Horizon fluff

A semi-classical approach to (BTZ) black hole microstates

Hamid R. Afshar

9th Crete Regional Meeting on String Theory - Kolymbari - July 11, 2017
Institute for Research in Fundamental Sciences (IPM)

In collaboration with ...

- Stephane Detournay (ULB)
- Daniel Grumiller, Wout Merbis (TU Wien)
- Blagoje Oblak (ETH)
- Alfredo Perez, David Tempo, Ricardo Troncoso (CECS Valdivia)
- Shahin Sheikh-Jabbari (IPM Tehran)
- Hossein Yavartanoo (ITP Beijing)

Summary of results

- New boundary conditions in AdS_{3} gravity leading to new symmetry algebra. (two copies of $u(1)_{k}$ current algebra)

$$
\left[J_{n}, J_{m}\right]=\frac{k}{2} n \delta_{n+m, 0} .
$$

- Improving the semi-classical symmetry to a quantum version describing microstates of BTZ in terms of coherent states of particles on AdS_{3}.
- Counting these microstaes (horizon fluff) reproduces BH entropy and its log correction.

Horizon fluff proposal

- Black hole microstates $=$ horizon fluff: subset of near horizon soft hairs not distinguishable by the observers away from the horizon.
- Black hole: a state in the Hilbert space of asymptotic symmetries:

$$
\left[L_{n}, L_{m}\right]=(n-m) L_{m+n}+\frac{k}{2} n^{3} \delta_{n+m, 0} .
$$

- Soft hairs: states in the Hilbert space of 'near horizon' algebra:

$$
\left[J_{n}, J_{m}\right]=\frac{k}{2} n \delta_{n+m, 0} .
$$

- Duality map between asymptotic Hilbert space (BTZ) to the near horizon Hilbert space provides the required degeneracy (entropy).

Outline

1. Motivation
2. Brown-Henneaux boundary conditions
3. Near horizon boundary conditions
4. Quantization of (coherent) conical defects
5. Black hole microstates
6. Logarithmic correction to entropy
7. Conclusion

Motivation

Motivation

The Bekenstein-Hawking area law for black hole entropy is observer independent and is accessible through semiclassical considerations.

$$
\begin{aligned}
S & =A /(4 G)-q \ln A /(4 G)+O(1) \\
& =\ln (\# \text { microstates })
\end{aligned}
$$

Universality of this result suggests that a statistical description of microstates in the thermodynamic limit does not need full knowledge of the underlying quantum theory.

Soft hair

- Soft hair: Zero-energy excitation with non-trivial charges. This notion was first introduced by [Hawking Perry Stromiger '15]
- Diffeomorphic geometries which differ by their boundary behavior can be physically distinct, asymptotic soft hairs. The conserved charges associated with the diffeomorphisms relating them is non-zero and form an infinite dimensional algebra.

They do not appear in the S-matrix and are shaved off!
[Mirbabayi Porrati '16 Bousso Porrati 17']

- A black hole spacetime in particular can carry low-energy quantum excitations, near horizon soft hairs, providing a huge degeneracy to their vacuum.

They can amount for microstates of black holes!?
[HA Grumiller Sheikh-Jabbari Yavartanoo 16' 17']

Brown-Henneaux boundary conditions

Brown-Henneaux symmetries

All locally AdS_{3} geometries obeying Brown-Henneaux b.c. fall into representation of asymptotic (simplectic) symmetry algebra which is two copies of Virasoro at Brown-Henneaux central charge $c^{ \pm}=6 k=\frac{3 \ell}{2 G}$.
The Virasoro symmetries act on the phase space as;

$$
\delta_{\epsilon_{ \pm}} L_{ \pm}=2 L_{ \pm} \epsilon_{ \pm}^{\prime}+\epsilon_{ \pm}^{\prime} L_{ \pm}-\epsilon_{ \pm}^{\prime \prime \prime} / 2 .
$$

The corresponding geometries with $L_{ \pm}$(BTZ black holes, conic spaces and global AdS_{3} and their conformal descendants) are in a one-to-one correspondence with the coadjoint orbits of these symmetries:

$$
\mathcal{H}_{\mathrm{Vir}}=\mathcal{H}_{\mathrm{BTZ}} \cup \underbrace{\mathcal{H}_{\text {Conic }} \cup \mathcal{H}_{\mathrm{gAdS}}}_{\mathcal{H}_{\mathrm{CG}}}
$$

