The decay width of stringy hadrons

with Dorin Weissman
Kolymbari, Crete July 2017
In memory of Ioannis Bakas

On integrable models from pp-wave string backgrounds

Ioannis Bakas
Department of Physics, Eniversity of Patnos
GR-26500 Patrus. Greace
bakasajax.phyaica upatras.gr
Jacob Sonmenschein
School of Physics and Astronomy
Beverly and Raymond Sachler Faculty of Enact Sciences Tel Aviv University, Ramat Aviv, 69978, Iswael
cobiepoat tau.ac.il
Theory Division, CERN
CH-1211 Geneva 23. Switserlawd
jacob.aonnenacheingcern.ch

Abstract

We construct solutions of type IIB supergravity with non-trivial Ramond-Rumond 5-form in ten dimensions by replacing the transworse flat space of pp-wave backgrounds with exact $N=(4,4) c=4$ superconformal field theory blocks. These solutions, which also include a dilaton and (in some cases) an anti-symmetric tensor field, lead to integrable models on the world-sheet in the light-cone gauge of string thoory. In one instance we demonstrate explicitly the emergence of the complex sine-Gordon model, which coincides with integrable perturbations of the corresponding superoonformal building blocks in the transverse space. In other cases we arrive at the supersymmetric Liouville theory or at the complex sine-Liouville model. For axionic instantons in the transverse space, as for the (semi)-wormhole goometry, we obtain sn entire class of supersymmetric pp-wave backgrounds by solving the Killing spinor equations as in flat space, supplemented by

Introduction

- The stringy description of hadrons has been thoroughly investigated during the sixties and seventies. What are the reasons to go back to "square one" and revisit this idea?
- (i) Up to date properties like the hadronic spectrum, their decay width, scattering cross section are hard to get from QCD and easy from a string model
- (ii) Holography, gauge/string duality, provides a bridge between the underlying theory of QCD (in certain limits) and a bosonic string model of mesons baryons and glueballls.
- (iii) The passage from the holographic string regime to strings in reality is still a tremendous challenge

IIntroduction

- (iv) up to date we lack a full exact procedure of quantizing a rotating string with massive endpoints.
(which is mandatory for the stringy hadrons)
- (v) There is a wide range of heavy mesonic, baryonic and exotic resonances that have been discovered in recent years. A clear identification of glueballs have not been yet achieved.

Introduction

- The holographic duality is an equivalence between certain bulk string theories and boundary field theories.
- Practically most of the applications of holography is based on relating bulk fields (not strings) and operators on the dual boundary field theory.
- This is based on the usual limit of $\alpha^{\prime} \rightarrow 0$ with which we go for instance from a closed string theory to a gravity theory .
- However, to describe hadrons in reality it seems that we need strings since after all in reality the string tension is not very large (λ of order one)

Introduction

- The main theme of this talk is that there is a wide sector of hadronic physical observables which cannot be faithfully described by bulk fields but rather require dual stringy phenomena
- It is well known that this is the case for Wilson, 't Hooft and Polyakov lines, very low x DIS and also Entanglement entropy
- We argue here that in fact also the spectra, decays and other properties of hadrons:
mesons, baryons and glueballs
can be recast only by holographic stringy hadrons

Introduction

- The major argument against describing the hadron spectra in terms of fluctuations of fields like bulk fields or modes on probe branes is that they generically do not admit properly the Regge behavior of the spectra.
- For M^{2} as a function of J we get from flavor branes only $\mathrm{J}=\mathrm{o}, \mathrm{J}=1$ mesons and there will be a big gap of order λ in comparison to high J mesons if we describe the latter in terms of strings.
- The attempts to get the linearity between M^{2} and n basically face problems whereas for strings it is an obvious property.
- The result of this work is that also to account for the decay width one needs strings and not fields
eIntroduction
-A brief review of the HISH model and the hadronic spectra
-The decay of the hadronic string
-The exponential suppression of the pair quark creation
- The decay process of various types of hadrons
-Spin, isospin and flavor symmetry
- Facing experimental data
- Summary

