x′ = eiθ

′ plane.
• The integration is from 0 to π so that the matrix entries have support in
the lower/upper half plane.
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Properties of the kernel

• For the orbifold we can also write the action of the kernel

ρ̂[ ~X](x) =
∮ dx′

πix′
e−
∑

n
qn

2n xn−
∑

n
qn

2n x−nρ(
√
x,
√
x′) ~X(x′)

• The measure thus can be thought of as containing Vortex perturbations
with tn = t−n = qn/2n, 1 ≤ n.

• The matrix piece of the kernel now contains terms of the form
1

q−
1
2
√
x−q

1
2
√
x′
.

• To be able to identify a Hierarchy one should thus make contact with
fermionic correlators containing square-roots.

• One can use Jacobi-elliptic functions to rewrite the kernel. This simplifies
the measure completely. [Baxter, Zamolodchikov...]. The kernel is
naturally defined on a torus.
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Summary of the Results

• We implemented orbifolding in the Matrix model and passed on to
grand-canonical ensemble with two independent methods. The physics is
encoded in an integral kernel.

• The trace of the kernel is found to be the same by both methods:

tr ρ̂ = 1
sinh β

2
arctan

(
1

sinh β
2

)
=
∫
dε [ρHO(ε) + ρtwist(ε)] e−βε

From this we have managed to read-off the density of states that
contains an untwisted ρHO(ε) and a twisted piece ρtwist(ε).

• Non-trivial physics is encoded either in the Hilbert transform operators at
the end of time (which commute with the SL(2,R) generators of
fractional linear transformations of the matrix eigenvalues ), or in the
branch-cuts/ torus monodromy (which has an SL(2,Z) symmetry).

• The kernel has a very interesting 2× 2 matrix structure. It can also be
thought of as containing Vortex perturbations of arbitrary order (Higher
spins? [Sen, Mukhi, Pakman...] ).
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Large radius results
• We have also matched the result for the twisted states computed by
Liouville theory

• This contribution can be isolated by considering the limit β →∞. This
limit reduces the free energy to βF = βEground/2 + Θ, where the
β-independent constant piece Θ in this expression is the twisted state
contribution that arises from the wavefunctions at the end-points.

• For n = N/2 and the normal oscillator the radius independent term looks
like "entropy"

Θ = 1
2 tr log

(
O2) = N log 2 ≈ 1

2 tr log ρtwisted

where O2 near the diagonal tends to

O2(n1, n2)→ 2 sin(π(n1 − n2))
π(n1 − n2)

(and is non zero only when n1 = n2 for n ∈ Z).
• This is the famous sine-kernel which is the analogue of the Dirac-δ for
time/frequency banded functions.
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Large radius results - Sine kernel
(Parabolic cylinder)

• We studied also the delta-function normalised even and odd parabolic
cylinder functions.

• Using identities and integrals involving 1F1, 2F1 we computed 〈ε1|O|ε2〉
to be

O(ε1, ε2) = N(ε1)N(ε2) sinh (π(ε2 − ε1))
π(ε1 − ε2) .

• The spectrum is continuous, we obtain a discrete one by putting a
cutoff/wall at Λ which is then send to infinity.

• The different normalisation contributes non-perturbatively ∼ e−Aµ in
1/µ. It also reflects the branch structure of the 2F1. Here we will be
interested only for the asymptotic expansion in gst ∼ 1/µ.

• By reinstating the oscillator frequency ω, one can now rotate between the
normal and the inverted oscillator up to such ambiguities.

• The full partition function depends only on the combination ωβ ⇒ Link
between Euclidean and Lorentzian description
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Sine kernel

• The Fredholm determinant of the sine kernel gives the universal level
spacing distribution of random matrices in the bulk of the spectrum.

• The determinant we are after corresponds to the probability that all the
energy eigenvalues lie outside (−µ, 0) and thus form the Fermi sea.

