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Robinson-Trautmann spacetimes

The Robinson-Trautmann (RT) spacetimes are solutions of
Einstein equations in d = 4 [I. Robinson and A. Trautman, (1960)]
They describe the gravitational field due to a compact star which
relaxes to equilibrium by radiating away its excess energy and
asymmetry.
In recent times they have been used to model qualitative features
of mergers of black holes.
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RT spacetimes and SUSY quantum mechanics

At late times the solution tends to the Schwarzschild solution.
The leading deviation from Schwarzschild is a very special
linearized perturbation of Schwarzschild: the so-called
algebraically special mode [Chandrasekhar].
Perturbations of Schwarzschild are organized according to an
underlying supersymmetric quantum mechanics.
The algebraically special modes are the corresponding
supersymmetric ground states (zero energy states).

à The Robinson-Trautman solution is a non-linear version of the
algebraically special perturbations of Schwarzschild.
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Robinson-Trautmann spacetimes and holography

The solution exists for any value of the cosmological constant.
With negative cosmological constant, the solution is a (rare
example of a) time-dependent asympotically locally AdS solution.
At late times, it approaches the AdS-Schwarzschild solution.
It provides a laboratory for exploring out-of-equilibrium dynamics
and the approach to equilibrium using gauge/gravity duality.
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Robinson-Trautman spacetimes

The metric is given by

ds2
RT = −Fdu2 − 2dudr +

r2

σ2
dΣ2

k

with dΣ2
k a constant curvature metric (Rk = 2k, k = 0,±1) .

The function F is uniquely determined in terms of σ,

F ≡ −Λ

3
r2 − 2r

∂uσ

σ
+
Rg
2
− 2m

r
.

where Λ is related to the cosmological constant and Rg is the
curvature of dΣ2

k/σ
2.

σ(xa, u) should solve the Robinson-Trautman equation,

12m∂uσ
2 + 2σ4∇2

Σk
σ2 + σ4∇2

Σk

(
σ2∇2

Σk
log σ2

)
= 0.
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Robinson-Trautman equation and the Calabi flow

â The Robinson-Trautman equation coincides with the Calabi
equation,

∂ugab =
1

12m
∇2
gRg gab.

which describes a class of deformations of the 2d metric

ds2
2 =

1

σ2
dΣ2

k

â The Calabi flow is defined more generally for a metric gab̄ on a
Kähler manifold M by the Calabi equation

∂ugab̄ =
∂2R

∂za∂zb̄

where R is the curvature scalar of g.
à It provides volume preserving deformations within a given Kähler

class of the metric.
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Calabi flow on M 2

â The Calabi flow can be regarded as a non-linear diffusion
process.

â The steady state solutions are constant curvature metrics (up to
conformal transformations).

â For compact M2 the flow monotonically deforms the metric to the
steady state solution.

â For non-compact M2 it seems there is no full classification of the
late time behaviour.
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AdS Schwarzschild as Robinson-Trautman

â Using the fixed point solution for the case of S2

1

σ2
0

=
1

(1 + zz̄/2)
2 .

the metric becomes

ds2 =
2r2

(1 + zz̄/2)
2 dzdz̄ − 2dudr −

(
1− 2m

r
− Λ

3
r2

)
du2

which is the Schwarzschild metric in the Eddington - Finlkenstein
coordinates.

â Similarly, one obtains the AdS brane brane and the hyperbolic
AdS black hole in the other two cases.
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RT as an Asymptotically locally AdS solution

â When Λ < 0 the solution is asymptotically locally AdS. This
means that near the conformal boundary the metric takes the
Fefferman-Graham form:

ds2 =
d%2

%2
+

1

%2

(
g(0)ab(x) + %2g(2)ab(x) + %3g(3)ab(x) + · · ·

)
dxadxb

â One can reach this gauge by a coordinate transformation
(r∗ = u− t, t, z, z̄)→ (%, t, z, z̄):

r? → %+ ( )%3 + ( )%4 +O(%5) ,

t → t+ ( )%2 + ( )%3 + ( )%4 +O(%5) ,

z → z + ( )%3 + ( )%4 +O(%5) ,

z̄ → z̄ + ( )%3 + ( )%4 +O(%5) ,
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Asymptotic structure

â The boundary metric is time-dependent and it is not conformally
flat

ds2
0 = −dt2 +

L2

σ̂2
dΣ2

k

where σ̂(xa, t) = σ(xa, u = t− r?)|r?=0 and L2 = −3/Λ.
â g(2)ab = −Rab + 1

4Rg(0)ab, where Rab is the Ricci tensor of g(0),
as expected [de Haro, Solodukhin, KS].
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Energy-momentum tensor