A brief review of Holograpplhy
Imspirred $\mathbb{s t r i n g y y}$
Thadlroin modell

HISH

- The construction of the HISH model is based on the following steps.
-(i) Analyzing string configurations in confining holographic string models that correspond to hadrons,
- (ii) devising a transition from the holographic regime of large Nc and large to the real world that bypasses expansior $\frac{1}{N_{c}}$ and $\frac{1}{\lambda}$
- (iii) proposing a model of stringy hadrons in flat four dimensions that is inspired by the corresponding holographic strings,
- (iv) confronting the outcome of the models with the experimental data.

Stringy meson in U shape flavor brane setup

- In the generalized Sakai Sugimoto model the meson looks like

- We now rotate this string configuration

Example: The B meson

HISH

- The vertical segments of the holographic hadronic string can me mapped to massive particles at the

Rotating holographic string

Rotating sting in flat space-time with massive endpoints

$$
m_{s e p}=T \int_{u_{0}}^{u_{f}} g(u)
$$

HISH Baryon

- In holography a baryon is a baryonic vertex which is a wrapped Dp brane on a p cycle and is connected with Nc strings to a flavor brane.
- The preferable layout is the asymmetric one.

HISH

- In HISH the holographic baryon is mapped into a single string that connects a quark on one side and a diquark on the other side

HISH

- For strings with massive endpoints one determine the solution of the classical EOM that corresponds to a rotating string
- The classical energy and angular momentum

$$
\begin{gathered}
E=\sum_{i=1,2}\left(\gamma_{i} m_{i}+T \ell_{i} \frac{\arcsin \beta_{i}}{\beta_{i}}\right) \\
J=\sum_{i=1,2}\left[\gamma_{i} m_{i} \beta_{i} \ell_{i}+\frac{1}{2} T \ell_{i}^{2}\left(\arcsin \beta_{i}-\beta_{i} \sqrt{1-\beta_{i}^{2}}\right)\right]
\end{gathered}
$$

- The quantum intercept for a static string $J \rightarrow J-a$.

$$
\hat{a}\left(q_{1}, q_{2}\right)=\frac{1}{2 \pi^{2}} \int_{0}^{\infty} d z \log \left[1-e^{-2 z}\left(\frac{q_{1}-z}{q_{1}+z}\right)\left(\frac{q_{2}-z}{q_{2}+z}\right)\right]
$$

The intercept for a string with massive endpoints

The spectra fits

- The best fits of HISH to meson states

The decay of the Thadromic string

The decay of a long string in flat space-time

- The decay of a hadron is in fact the breaking of a string into two strings
- Obviously a type I open string can undergo such a split
(a)

(b)

The decay of a long string in flat space-time

- The total decay width is related by the optical theorem to the imaginary part of the self-energy diagram
- A trick that Polchinski et al used is to compactify one space coordinate and consider incoming and outgoing strings that wrap this coordinate so one can use the simple vertex operator of a closed string

The decay of a long string in flat space-time

- We would like to determine the dependence of the string amplitude on the string length L

The decay of a long string in flat space-time

- A further dependence on L comes from the energy and momenta

$$
\begin{aligned}
P_{L}=(E, L T, 0) \quad P_{R}=(E,-L T, 0) & E=\sqrt{(T L)^{2}-8 \pi T} \\
\text { For open strings } & \frac{a}{\alpha^{\prime}}=2 \pi T a=\frac{D-2}{24}=1
\end{aligned}
$$

