Deconstructing the BPS sector of (2,0) Theories

Costis Papageorgakis I. Bakas: In memoriam IX Crete Regional Meeting Kolymbari, 13th July 2017

w/ J. Hayling, E. Pomoni and D. Rodríguez-Gómez 1704.02986

Motivation

Many years on still trying to understand the 6D (2,0)_{ADE} theory!

See however, significant recent progress:

- Calculation of the (2,0) superconformal index via localisation/topological strings
 [Källén, Zabzine '12; Kim² '12; Lockhart, Vafa '12; ...]
- ◊ Connection to W_{ADE} algebras
 [Beem, Rastelli, van Rees '14]
- Superconformal bootstrap for (2,0) theories [Beem, Lemos, Rastelli, van Rees '15]

Interesting blend of old and new ideas and techniques

Today: We will use a diverse combination of ingredients

- The deconstruction of (2,0)_A theory on T²
 [Arkani-Hamed, Cohen, Kaplan, Karch, Motl '01]
- The "¹/₂-BPS limit" of the (2,0) superconformal index [Bhattacharyya, Minwalla '09; Kim, Lee '12]
- The Higgs-branch Hilbert Series
 [Benvenuti, Feng, Hanany, He '06]
- SUSY localisation / the refined topological vertex [Pestun '07; lqbal, Kozçaz, Vafa '07]

⇒ Obtain quantitative checks of the deconstruction proposal

Deconstructing the $(2,0)_{A_{k-1}}$ theory

Begin with an *N*-noded 4D circular quiver theory with SU(k) gauge groups.

$$\Rightarrow$$
 This is an $\mathcal{N}=2$ $SU(k)^N$ SCFT

Then take the Higgs-branch limit:

$$N \to \infty$$
, $G \to \infty$, $v \to \infty$

while keeping

$$g_5^2 := \frac{G}{v} \to \text{fixed} , \qquad 2\pi R_5 := \frac{N}{Gv} \to \text{fixed}$$

For $E \ll 1/g_5^2$ reproduce 5D MSYM on a circle $S_{R_5}^1$ \Rightarrow enhanced SUSY [Lambert, CP, Schmidt-Sommerfeld '12]

Gives rise to a spectrum of massive states

$$M_n^2 = \left(\frac{2\pi n}{R_5}\right)^2 , \qquad \widetilde{M}_n^2 = \left(\frac{4\pi^2 n}{g_5^2}\right)^2$$

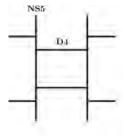
 $\Rightarrow M_n$: KK modes on $S_{R_5}^1$ $\Rightarrow \widetilde{M}_n$: Instanton solitons or KK modes on $S_{R_6}^1$, with $R_6 = \frac{g_5^2}{2\pi}$

4D theory is UV complete and can consider circles of any size

⇒ Get (2,0)_{A_{k-1}} theory on $T^2 = S^1_{R_5} \times S^1_{R_6}$ [Arkani-Hamed, Cohen, Kaplan, Karch, Motl '01]

Brane Engineering

Can engineer the 4D $\mathcal{N}=2$ SCFT using a Hanany–Witten construction



- \Rightarrow k D4s between N NS5s
- \Rightarrow periodically identify edges
- \Rightarrow At low energies, one gets the desired 4D $\mathcal{N} = 2$ SCFT
- \Rightarrow When D4s coincide across NS5s, the D4s reconnect

The k D4s can then be moved off the NS5s \Rightarrow Higgsing

Matching $\frac{1}{2}$ -BPS operators

This proposal is very natural but no quantitative checks

- \Rightarrow In the large-volume limit recover (2,0) SCFT in \mathbb{R}^6
- ⇒ Compare 4D/6D local operator spectrum

Hint: 4D $\mathcal{N} = 2$ SCA embeds into the 6D (2,0) SCA

In particular, focus on and compare:

- \Rightarrow 6D supercharges annihilating primaries of $\frac{1}{2}$ -BPS multiplets
- \Rightarrow Descend to 4D supercharges annihilating operators parametrising the Higgs-branch

∃ various techniques for counting local operators in SCFTs
 ⇒ The 6D superconformal index
 [Bhattacharya, Bhattacharyya, Minwalla, Raju '08]

$$I = \text{Tr}_{\mathcal{H}}(-1)^F e^{-\beta \{Q,S\}} x^{\Delta + J_1} y_1^{h_1 - h_2} y_2^{h_2 + h_3} q^{h_1 + h_2 - h_3 - 3J_2}$$

