To the Memory of Ioannis Bakas

O(d,d) and T-duality

George Papadopoulos

King's College London

9th Regional Meeting in String Theory 9-15 July 2017 Crete

13 July 2017

Material based on GP: arXiv:1402.2586; arXiv:1412.1146 PS Howe and GP arXiv:1612.07968

T-duality	H-fluxes	C-spaces	Conclusions
000000	0	00000000000	00
Main Question			
Yum Xuobuon			

Can T-duality rules arise from patching conditions?

• If they can, what are the spaces that arise?

Questions prompted from investigations on the global patching of DFT

T-duality	H-fluxes	C-spaces	Conclusions
•000000	O		00
Main Question			

Can T-duality rules arise from patching conditions?

• If they can, what are the spaces that arise?

Questions prompted from investigations on the global patching of DFT

T-duality	H-fluxes	C-spaces	Conclusions
•000000	O	00000000000	00
Main Question			

Can T-duality rules arise from patching conditions?

• If they can, what are the spaces that arise?

Questions prompted from investigations on the global patching of DFT

T-duality	H-fluxes	C-spaces	Conclusions
•000000	O		00
Main Question			

- Can T-duality rules arise from patching conditions?
- If they can, what are the spaces that arise?

Questions prompted from investigations on the global patching of DFT

T-duality	H-fluxes	C-spaces	Conclusions
O●OOOOO	O	00000000000	00
Expectations			

- The final theory should produce both local and global properties of T-duality as described by the Buscher rules
- The theory should exhibit a O(d, d) symmetry
- The patching of theory and its associated space requires for consistency the Dirac quantisation property of the 3-form flux
- The final theory and its associated space satisfies the topological geometrisation condition
- Generalised geometry emerges naturally

T-duality	H-fluxes	C-spaces	Conclusions
O●OOOOO	O	00000000000	00
Expectations			

- The final theory should produce both local and global properties of T-duality as described by the Buscher rules
- The theory should exhibit a O(d, d) symmetry
- The patching of theory and its associated space requires for consistency the Dirac quantisation property of the 3-form flux
- The final theory and its associated space satisfies the topological geometrisation condition
- Generalised geometry emerges naturally

T-duality	H-fluxes	C-spaces	Conclusions
O●OOOOO	O	00000000000	00
Expectations			

- The final theory should produce both local and global properties of T-duality as described by the Buscher rules
- The theory should exhibit a O(d, d) symmetry
- The patching of theory and its associated space requires for consistency the Dirac quantisation property of the 3-form flux
- The final theory and its associated space satisfies the topological geometrisation condition
- Generalised geometry emerges naturally

T-duality	H-fluxes	C-spaces	Conclusions
O●OOOOO	O	00000000000	00
Expectations			

- The final theory should produce both local and global properties of T-duality as described by the Buscher rules
- The theory should exhibit a O(d, d) symmetry
- The patching of theory and its associated space requires for consistency the Dirac quantisation property of the 3-form flux
- The final theory and its associated space satisfies the topological geometrisation condition
- Generalised geometry emerges naturally

T-duality	H-fluxes	C-spaces	Conclusions
O●OOOOO	O	00000000000	00
Expectations			

- The final theory should produce both local and global properties of T-duality as described by the Buscher rules
- The theory should exhibit a O(d, d) symmetry
- The patching of theory and its associated space requires for consistency the Dirac quantisation property of the 3-form flux
- The final theory and its associated space satisfies the topological geometrisation condition
- Generalised geometry emerges naturally

T-duality	H-fluxes	C-spaces	Conclusions
O●OOOOO	O	00000000000	00
Expectations			

- The final theory should produce both local and global properties of T-duality as described by the Buscher rules
- The theory should exhibit a O(d, d) symmetry
- The patching of theory and its associated space requires for consistency the Dirac quantisation property of the 3-form flux
- The final theory and its associated space satisfies the topological geometrisation condition
- Generalised geometry emerges naturally

T-duality	H-fluxes	C-spaces	Conclusions
00●0000	O	00000000000	00
Buscher Rules			

Amongst the criteria the first one on Buscher rules is perhaps the most conservative.