For closed strings the tension and intercept are twice

The decay of a long string in flat space-time

- Using the vertex operator

$$
e^{i P \cdot X}=e^{i\left(P_{L} \cdot X_{L}+P_{R} \cdot X_{R}\right)}
$$

and the standard OPE

$$
\begin{gathered}
\left\{: e^{i P \cdot X(0)}:: e^{i P \cdot X(z)}:\right\rangle=z^{-\frac{P_{R}^{2}}{4 \pi T} \bar{z}^{-\frac{P_{i}^{2}}{4 \pi T}}(1-z \bar{z})^{-\frac{P_{R} \cdot P_{L}}{4 \pi T}}} \\
=|z \bar{z}|^{-2}(1-z \bar{z})^{\tilde{J}} \\
\tilde{J} \equiv \frac{L^{2} T}{n^{2}},-2
\end{gathered}
$$

The decay of a long string in flat space-time

- After substituting the amplitude reads

$$
i \mathcal{A}_{2}=\frac{i T N \kappa^{2}}{2 \pi g^{2}} \lim _{t \rightarrow 0} \frac{\Gamma(t-1) \Gamma(1-\tilde{J})}{\Gamma(t-\tilde{J})}
$$

$$
=\frac{i T N \kappa^{2}}{2 \pi g^{2}}\left(\tilde{J} \partial_{\tilde{J}} \ln [\Gamma(-\tilde{J})]+\lim _{t \rightarrow 0} \frac{\tilde{J}}{t}\right)
$$

regulator

- The imaginary pari $\sum_{k} \pi k \delta(J-k)$ for $k=1, \ldots$.

$$
\operatorname{Im} \mathcal{A}_{2}=-\frac{i T N \kappa^{2}}{2 g^{2}} \tilde{J}
$$

The decay of a long string in flat space-time

- Since A2 is the mass square shift the total decay width

$$
\Gamma=-\operatorname{Im} \delta(m)=-\operatorname{Im} \frac{1}{2 m} \delta\left(m^{2}\right)=\frac{T N \kappa^{2}}{4 g^{2}} \frac{\tilde{J}}{E}
$$

- The leading behavior for string in $\mathrm{d}=26$ is

$$
\begin{gathered}
\left.\frac{\Gamma}{L}=\frac{g^{2} T^{13} N}{4(4 \pi)^{12}}\right] \\
\Gamma=\frac{T N \kappa^{2}}{4 g^{2}}\left[L_{\text {tot }}+\frac{4 \pi}{T} \frac{1}{L_{\text {tot }}}\right] \quad L_{\text {tot }}=\sqrt{L^{2}-\frac{8 \pi}{T}}
\end{gathered}
$$

The decay of rotating and excited strings

- For a rotating string due to time dilation we get

$$
\Gamma=\left(\frac{\Gamma}{L}\right)_{\text {stat }} \int_{-L / 2}^{L / 2} d \sigma \sqrt{1-(\sigma w)^{2}}=\frac{\pi}{4}\left(\frac{\Gamma}{L}\right)_{\text {stat }} L
$$

- For nth excited string

$$
\Gamma_{n}=\left(\frac{\Gamma}{L}\right) \sqrt{\frac{2 \pi(n-a)}{T}}
$$

The decay width of a string with massive endpoints

- The decay of a string with massive particles on its ends

- The dependence on the masses:
(a) The length $\mathrm{L}(\mathrm{mı}, \mathrm{mz})$
(b) The boundary conditions (not anymore Neuman)

The decay width of a string with massive endpoints

- For small endpoint masses we can expand *

$$
\Gamma \propto \frac{\pi}{4} T L+\frac{\pi}{4} m-\frac{2 \sqrt{2}}{3} m^{3 / 2}(T L)^{-1 / 2}+\mathcal{O}\left(L^{-3 / 2}\right)
$$

The decay width in non-critical dimensions

$\bullet \mathrm{N}$. Turok et all analyzed the decay width of open string in d dimension. They got

$$
\Gamma \sim L^{\frac{D-14}{12}}=L^{\frac{D-2}{12}-1}
$$

- Thus linearity for $\mathrm{d}=26$ but $\Gamma \sim L^{-\frac{5}{6}}$ in $\mathrm{D}=4$.
- But this analysis took only the transverse modes.