â Asymptotically locally AdS spacetime come equipped with a
conserved Tab which in even dimension is traceless,

∇bTab = 0, T aa = 0

â The tensor can be extracted from the asymptotics of the solution
[Henningson, KS][de Haro, Solodukhin, KS]

Tab = − 3

2κ2

(
− 3

Λ

)
g(3)ab

â For example, for the case of S2 we obtain,

κ2Ttt = −2mΛ

3
, κ2Ttz = −1

2
∂z(∆̂Φ̂)

κ2Tzz̄ = meΦ̂ , κ2Tzz = − 3

4Λ
∂t

(
(∂zΦ̂)2 − 2∂2

z Φ̂
)
,

where Φ̂ = − log σ̂
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Hydrodynamics

â On general grounds, sufficiently close to equilibrium one expects
a hydrodynamic description.

à At sufficient late times, the holographic energy momentum tensor
of RT spacetimes should take a hydrodynamic form,

T ab = ρuaub + p∆ab − ησab

... and indeed it does.
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Out of equilibrium

â Is there always a notion of local energy density?

â How does the system equilibrate?
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Local energy density

â The local energy ε is defined as the eigenvalue of the energy
momentum tensor corresponding to a timelike eigenvector:

Tµνu
ν = −εuµ with uµuµ = −1

This defines also the local velocity field uµ.
â One can show analytically that for RT solution, a positive local

energy exist to all orders in the late time expansion of the bulk
metric.

â What about early times?
à If the non-equilibrium state is sufficiently close to the thermal

state, then there exist a local energy density also at early times.
à Otherwise, a local energy density may not exist.
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Pressures and strain

lf uµ exists, we construct two vectors, nµI (I = 1, 2),

nI · nJ = δIJ u · nI = 0,

and use them to define two pressures and the strain

p1 = n1 · T · n1 p2 = n2 · T · n2, t = n1 · T · n2

For axially symmetric solutions t = 0.
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Approach to equilibrium

â ‘Hydrodynamisation’ time, thyd:

max
x

∣∣∣∣∣
pI − p(1)

I

p̄

∣∣∣∣∣ <
1

10
, (thyd)

â Energy equilibration time, tenergy:

max
x

∣∣∣∣
ε− εeq
ε

∣∣∣∣ <
1

10
. (tenergy)

â Isotropisation time, tiso,

max
x

∣∣∣∣
p1 − p2

p̄

∣∣∣∣ <
1

10
. (tiso)
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Black dashed lines: leading late time contribution.
Solid black lines: nonlinear completion to order 15 in the late time expansion.
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Heat transport

â Suppose that we have two semi-infinite rods, each at different
temperature T± and we join them at t = 0.

â How does this system will evolve?
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Conventional material

â In conventional materials the evolution will be governed by the
heat equation,

∂f

∂t
= D

∂2f

∂x2
.

â This equation is invariant under the scaling, x→ λ2x, t→ λt.
â There is a self-similar solution h(µ(t, x)), where µ = x/t1/2,

h = a+ bErf
(

µ

2
√
D

)

(a, b are integration constants), which is a late-time attractor.
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Strongly interacting systems

â The RT solution can be used to study the same problem for
strongly interacting system via gauge/gravity duality.

â We will work with RT solution on R2, with coordinates x, y.
â We impose translational invariance in y.
â We impose that the RT solution tends to the AdS black branes

with different temperatures, T±, as we go to x→ ±∞ in the other
direction.
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Scaling solutions

â The RT metric is invariant under the following scaling

u → λuu, x→ λxx, y → λxy

r → λ−1
u r, m→ λ−3

u m, σ → λxλ
−1
u σ.

â There is a scaling solution h(µ(x, t)), where µ(t, x) = x/t1/4.

h(R = −1) = 1,

h(R = 1) = 1 + C,

R = tanhµ

3

of the ‘join’. We have allowed for an additional param-
eter p, extending the family of similarity solutions. For
this ansatz (4) becomes an m-independent ODE,

@4
µh =

(@2
µh)2

h
+ 3(1 + 4p)µ

@µh

h4
� 12p

h3
. (9)

Note that this equation has a scaling symmetry,

h ! �h, µ ! �µ. (10)

Compatibility with the bulk scaling property (7) requires

� = �x/�
p+1/4
u . As we shall see below, explicit solutions

h of (9) do not transform as µ ! �µ and thus � must
be equal to one (so that (10) holds identically). This
then fixes the Lifshitz dynamical critical exponent to be
z = (p + 1/4)

�1
. For concreteness we will now focus on

the case z = 4, p = 0 – we find similar behaviour for
p 6= 0 solutions, which we turn to at the end.