Given a common sector background with an isometry $X = \partial_{\theta}$, the geometry

$$\begin{aligned} ds^2 &= V^2 (d\theta + q_i dx^i)^2 + g_{ij} dx^i dx^j , \\ B &= (d\theta + q_i dx^i) \wedge p_j dx^j + \frac{1}{2} b_{ij} dx^i \wedge dx^j . \end{aligned}$$

transforms under T-duality to

$$\begin{split} d\tilde{s}^2 &= V^{-2}(d\tilde{\theta} + p_i dx^i)^2 + g_{ij} dx^i dx^j ,\\ \tilde{B} &= (d\tilde{\theta} + p_i dx^i) \wedge q_j dx^j + \frac{1}{2} b_{ij} dx^i \wedge dx^j ,\\ e^{2\tilde{\Phi}} &= e^{2\Phi} V^{-2} , \end{split}$$

 $\tilde{\theta}$ is a new angular coordinate.

T-duality	H-fluxes	C-spaces	Conclusions
0000000	O	00000000000	00
Buscher Rules			

Spacetime *M* has coordinates (θ, x^i) while the T-dual \tilde{M} has coordinates $(\tilde{\theta}, x^i)$. $\tilde{\theta}$ is the T-dual coordinates of θ .

• *M* and \tilde{M} may have different topology and/or geometry

T-duality	H-fluxes	C-spaces	Conclusions
0000000	O	00000000000	00
Buscher Rules			

Spacetime *M* has coordinates (θ, x^i) while the T-dual \tilde{M} has coordinates $(\tilde{\theta}, x^i)$. $\tilde{\theta}$ is the T-dual coordinates of θ .

• *M* and \tilde{M} may have different topology and/or geometry

T-duality	H-fluxes	C-spaces	Conclusions
0000●00	O	00000000000	00
KK paradigm			

Let us review the construction of Kaluza-Klein (KK) space. Consider a closed 2-form F^2 , $dF^2 = 0$, and a good cover $\{U_\alpha\}_{\alpha \in I}$ on spacetime M.

Then consider the Čech-de Rham decomposition of F^2 .

0

$$F^{2} = dA^{1}_{\alpha}, \quad U_{\alpha}$$
$$-A^{1}_{\alpha} + A^{1}_{\beta} = da^{0}_{\alpha\beta}, \quad U_{\alpha\beta} = U_{\alpha} \cap U_{\beta}$$
$$a^{0}_{\beta\gamma} - a^{0}_{\alpha\gamma} + a^{0}_{\alpha\beta} = 2\pi n_{\alpha\beta\gamma}, \quad U_{\alpha\beta\gamma} = U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$$

1

If all $n_{\alpha\beta\gamma} \in \mathbb{Z}$, then $\frac{1}{2\pi}[F^2] \in H^2(M,\mathbb{Z})$

T-duality	H-fluxes	C-spaces	Conclusions
○○○○○●○	O	00000000000	00
KK space			

The construction of KK space \hat{M} can be done by introducing an angular coordinate θ_{α} at every open set U_{α} and imposing the patching conditions

 $- heta_{lpha}+ heta_{eta}=a^0_{lphaeta}\mod 2\pi\mathbb{Z}$

Consistency at $U_{\alpha\beta\gamma}$ requires that

$$a^0_{eta\gamma}-a^0_{lpha\gamma}+a^0_{lphaeta}=0 \mod 2\pi\mathbb{Z}$$

which is satisfied iff $n_{\alpha\beta\gamma} \in \mathbb{Z}$ and so $\frac{1}{2\pi}[F^2] \in H^2(M,\mathbb{Z})$. \hat{M} is a circle bundle over M with curvature F^2 and $c_1(\hat{M}) = \frac{1}{2\pi}[F^2]$.