Their result follows from

$$
\operatorname{Im}\left[\delta\left(m^{2}\right)\right] \sim t^{\frac{D-2}{24}}=t^{a}
$$

- It was shown by Hellerman et al that the intercept

$$
a=a_{c r}+a_{P S}=\frac{(D-2)}{24}+\frac{(26-D)}{24}=1
$$

- Thus for any d dimension

$$
\Gamma \sim \frac{t^{u}}{E} \sim L^{1}
$$

The decay of a stringy hadron

- We just argued that the intercept of a string at D dim

$$
a=1
$$

- In fact experimental value of the intercept aexp is negati

$$
a_{e x p}=-\left|a_{e x p}\right|
$$

- Thus the leading order width of a string with no massive endpoints

$$
\Gamma \sim \frac{N \kappa^{2}}{4 g^{2}} T L\left[1+\frac{4\left|a_{\text {exp }}\right|^{2}}{\alpha^{\prime 2}(T L)^{4}}+\ldots\right]
$$

- With massive endpoint we combine this with *

Expomemivial supppressiom off parir creation

The suppression factor for stringy holographic hadrons

- The horizontal segment of the stringy hadron fluctuates and can reach flavor branes
- When this happens the string may break up , and the two new endpoints connect to a flavor brane

The suppression factor for stringy holographic hadrons

- There are in fact several possible breakup patterns

Determination of the suppression factor

- Assuming first that the string stretches in flat spacetime we found (J.S, K. Peeters , M. Zamamklar) using both a string beads model and a continues one that

$$
\Gamma=\text { const. } \cdot \exp \left(-1.0 \frac{z_{B}^{2}}{\alpha_{\mathrm{off}}^{\prime}}\right) \cdot T_{\text {eff }} \mathcal{P}_{\text {split }} \cdot L
$$

$$
\exp \left(-1.0 \frac{z_{B}^{2}}{\alpha_{\text {eff }}^{\prime}}\right)=\exp \left(-2 \pi \frac{m_{\text {sep }}^{2}}{T_{\text {eff }}}\right)
$$

- There are further corrections due to the curvature and due to the massive endpoints.
$\begin{aligned} & \Gamma=\exp \left(-2 \pi C\left(T_{\text {eff }}, M, m_{i}\right) \frac{m_{\text {sep }}^{2}}{T_{\text {eff }}}\right) \\ & C\left(T_{\text {eff }}, M, m_{i}\right) \\ & \approx c_{c} \frac{M^{2}}{T_{\text {eff }}}+\sum_{i=1}^{2} c_{m_{i}} \frac{m_{i}}{M} .\end{aligned}$

Multi string breaking and string fragmentation

- The basic process of a string splitting into two strings can of course repeat itself and thus eventually describe a decay of a single string into n strings
- The probability for a multi-decay

$$
\mathcal{P}=\frac{T_{\mathrm{eff}}^{2}}{\pi^{3}} \sum_{i} \sum_{\omega_{n}=1}^{\infty} \frac{1}{\omega_{n}^{2}} \exp \left(-2 \pi C \frac{m_{\text {sep }}^{2} \omega_{n}}{T_{\mathrm{eff}}}\right)
$$

The Decay process off

 the differemt types off hadroms
The decay process of Baryons

- A baryon in HISH is a string connected to a qurak and to a di-quark so its decay is also by a string splitting

- A way to determine what is the diquark pair and which is the stand-alone quark is by identifying the decay products
[$\left(q_{1} q_{2}\right) q_{3}$]
$\left[\left(q_{1} q_{3}\right) q_{2}\right]$
$\left[\left(q_{2} q_{3}\right) q_{1}\right]$
\Downarrow
\Downarrow
\&
$\left[\left(q_{1} q_{2}\right) Q_{i}\right]\left[\bar{Q}_{i} q_{3}\right] \quad\left[\left(q_{1} q_{3}\right) Q_{i}\right]\left[\bar{Q}_{i} q_{2}\right] \quad\left[\left(q_{2} q_{3}\right) Q_{i}\right]\left[\bar{Q}_{i} q_{1}\right]$

