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Summary of results

• New boundary conditions in AdS3 gravity leading to new symmetry

algebra. (two copies of u(1)k current algebra)

[Jn, Jm] =
k

2
n δn+m,0 .

• Improving the semi-classical symmetry to a quantum version

describing microstates of BTZ in terms of coherent states of

particles on AdS3.

• Counting these microstaes (horizon fluff) reproduces BH entropy

and its log correction.
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Horizon fluff proposal

• Black hole microstates = horizon fluff: subset of near horizon soft

hairs not distinguishable by the observers away from the horizon.

• Black hole: a state in the Hilbert space of asymptotic symmetries:

[Ln, Lm] = (n −m)Lm+n +
k

2
n3 δn+m,0 .

• Soft hairs: states in the Hilbert space of ‘near horizon’ algebra:

[Jn, Jm] =
k

2
n δn+m,0 .

• Duality map between asymptotic Hilbert space (BTZ) to the near

horizon Hilbert space provides the required degeneracy (entropy).
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Motivation



Motivation

The Bekenstein-Hawking area law for black hole entropy is observer

independent and is accessible through semiclassical considerations.

S = A/(4G) - q ln A/(4G) + O(1)

= ln ( # microstates )

Universality of this result suggests that a statistical description of

microstates in the thermodynamic limit does not need full knowledge of

the underlying quantum theory.
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Soft hair

• Soft hair: Zero-energy excitation with non-trivial charges. This

notion was first introduced by [Hawking Perry Stromiger ’15]

• Diffeomorphic geometries which differ by their boundary behavior

can be physically distinct, asymptotic soft hairs. The conserved

charges associated with the diffeomorphisms relating them is

non-zero and form an infinite dimensional algebra.

They do not appear in the S-matrix and are shaved off!

[Mirbabayi Porrati ’16 Bousso Porrati 17’]

• A black hole spacetime in particular can carry low-energy quantum

excitations, near horizon soft hairs, providing a huge degeneracy to

their vacuum.

They can amount for microstates of black holes!?

[HA Grumiller Sheikh-Jabbari Yavartanoo 16’ 17’]
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Brown-Henneaux boundary

conditions



Brown-Henneaux symmetries

All locally AdS3 geometries obeying Brown–Henneaux b.c. fall into

representation of asymptotic (simplectic) symmetry algebra which is two

copies of Virasoro at Brown-Henneaux central charge c± = 6k = 3`
2G .

The Virasoro symmetries act on the phase space as;

δε±L± = 2L±ε
′
± + ε′±L± − ε′′′±/2 .

The corresponding geometries with L± (BTZ black holes, conic spaces

and global AdS3 and their conformal descendants) are in a one-to-one

correspondence with the coadjoint orbits of these symmetries:

HVir = HBTZ ∪HConic ∪HgAdS︸ ︷︷ ︸
HCG

.

7



Near horizon boundary conditions



Near horizon boundary conditions

All locally AdS3 geometries with horizon at r = 0 are parametrized by 4

real functions

ds2 = dr2 − `2 sinh2 r

`
[a dt − ωdϕ]2 + cosh2 r

`
[Ω dt + γdϕ]2

∂tJ
± = ±∂ϕζ± ; 2ζ± ≡ −a± Ω

` and 2J± ≡ γ
` ± ω .

Constant family:

J+ = J− = ±J0 , L0 = J0
2

BTZ black holes: J0 ≥ 0

Global AdS3: J0 = i
2

Conical defects: J0 = iν
2 , ν ∈ (0, 1)
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Comparison to Brown-Henneaux boundary conditions

For this set of boundary conditions as r →∞;

δgtt = O
(

1
r2

)
δgϕϕ = O

(
r2
)

δgtϕ = O (1) .

while for the Brown-Henneaux boundary conditions;

δgtt = O (1)

δgϕϕ = O (1)

δgtϕ = O (1) .
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Near horizon boundary conditions

ds2 = dr2 − `2 sinh2 r

`
[a dt − ωdϕ]2 + cosh2 r

`
[Ω dt + γdϕ]2

= dr2 − (ar)2 dt2 + γ2 dϕ2 +O(r2). ϕ ∼ ϕ+ 2π

• Rindler space: Universal near horizon to any non-extremal horizon.

• In the canonical description the Rindler acceleration a is fixed.

• AdS radius ` drops out of the near horizon line-element.

• All solutions have a regular horizon, regardless of the value of γ, ω

as long as a/ (2π) is identified with the Unruh temperature.
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Symmetries of the Near-Horizon

The most general transformation that preserves this boundary condition

and also preserves the field equation, with δζ = 0, transforms J’s as;

δηJ = η′ .

Two copies of u(1)k-algebra

[Jn, Jm] =
k

2
n δn+m,0 .

How are these symmetries related to Brown-Henneaux?

Check how J is transformed under conformal transformaition:

δεJ = (εJ)′ − ε′′/2 → L = J2 + J ′ .