The Δ , h_i , J_i are Cartans of $\mathfrak{u}(1) \oplus \mathfrak{so}(6) \oplus \mathfrak{sp}(2)_R \subset \mathfrak{osp}(8^*|4)$

Counts operators with signs, but in the limit $q \rightarrow 0$ only the $\frac{1}{2}$ -BPS primaries contribute $\Rightarrow \frac{1}{2}$ -BPS index

For the A_{k-1} theory this gives [Bhattacharyya, Minwalla '09]

$$I_{\mathsf{A}_{k-1}} = \prod_{m=1}^{k} \frac{1}{1 - x^m}$$

On the 4D side use the Higgs-branch Hilbert Series [Benvenuti, Feng, Hanany, He '06]

 \Rightarrow Counts BPS operators parametrising the Higgs branch

For the *N*-noded circular quiver the result is given by the coefficient of the ν^k term in the expansion of

$$\mathsf{HS}_N(t,\nu) = \mathrm{PE}\left[\frac{(1-t^{2N})}{(1-t^2)(1-t^N)^2}\nu\right]$$

where the Plethystic Exponential is

$$\operatorname{PE}[g(t)] := \exp\left[\sum_{n=1}^{\infty} \frac{1}{n} g(t^n)\right]$$

In the deconstruction limit, $N \rightarrow \infty$, this becomes, since |t| < 1,

$$\mathsf{HS}_{k,N}(t) = \prod_{m=1}^{k} \frac{1}{1 - t^{2m}} = I_{\mathsf{A}_{k-1}}(t^2)$$

 \Rightarrow We have an initial test of the deconstruction proposal

However:

- Difficult to extend HS calculation...
- Difficult to find a limit of the index that isolates Higgs-branch contributions...
- o There are also selfual strings wrapping the torus...
- ⇒ Need a different tool to go further

Matching partition functions on $S_{\epsilon_1,\epsilon_2}^4$

Choose to compare partition functions for Ω -deformed theories

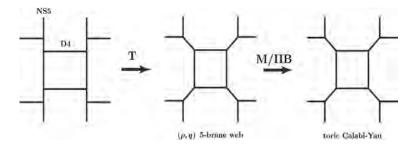
Start with the 4D circular-quiver result from localisation:

$$Z_{S_{\epsilon_1,\epsilon_2}^{4\mathrm{D}}}^{4\mathrm{D}} = \int [da] Z_{\mathrm{IR}}^{4\mathrm{D}} \overline{Z}_{\mathrm{IR}}^{4\mathrm{D}}$$

No Higgs branch for 4D theory on S^4 but can be opened up by adding mass terms [Kim²-Lee-Park '14]

 \Rightarrow Consider deconstruction limit directly on $Z_{\rm IR}^{\rm 4D}$

 $Z_{\rm IR}^{\rm 4D}$ can also be calculated using topological strings [lqbal, Kozçaz, Vafa '07]



 \Rightarrow Using brane intuition we provide a prescription for how to take the deconstruction limit on the parameters of $Z_{\rm IR}^{\rm 4D}$ (Coulomb, masses, couplings, ϵ_1, ϵ_2)

The result can be compared to the M5-brane IR partition function on $\mathbb{R}^4_{\epsilon_1,\epsilon_2} \times T^2$ [Haghighat, Iqbal, Kozçaz, Lockhart, Vafa '13]

 \Rightarrow They agree: $Z_{IR}^{4D,Higgs} = Z_{IR}^{6D}$

Extra dimensions deconstructed by combining infinite products of rational functions into trigonometric (c.f. q-deformation)

IR partition functions on $\mathbb{R}^4 \times T^2$ can be glued together to reproduce the full partition function on $S^4 \times T^2$ according to

$$Z^{6\mathrm{D}}_{S^4_{\epsilon_1,\epsilon_2} \times T^2} = \int [da] Z^{6\mathrm{D}}_{\mathrm{IR}} \overline{Z}^{6\mathrm{D}}_{\mathrm{IR}}$$

[Lockhart-Vafa '12]

Summary and Outlook

- Revisited deconstruction proposal for $(2,0)_{A_{k-1}}$ theories
- Matched simple BPS operators using the 4D Hilbert Series and the 6D superconformal index
- Matched the full partition functions on S⁴ by implementing the deconstruction limit on the IR partition function
- This provides a dictionary for exact calculations in 4D/6D
- Next: Can one use this to calculate observables in (2,0)?