Decay of glueballs

- The glueball which is a folded rotating closed string

- The width
$\Gamma_{a} \sim L \Gamma_{\text {cross }}$
$\Gamma_{c} \sim L e^{-2 \pi C m_{\text {sep }}^{2} / T}$
$\Gamma_{b} \sim L \Gamma_{\text {cross }} e^{-2 \pi C m_{\text {sep }}^{2} / T}$
$\Gamma_{d} \sim L^{2} e^{-2 \pi C m_{s e p}^{2} / T} e^{-2 \pi C m_{s e p}^{\prime 2} / T}$

Zweig suppressed decay channels

- Certain heavy quarkonia mesons, build out of $c \bar{c}$ or $b \bar{b}$, cannot decay via the mechanism of breaking apart of the horizontal string
- In QCD the decay based of the annihilation of the pair into 3 gluons or e $\mathbf{2}$ gluons and a photon

Zweig suppressed decay channels

Zweig suppressed decay channels

- An approximation for probability of process a

$$
\begin{aligned}
\mathcal{P} & =\int_{-\infty}^{\infty} d x \psi(x-L / 2) \psi(x+L / 2)= \\
& =\int_{-\infty}^{\infty} d x \exp \left[-T_{a v}(x-L / 2)^{2}\right] \exp \left[-T_{a v}(x+L / 2)^{2}\right]= \\
& =\sqrt{\frac{\pi}{2 T_{a v}}} e^{-T_{a v L} L^{2} / 2}=\sqrt{\frac{\pi}{2 T_{a v}}} e^{\frac{4(M-2 m)^{2}}{9 T_{a v}}}
\end{aligned}
$$

- Virtual pair combined with a Zweig suppressed

Decays of exotic hadrons

- An exotic tetraquark built from a string connecting a di-quark and and anti di-quark will decay predominantly to a baryon anti-baryon

Decays of exotic hadrons

- The HISH picture of possible decays

Decays via breaking of the vertical segment

- Nothing prevents a breaking of the vertical segments. What is the hadronic interpretation of it?
- We first clarify the holographic set up of hadrons

- So the vertical segment of a heavy flavor does not cross that of a lighter flavor brane.

Decays via breaking of the vertical segment

- The vertical segment can split as follows

- We get a meson plus a string that stretches only in the radial and x 4 but not is space-time coordinates

Decays via breaking of the vertical segment

- In a similar way to the computation of the width associated with the breaking of the horizontal segment, the width associated with the breaking of a vertical segment should be

$$
\Gamma_{\text {vertical }} \sim \int_{u_{\Lambda}}^{u_{B}} d u \exp \left(-C_{v} \frac{\left(\Delta_{x_{4}}(u)\right)^{2}}{\alpha^{\prime}(u)}\right)
$$

- The interpretation of the decay processes associated with the vertical breaking is not well understood.
- One possibility is that the vertical string segments that are " p particles" from the space-time point of view are the Goldstone boson mesons pions and kaons.

The Decay modles spin and flavor symmetry

Decay modes, spin, and avor symmetry

- Considerations of spin and isospin or more generally flavor symmetry of the initial and final states are very important in determining which decays are forbidden and the relative decay width of the allowed ones.
- How are such considerations been realized in the holographic decay mechanism of stringy hadrons.
- The spectra of hadrons is slightly affected by spin and isospin via the dependence of the intercepts .
- This issue has to be further studied

The spin structure of the stringy decays

- We assume that the spin degrees of freedom are carried by the particles that are on the string endpoints
- The spin structure of allowed decays of a neutral meson Mo with spin $\mathrm{S}=1$ into $\mathrm{M}+$ and M_{-}mesons. The arrows indicated the values of Sz

The spin structure of the stringy decays

- The spin structure of allowed decays of doubly charged baryon $\mathrm{B}++$ with spin $\mathrm{S}=3 / 2$ into a baryon and a meson.