Near horizon boundary conditions

Near horizon boundary conditions

All locally AdS_{3} geometries with horizon at $r=0$ are parametrized by 4 real functions

$$
\begin{gathered}
\mathrm{ds} s^{2}=\mathrm{d} r^{2}-\ell^{2} \sinh ^{2} \frac{r}{\ell}[a d t-\omega d \varphi]^{2}+\cosh ^{2} \frac{r}{\ell}[\Omega d t+\gamma d \varphi]^{2} \\
\partial_{t} J^{ \pm}= \pm \partial_{\varphi} \zeta^{ \pm} ; \quad 2 \zeta^{ \pm} \equiv-a \pm \frac{\Omega}{\ell} \quad \text { and } \quad 2 J^{ \pm} \equiv \frac{\gamma}{\ell} \pm \omega .
\end{gathered}
$$

Constant family:

$$
J_{+}=J_{-}= \pm J_{0}, \quad L_{0}=J_{0}^{2}
$$

BTZ black holes: $J_{0} \geq 0$
Global $\mathrm{AdS}_{3}: \quad J_{0}=\frac{i}{2}$
Conical defects: $\quad J_{0}=\frac{i \nu}{2}, \quad \nu \in(0,1)$

Comparison to Brown-Henneaux boundary conditions

For this set of boundary conditions as $r \rightarrow \infty$;

$$
\begin{aligned}
\delta g_{t t} & =\mathcal{O}\left(\frac{1}{r^{2}}\right) \\
\delta g_{\varphi \varphi} & =\mathcal{O}\left(r^{2}\right) \\
\delta g_{t \varphi} & =\mathcal{O}(1) .
\end{aligned}
$$

while for the Brown-Henneaux boundary conditions;

$$
\begin{aligned}
\delta g_{t t} & =\mathcal{O}(1) \\
\delta g_{\varphi \varphi} & =\mathcal{O}(1) \\
\delta g_{t \varphi} & =\mathcal{O}(1) .
\end{aligned}
$$

Near horizon boundary conditions

$$
\begin{aligned}
\mathrm{d} s^{2} & =\mathrm{d} r^{2}-\ell^{2} \sinh ^{2} \frac{r}{\ell}[a d t-\omega d \varphi]^{2}+\cosh ^{2} \frac{r}{\ell}[\Omega d t+\gamma d \varphi]^{2} \\
& =\mathrm{d} r^{2}-(a r)^{2} \mathrm{~d} t^{2}+\gamma^{2} \mathrm{~d} \varphi^{2}+\mathcal{O}\left(r^{2}\right) . \quad \varphi \sim \varphi+2 \pi
\end{aligned}
$$

- Rindler space: Universal near horizon to any non-extremal horizon.

Near horizon boundary conditions

$$
\begin{aligned}
\mathrm{d} s^{2} & =\mathrm{d} r^{2}-\ell^{2} \sinh ^{2} \frac{r}{\ell}[a d t-\omega d \varphi]^{2}+\cosh ^{2} \frac{r}{\ell}[\Omega d t+\gamma d \varphi]^{2} \\
& =\mathrm{d} r^{2}-(a r)^{2} \mathrm{~d} t^{2}+\gamma^{2} \mathrm{~d} \varphi^{2}+\mathcal{O}\left(r^{2}\right) . \quad \varphi \sim \varphi+2 \pi
\end{aligned}
$$

- Rindler space: Universal near horizon to any non-extremal horizon.
- In the canonical description the Rindler acceleration a is fixed.

Near horizon boundary conditions

$$
\begin{aligned}
\mathrm{d} s^{2} & =\mathrm{d} r^{2}-\ell^{2} \sinh ^{2} \frac{r}{\ell}[a d t-\omega d \varphi]^{2}+\cosh ^{2} \frac{r}{\ell}[\Omega d t+\gamma d \varphi]^{2} \\
& =\mathrm{d} r^{2}-(a r)^{2} \mathrm{~d} t^{2}+\gamma^{2} \mathrm{~d} \varphi^{2}+\mathcal{O}\left(r^{2}\right) . \quad \varphi \sim \varphi+2 \pi
\end{aligned}
$$

- Rindler space: Universal near horizon to any non-extremal horizon.
- In the canonical description the Rindler acceleration a is fixed.
- AdS radius ℓ drops out of the near horizon line-element.