T-duality	H-fluxes	C-spaces	Conclusions
000000●	O	00000000000	00
KK space			

Some properties are

- ► The construction of KK space requires the Dirac quantisation condition as ¹/_{2π}[F²] ∈ H²(M, Z)
- ► KK space satisfies the topological geometrisation condition

$$- heta_{lpha} + heta_{eta} = a^0_{lphaeta} \mod 2\pi\mathbb{Z} \Longrightarrow d heta_{lpha} - A^1_{lpha} = d heta_{eta} - A^1_{eta}$$

and so $d\theta - A^1$ is globally defined on \hat{M} . Moreover

$$F^2 = -d(d\theta - A^1)$$

and so F^2 is exact on \hat{M} .

T-duality	H-fluxes	C-spaces	Conclusions
0000000		00000000000	00
Čech-de Rham			

The Čech-de Rham decomposition of a NS-NS closed 3-form flux H^3 , $dH^3 = 0$, is

$$\begin{split} H^3_{\alpha} &= dB^2_{\alpha} , \quad U_{\alpha} \\ -B^2_{\alpha} + B^2_{\beta} \equiv (\delta B^2)_{\alpha\beta} &= da^1_{\alpha\beta} , \quad U_{\alpha\beta} \\ a^1_{\beta\gamma} - a^1_{\alpha\gamma} + a^1_{\alpha\beta} \equiv (\delta a^1)_{\alpha\beta\gamma} &= da^0_{\alpha\beta\gamma} , \quad U_{\alpha\beta\gamma} \\ a^0_{\beta\gamma\delta} - a^0_{\alpha\gamma\delta} + a^0_{\alpha\beta\delta} - a^0_{\alpha\beta\gamma} \equiv (\delta a^0)_{\alpha\beta\gamma\delta} &= 2\pi n_{\alpha\beta\gamma\delta} , \quad U_{\alpha\beta\gamma\delta} \\ \delta \text{ is the Čech cohomology differential, } \delta^2 = 0. \\ \text{Again if } n_{\alpha\beta\gamma\delta} \in \mathbb{Z}, \text{ then } \frac{1}{2\pi} [H^3] \in H^3(M, \mathbb{Z}). \end{split}$$

T-duality	H-fluxes	C-spaces	Conclusions
0000000	O		00
C-spaces			

Let H^3 be a closed 3-form with transition function $a^1_{\alpha\beta}$, $a^0_{\alpha\beta\gamma}$ and $n_{\alpha\beta\gamma\delta}$. Introduce coordinates y^1_{α} and angular coordinates $\theta_{\alpha\beta}$ and impose the patching conditions

$$(\delta y^1)_{\alpha\beta} + d\theta_{\alpha\beta} = a^1_{\alpha\beta}, \quad U_{\alpha\beta}$$

$$(\delta heta)_{lphaeta\gamma} \;\;=\;\; a^0_{lphaeta\gamma} \;\; {
m mod} 2\pi \mathbb{Z} \;, \;\; U_{lphaeta\gamma}$$

where $(\delta y^1)_{\alpha\beta} = -y^1_{\alpha} + y^1_{\beta}$.

- The compatibility of the first condition of triple overlaps is implied by the second
- ► The compatibility of the second on 4-fold overlaps requires that $n_{\alpha\beta\gamma\delta} \in \mathbb{Z}$ and so $\frac{1}{2\pi}[H^3] \in H^3(M,\mathbb{Z})$
- C-spaces are independent from the choice of representative for $\frac{1}{2\pi}[H^3]$

T-duality	H-fluxes	C-spaces	Conclusions
0000000	O	00000000000	00

Alternative patching

Suppose that the additional coordinates \tilde{x} are patched as

 $\delta \tilde{x}^1_{\alpha\beta} = a^1_{\alpha\beta}$

Then

$$\delta a^1_{\alpha\beta\gamma} = 0$$

 $a_{\alpha\beta}^{1}$ is a Čech cocycle. • If $\delta a^{1} = 0$, then *H* is exact If $\delta a^{1} = 0$, then

$$ilde{B}^2_lpha = B^2_lpha + d(\sum_\gamma
ho_\gamma a^1_{lpha\gamma})$$

is a globally defined 2-form

$$-\tilde{B}_{\alpha}^{2}+\tilde{B}_{\beta}^{2}=da_{\alpha\beta}^{1}-d(\sum_{\gamma}\rho_{\gamma}(a_{\alpha\gamma}^{1}-a_{\beta\gamma}^{1}))=da_{\beta\gamma}^{1}-d(\sum_{\gamma}\rho_{\gamma}a_{\alpha\beta}^{1})=0$$

But $H^3 = dB^2 = d\tilde{B}^2$ and so it is exact. $\{\rho_{\alpha}\}_{\alpha \in I}$ partition of unity.