Isospin constraints on decays of stringy mesons

- Isospin approximate symmetry is realized in holography by the fact that the u and d flavor branes are located at roughly the same holographic radial coordinate.
- The world volume of a stack of N_{f} coincident flavor branes is characterized by a $U\left(N_{f}\right)$ flavor gauge symmetry.
- In fact we can have $U_{L}\left(N_{f}\right) U_{R}\left(N_{f}\right)$ that is geometrically spontaneously broken in the IR to $U_{d}\left(N_{f}\right)$

Isospin constraints on decays of stringy mesons

- The stringy mesons of the isospin triplet.

Isospin constraints on decays of stringy mesons

- The decay processes of mesons involve the breaking apart of the horizontal string and the attachment of its endpoints to either the u or the d flavor branes.

Isospin constraints on decays of stringy baryon

- Possible decays of B+

Facing experimemtarl data

String length and the phenomenological intercept

- Hadrons admit modified Regge trajectories even for no orbital angular momentum!!
- This is due to the fact that there is a quantum length caused by a repulsive Casimir force.

$$
F_{C}=-2 a / L^{2}
$$

$$
L^{2}=L_{c l}^{2}+L_{0}^{2}
$$

- The quantum length is related to the intercept

$$
L_{0}^{2}=-C \frac{a}{T}
$$

- There are different ways to determine C.
- Our approach is to extract it from the fits.

Check of the linear dependence on L

- Is the experimental data admit the linear dependence on L

$$
\Gamma=\frac{\pi}{2} A T L\left(M, m_{1}, m_{2}, T\right) .
$$

- For short strings with important role of the massive endpoints we add a phase space factor

$$
\Gamma=\frac{\pi}{2} A \times \Phi(M) \times T L\left(M, m_{1}, m_{2}, T\right) .
$$

- The phase space factor

$$
\Phi\left(M, M_{1}, M_{2}\right) \equiv 2 \frac{\left|p_{f}\right|}{M}=\sqrt{\left(1-\left(\frac{M_{1}+M_{2}}{M}\right)^{2}\right)\left(1-\left(\frac{M_{1}-M_{2}}{M}\right)^{2}\right)}
$$

A test case: The K

- We compare our model to the decays of K* trajectory

State	J^{P}	Mass	Width	Γ / M	Decay modes 4
$K^{*}(892)$	1^{-}	891.66 ± 0.26	50.8 ± 0.9	$(5.7 \pm 0.1) \%$	$K \pi(100 \%)$
$K_{2}^{*}(1430)$	2^{+}	1425.6 ± 1.5	98.5 ± 2.7	$(6.9 \pm 0.2) \%$	$K \pi(50 \%), K^{*} \pi(25 \%)$, $K^{*} \pi \pi(13 \%), K \rho(9 \%), \ldots$
$K_{3}^{*}(1780)$	3^{-}	1776 ± 7	159 ± 21	$(9.0 \pm 1.1) \%$	$K \rho(31 \%), K^{*} \pi(20 \%)$, $K \pi(19 \%), K \eta(\sim 30 \%), \ldots$
$K_{4}^{*}(2045)$	4^{+}	2045 ± 9	198 ± 30	$(9.7 \pm 1.5) \%$	$K \pi(10 \%), K^{*} \pi \pi(9 \%)$, 5 more modes $(7 \%$ or less $), \ldots$
$K_{5}^{*}(2380)$	5^{-}	2382 ± 24	178 ± 50	$(7.5 \pm 2.1) \%$	$K \pi(6 \%)$, no other measured modes.