Near horizon boundary conditions

$$
\begin{aligned}
\mathrm{d} s^{2} & =\mathrm{d} r^{2}-\ell^{2} \sinh ^{2} \frac{r}{\ell}[a d t-\omega \mathrm{d} \varphi]^{2}+\cosh ^{2} \frac{r}{\ell}[\Omega d t+\gamma \mathrm{d} \varphi]^{2} \\
& =\mathrm{d} r^{2}-(a r)^{2} \mathrm{~d} t^{2}+\gamma^{2} \mathrm{~d} \varphi^{2}+\mathcal{O}\left(r^{2}\right) . \quad \varphi \sim \varphi+2 \pi
\end{aligned}
$$

- Rindler space: Universal near horizon to any non-extremal horizon.
- In the canonical description the Rindler acceleration a is fixed.
- AdS radius ℓ drops out of the near horizon line-element.
- All solutions have a regular horizon, regardless of the value of γ, ω as long as $a /(2 \pi)$ is identified with the Unruh temperature.

Symmetries of the Near-Horizon

The most general transformation that preserves this boundary condition and also preserves the field equation, with $\delta \zeta=0$, transforms J's as;

$$
\delta_{\eta} J=\eta^{\prime} .
$$

Two copies of $u(1)_{k}$-algebra

$$
\left[J_{n}, J_{m}\right]=\frac{k}{2} n \delta_{n+m, 0}
$$

How are these symmetries related to Brown-Henneaux?
Check how J is transformed under conformal transformaition:

$$
\begin{gathered}
\delta_{\epsilon} J=(\epsilon J)^{\prime}-\epsilon^{\prime \prime} / 2 \rightarrow L=J^{2}+J^{\prime} . \\
L_{n} \equiv \frac{6}{c} \sum_{p \in \mathbb{Z}} J_{n-p} J_{p}+i n J_{n}
\end{gathered}
$$

Entropy and energy of BTZ black hole

From the asymptotic point of view;

$$
S_{\mathrm{BH}}=\frac{A}{4 G}=2 \pi\left(\sqrt{\frac{c L_{0}^{+}}{6}}+\sqrt{\frac{c L_{0}^{-}}{6}}\right), \quad \mathrm{H}_{\mathrm{Asym}}=L_{0}^{+}+L_{0}^{-}
$$

From the near horizon point of view;

$$
S_{\mathrm{BH}}=\frac{A}{4 G}=2 \pi\left(\boldsymbol{J}_{0}^{+}+J_{0}^{-}\right)=\left(\mathrm{T}_{\text {Rindler }}^{-1}\right) \mathrm{H}_{\mathrm{NH}}, \quad \mathrm{~T}_{\text {Rindler }}=\frac{a}{2 \pi}
$$

The near horizon Hamiltonian $\mathrm{H}_{\mathrm{NH}}=a\left(\boldsymbol{J}_{0}^{+}+\boldsymbol{J}_{0}^{-}\right)$is the center of the near horizon algebra and assigns a same energy to all descendents (soft hair). The asymptotic Hamiltonian is not the center of the asymptotic (Virasoro) algebra. So the asymptotic observer only sees hard states.

Quantization of (coherent) conical defects

Wilson lines as primary fields

$$
L=J^{\prime}+J^{2} \quad \rightarrow \quad \delta_{\epsilon} J=(\epsilon J)^{\prime}-\epsilon^{\prime \prime} / 2
$$

- The fields $J(\phi)$ are primary fields if the anomalous term $\epsilon^{\prime \prime}$ can be ignored that is for black hole sector $\left(J_{0}^{\star}=J_{0}\right)$ with J being large;
- We can construct a new primary field \mathcal{W};

$$
\mathcal{W}(\phi)=e^{-2 \int^{\phi} J} \quad \rightarrow \quad \delta_{\epsilon} \mathcal{W}=(\epsilon \mathcal{W})^{\prime}
$$

which is a good description for conic spaces $\left(J_{0}^{\star}=-J_{0}\right)$ as the periodicity property suggests:

$$
\mathcal{W}^{ \pm}(\phi+2 \pi)=e^{\mp 4 \pi J_{0}} \mathcal{W}^{ \pm}(\phi)
$$

Quantization of \mathcal{W} fields

$$
\mathcal{W} \equiv e^{-2 \int^{\phi} J}=e^{-2 \Phi_{0}-2 J_{0} \phi+\cdots}
$$

Quantization;

$$
\left[\boldsymbol{\Phi}_{0}, \boldsymbol{J}_{0}\right]=i \frac{c}{12}, \quad\left\langle\boldsymbol{\Phi}_{0}\right\rangle=\Phi_{0}
$$

Using the appropriate mode expansion we get;

$$
\left[\boldsymbol{J}_{n}, \mathcal{W}_{m}^{ \pm}\right]=-i \mathcal{W}_{n+m}^{ \pm},(\forall n \neq 0), \quad\left[\boldsymbol{J}_{0}, \mathcal{W}_{n}^{ \pm}\right]=\mp i \frac{c}{6} \mathcal{W}_{n}^{ \pm} \delta_{n, 0}
$$

The \mathcal{W} operators are like coherent operators.