To solve (9) we begin by looking for solutions describ-
ing the equilibration of nearby thermal states, i.e. we
linearise about the particular p = 0 solution h = 1,
h(µ) = 1 + ✏j(µ), where we have introduced a small pa-
rameter ✏. j satisfies

@4
µj = 3µ@µj (11)

which admits a solution in terms of hypergeometric func-
tions. The solution which is regular for all µ and asymp-
totes to a constant is given by

j =
�3

1
4 4µ

�
�
� 1

4

� 1F3

✓
1
4
1
2 , 3

4 , 5
4

;
3µ4

64

◆
��

�
3
4

�
µ3

p
23

1
4⇡

1F3

✓
3
4
5
4 , 3

2 , 7
4

;
3µ4

64

◆

(12)
Here limµ!�1 j = �1, limµ!1 j = 1 and j(0) = 0.
This is the general solution at this order in perturbations;
other constant boundary conditions can be reached using
linearity and shift symmetry. We plot j in the top panel
of FIG. 2.

To go to widely separated left and right thermal states,
we proceed numerically. In detail, we use 6th order
finite di↵erences in a compactified spatial coordinate,
R = tanh

�
µ
`

�
where ` is chosen so that a uniform grid in

R usefully covers the region in µ where h is varying sig-
nificantly. For the examples below we have taken ` = 20.
The system is solved using a Newton-Raphson method,
giving Dirichlet boundary conditions at R = ±1 corre-
sponding to the constant asymptotic values of h. For
concreteness we fix,

h(R = �1) = 1, h(R = 1) = 1 + C. (13)

Any other pair can be brought into this form using the
symmetry (10). Some solutions are shown in FIG. 1,
with a clear deviation from the linearised solution for
su�ciently large C.

-10 -5 0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

1.2

h�1
C

µ

-C

left
equilibrium

right

equilibrium

6
late-time equilibrium

FIG. 1: Cohomogeneity-1 similarity solutions to the Calabi-
flow equation on the plane. The coordinate µ, defined in (8),
is a scaling-invariant quantity, and so the spatial profile is
expanding with time. The solid curves show di↵erent val-
ues of C which label the equilibrium state of the right hand
asymptotic system as a Dirichlet boundary condition (13).
The values from left to right are C = 0.1, 0.5, 1.0, 2.0, 4.0 and
the dashed curve is the linear solution (12).

QFT Interpretation.— In order to interpret the simi-
larity solutions in the face of the inhomogeneous evolv-
ing boundary metric (5), on the boundary we can si-
multaneously perform a Weyl transformation and coor-
dinate transformation. It is possible to do so such that
for |x| � t1/4 and |x| ⌧ t1/4, the metric is simply
ds2 = �dt2+L2(dx2+dy2). In this frame we can simulta-
neously discuss the equilibrium state of the system on the
left and the right and observe a growing flat space region
in the interior as part of an out-of-equilibrium evolution.
This can be achieved through the Weyl transformation
gnew = ⌦8/3g together with the coordinate transforma-
tions

xi ! xi0 =
xi

⌦1/3
, t ! t0 =

t

⌦4/3
. (14)

for

⌦(µ) = � � µ

1!
�0 +

µ2

2!
�00 � µ3

3!
�000 +

µ4

4!
�0000, (15)

where prime denotes derivative w.r.t. µ.

One may extract the holographic stress tensor from the
asymptotics of the solution near the conformal infinity
[24]. For RT solutions this has been done in [16, 17].
The stress energy tensor may be expressed as a sum of a
stress energy tensor due to a conformal perfect fluid and
a part that depends on the Cotton tensor of the boundary
metric [16] [26]. In the left and right asymptotic regions
the holographic stress tensor is simply,

2
⌦
T±

µ⌫

↵
=

m

�4
±

diag

✓
2

L2
, 1, 1

◆
(16)
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Attractor behaviour: general initial conditions 5

where �� satisfies the following eigenvalue problem,

O�� = ��� (25)

O ⌘ 1

12
h4@4

µ � 1

6
h3h00@2

µ � 1

4
µ@µ +

1

12
h2(h00)2 + µ

h0

h

The scaling (23) suggests that the dynamics of the sys-
tem is governed by a Lifshitz invariant critical point with
dynamical exponent z = 4, with the set of �s associated
with spectrum of operators of this (non-relativistic) scale
invariant theory.