test case: The K

Fit results: the meson trajectories

- Meson fits

Trajectory (No. of states)		a (from spectrum)	A (fitted value)	$\sqrt{\chi^{2} / D O F}$
ρ	$5^{[a]}$	-0.46	0.097	1.76
ω	$5^{[a]}$	-0.40	0.120	2.31
ρ and ω (avg.)	6	-0.46	0.108	1.14
π	$3^{[a]}$	-0.34	0.100	1.66
η	$3^{[a]}$	-0.29	0.108	1.56
π and η (avg.)	4	-0.29	0.109	1.52
K^{*}	5	-0.25	0.098	0.77
ϕ	3	-0.10	0.074	0.50
D	2	-0.20	0.072	0.87
D_{s}^{*}	2	-0.03	0.076	1.44

Fit results: the meson trajectories

The decay width of baryons

- For baryons the linearity with L is somewhat modified.

Trajectory (No. of states)		a (from spectrum)	A (fitted value)	$\sqrt{\chi^{2} / D C}$
N (even)	2	-0.77	0.080	3.33
N (odd)	3	-1.11	0.082	2.43
Δ (even)	3	-1.37	0.101	1.90
Λ	4	-0.46	0.041	2.33
$\Sigma(S=1 / 2)$	2	-0.95	0.052	0.96
$\Sigma(S=3 / 2)$	3	-1.22	0.100	1.57

Exponential suppression of pair creation

- The ratio of the decay width to a strange pair versus to a light quark pair is

$$
\lambda_{s}=\exp \left(-2 \pi C\left(m_{s}^{2}-m_{u / d}^{2}\right) / T_{\text {eff }}\right) \approx 0.3
$$

Hadron	J^{P}	Light channel	$s \bar{s}$ channel		Ratio	λ_{s}	
$\rho_{3}(1690)$	3^{-}	$\omega \pi$	$16 \pm 6 \%$	$K \bar{K} \pi$	$3.8 \pm 1.2 \%$	0.24 ± 0.12	0.30 ± 0.15
$K_{4}^{*}(2045)$	4^{+}	$K^{*} \pi \pi \pi$	$7 \pm 5 \%$	$\phi \bar{K}^{*}$	$1.4 \pm 0.7 \%$	0.20 ± 0.17	0.32 ± 0.28

- In radiative decays

$$
\frac{\Gamma\left(J / \Psi \rightarrow \gamma f_{2}^{\prime}(1525)\right)}{\Gamma\left(J / \Psi \rightarrow \gamma f_{2}(1270)\right)}=0.31 \pm 0.06 . \quad \frac{\Gamma\left(\Upsilon \rightarrow \gamma f_{2}^{\prime}(1525)\right)}{\Gamma\left(\Upsilon \rightarrow \gamma f_{2}(1270)\right)}=0.38 \pm 0.10
$$

Zweig suppressed decays and the string length

- The probability of a meson to decay via annihilation of the quark and antiquark

$$
\Gamma=\Gamma_{Z} \exp \left(-T_{Z} L^{2} / 2\right)
$$

- The decays of upsilon

State	Full width [keV]	$B(g g g)$	$B(\gamma g g)$	Partial width [keV]	Best fit [keV]
$\Upsilon(1 S)$	54.02 ± 1.25	$81.7 \pm 0.7 \%$	$2.2 \pm 0.6 \%$	45.3 ± 1.3	45.2
$\Upsilon(2 S)$	31.98 ± 2.63	$58.8 \pm 1.2 \%$	$1.87 \pm 0.28 \%$	19.4 ± 1.7	20.6
$\Upsilon(3 S)$	20.32 ± 1.85	$35.7 \pm 2.6 \%$	$0.97 \pm 0.18 \%$	7.5 ± 0.9	7.1