T-duality	H-fluxes	C-spaces	Conclusions
0000000	O	00000000000	00
Other patching			

Another suggestion is

$$\delta \tilde{x}^1_{\alpha\beta} = 0$$

Consider the T-dual pair S^3 with N-units of *H*-charge and L_N^3 with 1-unit of \tilde{H} charge. Arises after using the Buscher rules with isometry along the Hopf fibre of S^3 .

• The Hopf fibre of S^3 twists over the Lens space L_N^3

T-duality	H-fluxes	C-spaces	Conclusions
000000	0	0000000000	00

To investigate this note that the cohomology of S^3 and L_N^3 are

 $H^0(L^3_N,\mathbb{Z}) = H^3(L^3_N,\mathbb{Z}) = \mathbb{Z} , \quad H^1(L^3_N,\mathbb{Z}) = 0 , \quad H^2(L^3_N,\mathbb{Z}) = \mathbb{Z}_N .$

As $H^2(S^3, \mathbb{Z}) = 0$, *P* is a topologically trivial bundle over S^3 and so $P = S^3 \times S^1$. In particular

 $H^2(P,\mathbb{Z})=0$

Suppose now that $P = S^1 \times L_N^3$, the Künneth formula for computing the cohomology of a topological product would have implied that

 $H^{2}(P,\mathbb{Z}) = H^{2}(L^{3}_{N}, H^{0}(S^{1},\mathbb{Z})) = H^{2}(L^{3}_{N},\mathbb{Z}) = \mathbb{Z}_{N}$

This is a *contradiction* as $H^2(P, \mathbb{Z}) = 0$.

T-duality	H-fluxes	C-spaces	Conclusions
000000	0	0000000000	00

To investigate this note that the cohomology of S^3 and L_N^3 are

 $H^0(L^3_N,\mathbb{Z}) = H^3(L^3_N,\mathbb{Z}) = \mathbb{Z} , \quad H^1(L^3_N,\mathbb{Z}) = 0 , \quad H^2(L^3_N,\mathbb{Z}) = \mathbb{Z}_N .$

As $H^2(S^3, \mathbb{Z}) = 0$, *P* is a topologically trivial bundle over S^3 and so $P = S^3 \times S^1$. In particular

 $H^2(P,\mathbb{Z})=0$

Suppose now that $P = S^1 \times L_N^3$, the Künneth formula for computing the cohomology of a topological product would have implied that

 $H^{2}(P,\mathbb{Z}) = H^{2}(L^{3}_{N}, H^{0}(S^{1},\mathbb{Z})) = H^{2}(L^{3}_{N},\mathbb{Z}) = \mathbb{Z}_{N}$

This is a *contradiction* as $H^2(P, \mathbb{Z}) = 0$.

T-duality	H-fluxes	C-spaces	Conclusions
000000	0	0000000000	00

- The Buscher T-dual angular coordinates may topologically twist over the spacetime
- ► These coordinates cannot be identified with the T-dual Buscher angular coordinates

T-duality	H-fluxes	C-spaces	Conclusions
000000	0	0000000000	00

- The Buscher T-dual angular coordinates may topologically twist over the spacetime
- These coordinates cannot be identified with the T-dual Buscher angular coordinates

T-duality	H-fluxes	C-spaces	Conclusions
000000	0	0000000000	00

C-spaces and topological geometrization condition

- The construction of C-spaces requires the Dirac quantisation condition!
- The C-spaces satisfy the topological geometrisation condition. From the first equation

$$dy_{\alpha}^{1} - B_{\alpha} = dy_{\beta}^{1} - B_{\beta}$$

and

$$H^3 = -d(dy^1 - B)$$

ie it is exact!