Free field realization of \mathcal{W}-fields

The "interaction terms" $\langle\mathcal{W} \mathcal{W} J\rangle$ and $\langle\mathcal{W} J J\rangle$ are suppressed by factors of $1 / c$. In the large c regime, the algebra can be closed as:

$$
\begin{aligned}
{\left[\mathcal{W}_{n}^{ \pm \nu}, \mathcal{W}_{m}^{\mp \nu}\right] } & =\left(\frac{c}{12} n \mp \boldsymbol{J}_{0}\right) \delta_{n,-m} \\
& =\frac{c}{12}(n \pm \nu) \delta_{n,-m}, \quad \nu \in(0,1)
\end{aligned}
$$

This gives a free field realization for \mathcal{W}-fields; In the large c limit, \mathcal{W}-fields are a weekly coupled description of $\mathcal{H}_{\mathrm{CG}}$ as gas of coherent particles on AdS_{3}.

Near horizon soft hairs

- The commutation relation of \mathcal{W}_{n} 's takes a very simple form

$$
\left[\mathcal{J}_{n}, \mathcal{J}_{m}\right]=\frac{n}{2} \delta_{n,-m},
$$

- The Fourier modes \mathcal{J}_{n} :

$$
\mathcal{J}_{c(n+\nu)} \sim \mathcal{W}_{n}^{\nu}
$$

- The vacuum state is

$$
\mathcal{J}_{n}|0\rangle=0, \quad \forall n \geq 0 .
$$

Bohr-type quantization conditions

$c \in \mathbb{N} \rightarrow$ Chern-Simons level
○ $\nu=\frac{1}{c}, \frac{2}{c}, \cdots, 1 \rightarrow$ D1-D5 realization [Maldacena Maoz '00]

Virasoro algebra of near horizon

In parallel to the black hole sector we can have a Virasoro generator;

$$
\boldsymbol{L}_{n}^{r}=\frac{6}{c} \sum_{p \in \mathbb{Z}}: \mathcal{W}_{n-p}^{-r} \mathcal{W}_{p}^{r}:+f_{r} \delta_{n, 0}, \quad r=\nu c
$$

The generators $L_{n}=\sum_{r=1}^{c} L_{n}^{r}$, can be written in terms of \mathcal{J}_{n} modes;

$$
\boldsymbol{L}_{n}=\frac{1}{c} \sum_{p \in \mathbb{Z}}: \mathcal{J}_{n c-p} \mathcal{J}_{p}:-\frac{1}{24 c} \delta_{n, 0}
$$

They satisfy a Virasoro algebra at Brown-Henneaux central charge c.

Black hole microstates

State of a BTZ

Duality $\left(\frac{1}{c} \mathcal{L}_{n c}=\boldsymbol{L}_{n}\right)$

$$
\frac{1}{c} \sum_{p \in \mathbb{Z}}: \mathcal{J}_{n c-p} \mathcal{J}_{p}:=i n J_{n}+\frac{6}{c} \sum_{p \in \mathbb{Z}}: J_{n-p} J_{p}: .
$$

The two Hilbert spaces in $\mathcal{H}_{\mathrm{Vir}}=\mathcal{H}_{\mathrm{BTZ}} \cup \mathcal{H}_{\mathrm{CG}}$ are related.

$$
\mathcal{H}_{\mathrm{CG}} \longleftrightarrow \mathcal{H}_{\mathrm{BTZ}}
$$

A given AdS_{3} black hole state:

$$
\begin{gathered}
|\mathrm{BTZ}\rangle \in \mathcal{H}_{\mathrm{BTZ}} \longleftrightarrow \text { micro-states }=\left|J_{0}^{ \pm} ;\left\{n_{i}^{ \pm}\right\}\right\rangle \in \mathcal{H}_{\mathrm{CG}} \\
\left\langle\boldsymbol{L}_{0}^{ \pm}\right\rangle_{\mathrm{BTZ}}=\frac{c}{6}\left(J_{0}^{ \pm}\right)^{2}=\frac{1}{2}(\ell M \pm J) .
\end{gathered}
$$