- In spite of five decades of research, the story of the strong decays of mesons and baryons has yet not been fully deciphered. One does not know who to determine the decay width from QCD.
- We believe, though not in the same strength as for the spectrum, that the decays of hadronic states tell us that indeed hadrons are strings.
- This is based on three ingredients:
(i) The linearity relation between the decay width and the length of the string
(ii) The exponential suppression factor associated with the creation of a pair that accompanies the breaking of the string into two strings.
(iii) The constraints due to approximated symmetries like isospin baryon number and flavor $\mathrm{SU}(3)$ which are realized in the stringy description
- In this work we have used two string frameworks
(i)Strings of a holographic confining background in critical dimensions (ii) HISH model of strings in at four space-time dimensions.
- We saw that the effect of the intercept can be thought of as a repulsive Casimir force, giving it non-zero length, and mass and width, even when it is not rotating.
- We found that the decay coefficient is universal

$$
A=0.095 \pm 0.015 .
$$

- Open questions: creation mechanisms of the hadronic states, Jet formation, scattering amplitudes, weak interactions, incorporating leptons.
- Our model assumes chargeless massive endpoint particles. The endpoint of a string on a flavor
brane carries a charge associated with the symmetry group of the flavor branes. Thus it is natural to add an interaction, for instance EM interaction, between the two string endpoints.
- It is easy to check that this change will introduce a classical modification of the intercept. One can use it to determine the difference between md and mu
- Magnetic moment and other EM properties can be computed.
- As was discussed in the introduction, the models we are using are not the outcome of a full quantization of the system.
- The quantization of the rotating string without massive endpoints was analyzed. The quantum Regge trajectories associated with strings with massive endpoints require determining the contributions to the intercept to order $\mathrm{J}^{\wedge} \mathrm{o}$ from both the "Casimir" term and the PolchinskiStrominger term.
- Once a determination of the intercept as a function of $\mathrm{m}^{\wedge} 2 / \mathrm{T}$ is made, an improved fit and a reexamination of the deviations from a universal model should be made.

(c) The H9SH baryon and its stability

From holographic to HISH baryons

- The symmetric configuration

- The asymmetric configuration

Possible baryon c=3onfigurations

- A priori for $\mathrm{Nc}=3$ there are several possible configurations

(b)

From large Nc to three colors

- Naturally the analog at $\mathrm{Nc}=3$ of the symmetric configuration with a central baryonic vertex is the old Y shape baryon

- The analog of the asymmetric setup with one quarks on one end and $\mathrm{Nc}-1$ on the other is a straight string with quark and a di-quark on its ends.

Stability of an excited baryon

- It was shown that the classical Y shape three string configuration is unstable. An arm that is slightly shortened will eventually shrink to zero size.
- We have examined Y shape strings with massive endpoints and with a massive baryonic vertex in the middle.
- The analysis included numerical simulations of the motions of mesons and Y shape baryons under the influence of symmetric and asymmetric disturbance.
- We indeed detected the instability
- We also performed a perturbative analysis where the instability does not show up.

Baryonic instability

The conclusion from both the simulations and the qualitative analysis is that indeed the Y shape string configuration is unstable to asymmetric deformations.

Thus an excited baryon is an unbalanced single string with a quark on one side and a di-quark and the baryonic vertex on the other side.
(d) The \#9SH Glueball

The HISH Glueball

- The map of the classical folded rotating closed string in holographic background to a similar string in four dimensions is simple.
- Unlike the case of the open string here there are no vertical segments involved and correspondingly no msep.
- It is just the string tension dependence on the holographic background
- However, as will be seen in later, the form of the quantum string yields another significant difference
- The relation between the energy and angular momentum is modied from the linear Regge trajectory

$$
J=\alpha_{\text {closed }}^{\prime}\left(E-m_{0}\right)^{2}
$$

The HISH Glueball

- The map of the classical folded rotating closed string in holographic background to a similar string in four dimensions is simple.
- Unlike the case of the open string here there are no vertical segments involved and correspondingly no msep.
- It is just the string tension dependence on the holographic background
- However, as will be seen in later, the form of the quantum string yields another significant difference
- The relation between the energy and angular momentum is modied from the linear Regge trajectory

$$
J=\alpha_{\text {closed }}^{\prime}\left(E-m_{0}\right)^{2}
$$