Ln ≡
6

c

∑
p∈Z

Jn−pJp + inJn
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Entropy and energy of BTZ black hole

From the asymptotic point of view;

SBH =
A

4G
= 2π

√cL+
0

6
+

√
cL−0

6

 , HAsym = L+
0 + L−0

From the near horizon point of view;

SBH =
A

4G
= 2π(J+

0 + J−0 ) =
(
T−1

Rindler

)
HNH , TRindler =

a

2π

The near horizon Hamiltonian HNH = a(J+
0 + J−0 ) is the center of the

near horizon algebra and assigns a same energy to all descendents (soft

hair). The asymptotic Hamiltonian is not the center of the asymptotic

(Virasoro) algebra. So the asymptotic observer only sees hard states.
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Quantization of (coherent)

conical defects



Wilson lines as primary fields

L = J ′ + J2 → δεJ = (εJ)′ − ε′′/2

• The fields J(φ) are primary fields if the anomalous term ε′′ can be

ignored that is for black hole sector (J?0 = J0) with J being large;

• We can construct a new primary field W;

W(φ) = e−2
∫ φ J → δεW = (εW)′

which is a good description for conic spaces (J?0 = −J0) as the

periodicity property suggests:

W±(φ+ 2π) = e∓4πJ0W±(φ)
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Quantization of W fields

W ≡ e−2
∫ φ J = e−2Φ0−2J0φ+···

Quantization;

[Φ0, J0] = i
c

12
, 〈Φ0〉 = Φ0

Using the appropriate mode expansion we get;

[Jn,W±
m] = − iW±

n+m , (∀n 6= 0), [J0,W±
n ] = ∓ i c6W

±
n δn,0 .

The W operators are like coherent operators.
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Free field realization of W-fields

The“interaction terms” 〈WWJ〉 and 〈WJJ〉 are suppressed by factors of

1/c . In the large c regime, the algebra can be closed as:

[W±ν
n ,W∓ν

m ] =
( c

12
n ∓ J0

)
δn,−m

=
c

12
(n ± ν)δn,−m , ν ∈ (0, 1)

This gives a free field realization for W-fields; In the large c limit,

W-fields are a weekly coupled description of HCG as gas of coherent

particles on AdS3.
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Near horizon soft hairs

• The commutation relation of Wn’s takes a very simple form

[J n,J m] =
n

2
δn,−m ,

• The Fourier modes J n:

J c(n+ν) ∼Wν
n

• The vacuum state is

J n|0〉 = 0, ∀n ≥ 0.

Bohr-type quantization conditions

© c ∈ N → Chern-Simons level

© ν = 1
c ,

2
c , · · · , 1 → D1-D5 realization [Maldacena Maoz ’00]

16



Virasoro algebra of near horizon

In parallel to the black hole sector we can have a Virasoro generator;

Lr
n =

6

c

∑
p∈Z

:W−r
n−pW

r
p : +frδn,0 , r = νc

The generators Ln =
∑c

r=1 L
r
n, can be written in terms of J n modes;

Ln =
1

c

∑
p∈Z

:J nc−pJ p: − 1

24c
δn,0

They satisfy a Virasoro algebra at Brown-Henneaux central charge c .
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Black hole microstates



State of a BTZ

Duality ( 1
cLnc = Ln)

1

c

∑
p∈Z

: J nc−pJ p : = inJn +
6

c

∑
p∈Z

: Jn−pJp : .

The two Hilbert spaces in HVir = HBTZ ∪HCG are related.

HCG ←→ HBTZ

A given AdS3 black hole state:

|BTZ〉 ∈ HBTZ ←→ micro-states =
∣∣J±0 ; {n±i }

〉
∈ HCG

〈L±0 〉BTZ = c
6 (J±0 )2 = 1

2 (`M ± J) .
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Horizon fluffs = Microstates ∈ HCG

[Jm,Jn] =
m

2
δm+n,0

|J0; {ni}〉 = J−ni · · · J−n2J−n1 |0; {ni}〉 , ∀ni > 0

So
∣∣J±0 ; {n±i }

〉
describes a black hole state if;

L±0 = 1
2 (`M ± J) = 1

c

∑
i

n±i

Mathematically, this reduces to Hardy and Ramanujan combinatorial

problem: the number of ways a positive integer N can be partitioned into

non-negative integers in the limit of large N;

p(N) ' 1

4N
√

3
exp

(
2π

√
N

6

)
, N � 1 .

19



Entropy

Microcanonical entropy as logarithm of the number of states:

S0 = ln p(cL+
0 ) + ln p(cL−0 ) = 2π

√cL+
0

6
+

√
cL−0

6


Reminding L±0 = 6

c (J±0 )2, the entropy is;

S0 = 2π
(
J+

0 + J−0
)

=
A

4G
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Logarithmic correction to entropy



Micro-canonical entropy

S0 = 2π
(
J+

0 + J−0
)

=
A

4G

The logarithmic correction:

S = S0 − 2 ln S0 + . . . ,

The microcanonical entropy is obtained through replacing J0 with

J0 =
k

2π

〈 2π∫
0

dφ J(φ)
〉

mic

→ J0 +
1

2
ln J0 .

Consequently we find the exact match for the log correction in the

mic-canonical ensemble for BTZ black holes;

Smic = = SBH − 3
2 lnSBH + . . . .
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Conclusion



Summary

• The horizon fluff proposal is a semi-classical proposal to construct

BTZ microstates. It reproduces the Bekenstein-Hawking entropy

and also the logarithmic corrections to it.

• We assumed some basic “Bohr-type” quantization on central charge

and the dificit angle.

• We proposed a black-hole/particle correspondence; states in HBTZ

are certain coherent staes in HCG.

22



ευχαιστω
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Backup slides

All Locally AdS3 geometries obeying Brown–Henneaux b.c.:

ds2 = `2 dr2

r2
− r2

(
dx+ − `2L−(x−)

r2
dx−

)(
dx− − `2L+(x+)

r2
dx+

)
L±(x± + 2π) = L±(x±) , x± = t/`± φ, φ ∈ [0, 2π].

Constant family:

L+ = L− = L0

BTZ black holes: L0 ≥ 0

Global AdS3: L0 = −1/4

Conical defects: −1/4 < L0 < 0
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