Horizon fluffs $=$ Microstates $\in \mathcal{H}_{\mathrm{cc}}$

$$
\begin{gathered}
{\left[\mathcal{J}_{m}, \mathcal{J}_{n}\right]=\frac{m}{2} \delta_{m+n, 0}} \\
\left|J_{0} ;\left\{n_{i}\right\}\right\rangle=\mathcal{J}_{-n_{i}} \cdots \mathcal{J}_{-n_{2}} \mathcal{J}_{-n_{1}}\left|0 ;\left\{n_{i}\right\}\right\rangle, \quad \forall n_{i}>0
\end{gathered}
$$

So $\left|J_{0}^{ \pm} ;\left\{n_{i}^{ \pm}\right\}\right\rangle$describes a black hole state if;

$$
L_{0}^{ \pm}=\frac{1}{2}(\ell M \pm J)=\frac{1}{c} \sum_{i} n_{i}^{ \pm}
$$

Mathematically, this reduces to Hardy and Ramanujan combinatorial problem: the number of ways a positive integer N can be partitioned into non-negative integers in the limit of large N;

$$
p(N) \simeq \frac{1}{4 N \sqrt{3}} \exp \left(2 \pi \sqrt{\frac{N}{6}}\right), \quad N \gg 1
$$

Entropy

Microcanonical entropy as logarithm of the number of states:

$$
S_{0}=\ln p\left(c L_{0}^{+}\right)+\ln p\left(c L_{0}^{-}\right)=2 \pi\left(\sqrt{\frac{c L_{0}^{+}}{6}}+\sqrt{\frac{c L_{0}^{-}}{6}}\right)
$$

Reminding $L_{0}^{ \pm}=\frac{6}{c}\left(J_{0}^{ \pm}\right)^{2}$, the entropy is;

$$
S_{0}=2 \pi\left(J_{0}^{+}+J_{0}^{-}\right)=\frac{A}{4 G}
$$

Logarithmic correction to entropy

Micro-canonical entropy

$$
S_{0}=2 \pi\left(J_{0}^{+}+\boldsymbol{J}_{0}^{-}\right)=\frac{A}{4 G}
$$

The logarithmic correction:

$$
S=S_{0}-2 \ln S_{0}+\ldots
$$

The microcanonical entropy is obtained through replacing J_{0} with

$$
J_{0}=\frac{k}{2 \pi}\left\langle\int_{0}^{2 \pi} \mathrm{~d} \phi J(\phi)\right\rangle_{\text {mic }} \rightarrow J_{0}+\frac{1}{2} \ln J_{0} .
$$

Consequently we find the exact match for the log correction in the mic-canonical ensemble for BTZ black holes;

$$
S_{\mathrm{mic}}==S_{\mathrm{BH}}-\frac{3}{2} \ln S_{\mathrm{BH}}+\ldots
$$

Conclusion

Summary

- The horizon fluff proposal is a semi-classical proposal to construct BTZ microstates. It reproduces the Bekenstein-Hawking entropy and also the logarithmic corrections to it.
- We assumed some basic "Bohr-type" quantization on central charge and the dificit angle.
- We proposed a black-hole/particle correspondence; states in $\mathcal{H}_{\text {BтZ }}$ are certain coherent staes in $\mathcal{H}_{\mathrm{CG}}$.

$\varepsilon v \chi \alpha \iota \sigma \tau \omega$

Backup slides

All Locally AdS_{3} geometries obeying Brown-Henneaux b.c.:

$$
\begin{gathered}
\mathrm{d} s^{2}=\ell^{2} \frac{\mathrm{~d} r^{2}}{r^{2}}-r^{2}\left(\mathrm{~d} x^{+}-\frac{\ell^{2} L_{-}\left(x^{-}\right)}{r^{2}} \mathrm{~d} x^{-}\right)\left(\mathrm{d} x^{-}-\frac{\ell^{2} L_{+}\left(x^{+}\right)}{r^{2}} \mathrm{~d} x^{+}\right) \\
L_{ \pm}\left(x^{ \pm}+2 \pi\right)=L_{ \pm}\left(x^{ \pm}\right), \quad x^{ \pm}=t / \ell \pm \phi, \quad \phi \in[0,2 \pi] .
\end{gathered}
$$

Constant family:

$$
L_{+}=L_{-}=L_{0}
$$

BTZ black holes: $L_{0} \geq 0$
Global $\mathrm{AdS}_{3}: \quad L_{0}=-1 / 4$
Conical defects: $\quad-1 / 4<L_{0}<0$