• The determinant of this kernel can be calculated in a 1/µ expansion.
[Dyson ’76]

Θ = − 1
32µ

2 − 1
16 logµ+ 1

48 log 2 + 3
4ζ
′(−1) +O

(
1
µ2m

)
.

• The twisted state contribution to the torus level partition function
− 1

16 logµ matches precisely the world-sheet result.
• This is a non-trivial check of the duality we propose between the
n = N/2 representation of the orbifold matrix quantum mechanics and
the 2D non-critical string theory on S1/Z2.
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Future Directions

• Solve the integral equation for the spectrum/find exact partition function
to all genera for the orbifold.

• What do different n’s correspond to ?
• Supersymmetric case (0B - 0A)?
• Is there any underlying integrable structure? (BKP-DKP [Orlov] )
• Connect with target space physics. What is the initial state in collective
field theory language? (Fermi sea with folds?)

• What is the form of the semi-classical metric near the end-points in time?
Role of SL(2, R) symmetry?

• Analytic continuation of the result in time?
• T-duality? It relates the universe with the black hole (SL(2,R)

U(1) coset)
[Kiritsis], [Giveon, Porrati, Rabinovici], [Vafa, Tseytlin]

• Lots of non-perturbative physics to be understood!
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Thank you!
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Double scaling
• ’t Hooft limit- gs → 0, N →∞, t = gsN fixed in

F ∼
∑
h

Fh(t)g2h−2
s (1)

• Double scaling for c < 1 (Matrix models)

F ∼
∑
h

Fh

[
N(g − gc)(2−γ)/2

]2−2h
=
∑
h

Fhg
2h−2
s (2)

Thus send N →∞, g → gc, gs fixed.
• Double scaling for c = 1. We define the cosmological constant

∆ ∼ κ2
c − κ2 and ~−1 = N/κ2.

• We are after the non-analytic piece of F(∆) which gives surfaces with a
diverging number of triangles.

• One introduces the density of states ρ(ε) = ~
∑
k δ(ε− εk) and sets the

chemical potential µ. One finds

κ2 = ~N =
∫ ∞
−∞

ρ(ε) 1
1 + e2πR~−1(ε−µ) dε (3)
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Double scaling
• We also have the following equations

∂F
∂∆ = ~−1µ, FG(µ) = ~−1∆µ−F(∆) (4)

• One finds

∂2FG
∂µ2 = ∂∆

∂µ
=
∫ ∞
−∞

dερ(ε) πR~−1

2 cosh2 (πR~−1(µ− ε))
(5)

• For the H.O. we have

ρ(ε) = 1
π
<Ψ(iε+ 1

2) = 1
π
<
∫ ∞

0
dt

e−iεt

2 sinh t
2

(6)

• The idea is to determine FG as a series in ~−1µ and then go back to find
F(∆).

• It is convenient to use ∆ = µ0| logµ0|. One can also find µ(µ0) and then
compute F(µ0).

• Note that all these are asymptotic expansion manipulations.
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Genus expansions- finite radius
• For the circle of finite radius we get

∂2FG
∂µ2 =

∫ ∞
0

dt

∫ ∞
−∞

dε
e−iεt

2 sinh t
2

πR~−1

2 cosh2 (πR~−1(µ− ε))
(7)

= 1
π
=
∫ ∞

0
dte−i~

−1µt 1
2 sinh t/2

t/2R
sinh t/2R (8)

The most convenient expression to work with is

∂3FG
∂µ3 = 1

π
=
∫ ∞

0
dte−it

t/2~−1µ

sinh(t/2~−1µ)
t/2R~−1µ

sinh(t/2R~−1µ) (9)

which one expands in 1/~−1µ and then performs the integrals term by
term. In the end we get

F(µ0, R) = −R2 µ
2
0 logµ0 −

1
24

(
R+ 1

R

)
logµ0 +R

∞∑
k=2

µ−2k+2
0 fk(R)

(10)
which is T-dual under R→ 1/R, µ0 → Rµ0.