The operator O admits a zero mode, �0 = h � µh0

which follows from the invariance noted earlier (10). This
however does not preserve the boundary conditions and
so can be excluded from the late time spectrum. The
spectrum about an h = 1 background solution can be
built in reference to the perturbative solutions j, (12).
The equation that �� satisfies does not depend on j at
order ✏0,

1

12
@4

µ�� � 1

4
µ@µ�� = ��� + O(✏) (26)

Nevertheless, a set of solutions to (26) which respect the
boundary conditions are generated by solutions j, i.e.

�n/4 = @n
µj + O(✏) n 2 Z+. (27)

The n = 0 case has been excluded because it changes
the asymptotics of � (as noted above). At least around
the h = 1 background we therefore have a spectrum of
modes which is decaying, since � > 0. We may rea-
sonably expect a positive spectrum to persist in a neigh-
bourhood of the h = 1 backgrounds. We have verified
this by numerically computing the eigenvalue spectrum
of O for the non-linear case, identifying the four longest
lived modes as � = 1/4, 1/2, 3/4, 1, invariant over a wide
range of non-linear similarity solutions, h. Actually, for
non-linear backgrounds we can construct two of these
eigenfunctions exactly, �1/4 = h0, and �1 = µh0. These
correspond to modes which translate the solution in x
and t respectively.

Numerical evidence.— We now turn to a general nu-
merical evolution of the Calabi flow equation (4) in the
cohomogeneity-1 case, choosing initial conditions which
are incompatible with the ansatz (8). For time evolution
we use Crank-Nicolson, and for each implicit stage of the
integration we use Newton-Raphson for 6th order finite
di↵erences with the same discretisation of the compacti-
fied coordinate R as before.

By way of a concrete representative example in FIG.
(3) we show the evolution of h for the initial data,

�(0, x) = 1 +
2

10
tanh x +

1

1 + x2
. (28)

At late times the solutions approach the similarity solu-
tions labelled by the left and right temperatures.

-40 -20 0 20 40

0.8
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1.4

1.6

1.8

2.0

�

µ

Q
Q
Qs

t

FIG. 3: Evolution of the initial data (28) according to the
equation (4) showing convergence to the planar similarity so-
lution in red, which is prescribed only by �±. Each curve
shows a di↵erent time in the evolution.

Away from p = 0.— We have studied in detail the
cases corresponding to p = 0, for the primary reason
that it includes the case of a thermal state on Minkowski
space. For p 6= 0, constant � is no longer a solution,
and indeed � can become singular, but in principle these
cases should not be excluded. For example, the following
solution

h =
p

2(1 +
p

2µ)
3
4 , m = 1/4 p = 3/4 (29)

is the planar analogue of a solution on S2 which con-
tains an AdS C-metric in the bulk, see [25]. It would
be interesting to investigate di↵erent values of p in more
detail.

Additionally we note that there are similarity solutions
which are rotationally invariant corresponding to a dif-
ferent physical setup – we will describe this and related
cases in more detail in a forthcoming work [23].

Conclusions.— We presented a holographic study of
equilibration of a class of strongly interacting systems.
In particular, we holographically engineered 2+1 dimen-
sional systems which at t = 0 are described by two di↵er-
ent thermal states infinitely separated in one direction,
and then studied the subsequent evolution. It turns out
that the final state is a self-similar solution which only
depends on the left and right temperatures and not on
the details of the initial conditions. The self-similar so-
lutions are Lifshitz invariant and perturbations around
them are governed by the spectrum of operators of an
underlying Lifshitz critical theory. Our discussion should
thus be applicable to all systems which are in the same
universality class with this critical point.
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Evolution of the initial data showing convergence to the planar
similarity solution in red. Each curve shows a different time in the
evolution.
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Comments

We holographically engineered 2+1 dimensional systems which
at t = 0 are described by two different thermal states infinitely
separated in one direction.
The final state is a self-similar solution which only depends on
the left and right temperatures and not on the details of the initial
conditions.
The self-similar solutions are Lifshitz invariant and perturbations
around them are governed by the spectrum of operators of an
underlying Lifshitz critical theory.
Our discussion should thus be applicable to all systems which
are in the same universality class with this critical point.
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Conclusions

â The Robinson-Trautman solution is an interesting laboratory to
study out-of-equilibrium dynamics.

â We discussed two studies:
1 existence of local rest frame and approach to equilibrium
2 heat transport

â These solutions exhibit many other interesting properties:
1 One can formulate and prove a Penrose inequality and a version of

the hoop conjecture [Bakas, KS].
2 They represent the only example, where a 3d geometric flow is

embedded in 4d Einstein gravity.
3 ....
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