• The effective string theory coupling is now geff (R) = 1/(µ0
√
R).
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Genus expansions
Infinite line, 0-T

• One can take the R→∞ limit of the previous expression or directly
consider

E0 =
∫ µ

ρ(ε)εdε, (11)

expand in powers of 1/µ, integrate term by term and change variables to
get

−E0 = 1
8π

[
(2µ0)2 logµ0 −

1
3 logµ0 +

∞∑
n=0

2(2n+1 − 1)|B2n+2|
n(n+ 1)(2n+ 1) (2µ0)−2n

]
(12)

the terms diverge as (2n+ 2)! - closed string factorial growth. This is
correct up to non-perturbative terms.
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DOS
• We found the following partition function from the 1-particle kernel:

Zo(ω, β) = 1
2 sinh(ωβ/2) arctan

(
1

sinh(ωβ/2)

)
= 1

2

∫ π

0
dθ

cos(θ/2)
cosh(ωβ)− cos(θ)

(13)
The analogous formula for the circle is:

Zc(ω, β) = 1
2 sinh(ωβ/2) = 1

2π

∫ π

0
dθ

1
cosh(ωβ/2)− cos(θ) (14)

To discuss the inverted H.O. one needs to set ω = i in these formulas.
• We can write this in terms of twisted partition function and
dos [Boulatov, Kazakov]

Zo(ω = i, β) =
∫ π

0
dθ cos(θ/2)Z(θ, β) =

∫ π

0
dθ cos(θ/2)

∫ +∞

−∞
dε e−βερ(θ, ε)

(15)
with

ρ(θ, ε) =
∞∑

m=−∞
eimθρ(m)(ε) = 1

π

∞∑
k=0

∞∑
m=−∞

eimθ( |m|+1
2 + k)

(ε)2 + (k + |m|+1
2 )2

+δ(θ) log Λ̃2

(16)
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DOS
• We see that the circle and the orbifold differ by different averaging.
• For the circle one finds that the m = 0 contribution only survives

ρc(ε) = 1
π
<Ψ(iε+ 1

2) (17)

• For the orbifold we get

ρo(ε) = ρc(ε) + 1
sinh(πε)

(
= Ψ

(
1
2 iε+ 1

4

)
−= Ψ

(
1
2 iε+ 3

4

))
(18)

with Ψ the digamma function.
• This also looks similar to the contribution coming from the diagonal
piece of the full kernel in the energy basis.

• With this the Free energy can be written as

F = 1
2

∫ ∞
−∞

dερo(ε) log
(

1 + eβ(µ−ε)
)

(19)

which is the starting point for the genus expansion computation.
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Alternative description
There is an alternative description of the PF ⇒ sanity check.

• Diagonalise U and integrate out M ’s in the previous expression

Z =
∫
DMDM ′DU〈UM ′U†, β|M, 0〉 =

∫
DUI(U)

• We define A = 1/ tanh(ωβ), B = 1/ sinh(ωβ), and remember to use
blocks for the matrices after orbifolding we get

I(U) = ω−
1
2 (N−2n)2 ( B

2π
)N2/2 ∫

dM1dM2dM
′
1dM

′
2e
T , U =

(
U1 U12
U21 U2

)
,

T = −A2 tr(M2
1 +M2

1
′) +Btr(M1U1M

′
1U
†
1 +M1U12M

′
2U
†
12) + (1↔ 2).

• The U ′s are complex but can be diagonalised by bi-unitary
transformations that leave the measure invariant.

U =
(
δij cos θi −δij sin θi
δij sin θi δij cos θi

)
, 0 ≤ θi ≤ π

2 ,

(or just exponentiate the zero mode of the gauge field!).
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Orbifold Partition function
In terms of angles

Integrate out M ’s, to find

I =
(
B

ω

) (N−2n)2
2

n∏
i

(
B2

1 + B2 sin2 θi

)N−2n n∏
i,j

(
B4

(1 + B2 sin2(θi + θj)(1 + B2 sin2(θi − θj)

) 1
2

The measure for DU can be found by defining the metric on the tangent
space of the group ds2 = tr(UdU†UdU†) and then computing its
determinant to get

J =
n∏
i<j

sin2(θi − θj) sin2(θi + θj)
n∏
i=1

sin 2θi sin2(N−2n) θi

Again we see that n = N
2 is special. In this case we find

Zn = 1
n!

∫ π

0

n∏
i

dθiJ
∏
i,j

(
1

(cosh β − cos(θi + θj)(cosh β + cos(θi − θj)

) 1
2

.

Still this looks quite daunting!
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Schur’s Pfaffian
There is still a way forward. One unfolds the denominator using for example

1
cosh β − cos(θi + θj)

∼ q

(1− qxixj)(1− qx∗i x∗j )
, q = e−ωβ , xi = eiθi

and similarly the measure

J =
n∏
i<j

(xi − xj)(xi − x∗j )(x∗i − xj)(x∗i − x∗j )
n∏
k

(xk − x∗k)

[
noframenumbering]Then one uses Schur’s Pfaffian identity

pf
(
xi − xj
1− xixj

)
1≤i,j≤2n

=
2n∏
i<j

xi − xj
1− xixj

to compactly write

Zn = 1
n!

∫ π

0

n∏
k=1

dθk

n∏
k=1

1√
(cosh(β)− cos(2θk))

pf

 q1/2(xi−xj)
1−qxixj

q1/2(xi−x∗j )
1−qxix∗j

q1/2(x∗i−xj)
1−qx∗

i
xj

q1/2(x∗i−x
∗
j )

1−qx∗
i
x∗
j
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Comparison with the circle and 2d Black Hole
• For the S1 the kernel is (x = eiθ)

K̂c[f ](x) = −
∮

dx′

2πi
f(x′)

q1/2x− q−1/2x′

The eigenfunctions are polynomials xn with eigenvalues qn+ 1
2 .

• The 2d BH was described as a correlator of two Polyakov lines/winding
modes that induce vortex perturbations (tr(Un) = einθ = xn) [Kazakov,
Kostov, Kutasov]

K̂BH [f ](x) = −
∮

dx′

2πi
eu(x)+u(x′)

q1/2x− q−1/2x′
f(x′), u(x) =

∑
n6=0

tnx
n

and restricting to t1, t−1. In this case the partition function was identified
as a τ function of the Toda Hierarchy. This arose from realising that the
denominator is a free fermion correlator

〈ψ(q 1
2x)ψ(q− 1

2x′)〉 = 1
(q 1

2x− q− 1
2x′)

and t±1 can be identified as Toda "times". This realization gives
differential equations for the partition function with respect to t’s.
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Elliptic parametrization
The measure is very
reminiscent of Elliptic
integrals. In fact in the
x′ = eiθ

′ plane we find
that the measure
dµ(θ′) has branch
points at ±q− 1

2 ,±q 1
2 .

UHP LHP
1 -1

UHP1

LHP
1

LHP
1

UHP-1

LHP
-1

UHP-1

The domain is a two-sheeted Riemann surface.
• We make the elliptic substitution eiθ′ = q

1
2 sn(v, q) with sn, Jacobi’s

elliptic sine and q = k the elliptic modulus. The measure becomes
dµ(θ′)→ −q 1

2 dv!
• Jacobi’s sine has a double periodicity sn(4mK + 2inK ′ + u) = sn(u).
The functions are now naturally defined on a torus.

• We are only left with the matrix piece of the kernel which is

ρ(u, v) =
(

ρ11(u, v) ρ11(u, v + iK ′)
−ρ11(u+ iK ′, v) −ρ11(u+ iK ′, v + iK ′)

)
,

ρ11(u, v) = 1−k snu sn v
snu−k sn v
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The Torus
This is the mapping of the contour of integration.

0 K

K+iK'/2

K+iK'

-K

I

IIIII

IV IIV

IIIII

Α

Β

Γ Δ Ε Ζ

ΑΒΓ

Δ Ε Ζ
1-1 k-k 1/21/2-k -1/2 k-1/2

Η Θ

Η Θ
z=     snuk1/2

The integral equation thus becomes

λ
(

X1(u)
X2(u)

)
= −k 1

2

∫ −K+iK′/2

K+iK′/2
dvρ(u, v)

(
X1(v)
X2(v)

)
One finds the following consistency condition X1(u) +X2(u− iK ′) = 0.
This gets rid of the matrix structure for a single equation.

λX(u) = −k 1
2

[∫ −K+iK′/2

K+iK′/2
+
∫ K−iK′/2

−K−iK′/2

]
dvρ11(u, v)X(v)
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MQM Path Integral
We will now study MQM in an inverted harmonic oscillator (H.O.) potential
that captures the universal physics in the double scaling limit.
• The (Euclidean) propagator for a matrix harmonic oscillator is

〈M ′, β|M, 0〉 =
(

ω

2π sinhωβ

)N2/2
e−

ω
2 sinhωβ [(TrM2+TrM ′2) coshωβ−2TrMM ′]

• One can also show that∫ M ′(β)

M(0)
DADMe

−
∫ β

0
dτTr 1

2 (DτM)2−V (M) =
∫
U(N)

DU〈UM ′U†, β|M, 0〉

• This is useful because one can use the Harish-Chandra-Itzykson-Zuber
integral∫

U(N)
DU exp

(
gTrMUM ′U†

)
=
N−1∏
n=1

(p!) g− 1
2N(N−1) det egλiλ

′
j

∆(λ)∆(λ′)

• This will help us to reduce the path integral to eigenvalues (N2 → N
dofs)
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Orbifold Partition function
Matrix models defined on the Âm quiver: Integrand is a determinant.
[Marino..]
Matrix models defined on the D̂m quiver: Integrand is a Pfaffian.
[Moriyama..]

Taking inspiration of this we use the Cauchy identity∏
i<j(xi − xj)

∏
i<j(yi − yj)∏

i,j(xi − yj)
= det 1

xi − yj
,

then

Z ∼
∫
dnxdnx′ det

n×n

(
1

xi − yj

)
det

2n×2n

(
Kn(xi, x′j) Kn(xi, y′j)
Kn(yi, x′j) Kn(yi, y′j)

)
det
n×n

(
1

x′i − y′j

)
Now integrate over (y, y′) using the following lemma [Andreief, Moriyama]:

1
n!

∫ n∏
k=1

dxk · det
[
(φi(xk))1≤i≤n+r

1≤k≤n
(ζiq)1≤i≤n+r

1≤q≤r

]
· det(ψj(xk))1≤j,k≤n

= det
[
(mij)1≤i≤n+r

1≤j≤n
(ζiq)1≤i≤n+r

1≤q≤r

]
, mij =

∫
dxφi(x)ψj(x).
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Orbifold Partition function
We obtain

Z ∼ (−1)n
∫
dnxdnx′ det

(
K(xi, x′j) (K •N)(xi, x′j)

(M •K)(xi, x′j) (M •K •N)(xi, x′j)

)
,

where • stands for either the y integration or the y′ integration distinguished
by M(xi, y) = 1

xi−y , N(y′, x′j) = 1
y′−x′

j
.

To perform the x′ integrations one uses a formula by de Bruijn∫
dNx

N ! det
(

(φa(xi))1≤a≤2N
1≤i≤N

(ψa(xi))1≤a≤2N
1≤i≤N

)
= (−1) 1

2 (N−1)N pf Pab,

with Pab =
∫
dx(φa(x)ψb(x)− φb(x)ψa(x)) skew symmetric, to get

Z ∼ (−1)n+ 1
2 (n−1)n

∫
dnx pf P, P =

(
P11 P12
P21 P22

)
,

P11 = −(K ◦N •K + K •N ◦K), P12 = (K ◦N •K + K •N ◦K) •M,

P21 = −M • (K ◦N •K + K •N ◦K), P22 = M • (K ◦N •K + K •N ◦K) •M.
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