► Generalised geometry emerges from C-spaces

T-duality	H-fluxes	C-spaces	Conclusions
000000	0	00000000000	00

C-spaces and generalized geometry

The patching condition for y^1 which gives $\delta(d\theta - a^1) = 0$ can be solved to yield

$$y^1_lpha = ilde{y}^1_lpha + \sum_\gamma
ho_\gamma (d heta_{lpha\gamma} - a^1_{lpha\gamma}) \; ,$$

where $\tilde{y}_{\alpha}^{1} = \tilde{y}_{\beta}^{1}$ transforms like a 1-form. This gives $dy_{\alpha}^{1} = (dy_{\alpha}^{1})_{i} \wedge dx_{\alpha}^{i}$. Consider the bundle \mathcal{E} with sections $\mathbf{X}_{\alpha} = Y_{\alpha}^{i} \frac{\partial}{\partial x_{\alpha}^{i}} + (w_{\alpha})_{i} \frac{\partial}{\partial (y_{\alpha}^{1})_{i}}$ where $\langle dy_{\alpha i}^{1}, \frac{\partial}{\partial (y_{\alpha}^{1})_{j}} \rangle = \delta^{i}_{j}$. The patching conditions yield

$$Y^i_{lpha} = rac{\partial x^i_{lphaeta}}{\partial x^j_{eta}} Y^j_{eta} \ , \quad (w_{lpha})_i = rac{\partial x^i_{eta}}{\partial x^i_{lphaeta}} ig((w_{eta})_j - (B_{eta})_{jk}Y^k_{eta}ig)$$

Thus

$$0 \to T^*M \to \mathcal{E} \to TM \to 0$$

as in generalized geometry.

• \tilde{y}^1 can be identified with the doubled coordinates \tilde{x} according to the

T-duality	H-fluxes	C-spaces	Conclusions
0000000	O	000000000000	00
Gerbes			

Consider an open cover $\{U_{\alpha}\}$ of M which is not necessarily a good cover. A gerbe [Hitchin-Chatterjee] is

- ► an assignment of a circle bundle $P_{\alpha\beta}$ at each $U_{\alpha\beta}$ with $P_{\beta\alpha} = P_{\alpha\beta}^{-1}$
- on triple overlaps $U_{\alpha\beta\gamma}$ the circle bundle $P_{\alpha\beta}P_{\beta\gamma}P_{\gamma\alpha}$ admits a section $g_{\alpha\beta\gamma}$
- On 4-fold overlaps $U_{\alpha\beta\gamma\delta}$, it satisfies the condition

 $g_{\beta\gamma\delta}g_{\alpha\gamma\delta}^{-1}g_{\alpha\beta\delta}g_{\alpha\beta\gamma}^{-1} = 1$

To make connection with C-spaces $\theta_{\alpha\beta}$ are the fibre coordinates of the bundles and $g_{\alpha\beta\gamma} = \exp ia_{\alpha\beta\gamma}^0$

- Gerbes have a notion of equivalence under refinement. This allows to define a gerbe at any refinement of the original open cover
- Any open cover admits a good refinement

T-duality	H-fluxes	C-spaces	Conclusions
0000000	O		00
T-duality			

Consider S^3 with N units of H^3 flux [Murray]. Cover S^3 with the stereographic cover $S^3 = U_0 \cup U_1$. Then $U_{01} = U_0 \cap U_1$ is $S^2 \times I$ where I is an open interval. The circle bundles over U_{01} are classified by

$$H^2(U_{01},\mathbb{Z}) = H^2(S^2,\mathbb{Z}) = \mathbb{Z}$$

Consider the circle bundle P_{01} with first Chern class N represented by the 2-form F_{01} . A representative of the 3-form flux \hat{H} can be given using the Mayer-Vietoris construction as

 $\hat{H}_0^3 = -d
ho_1 \wedge F_{01} , \text{ on } U_0; \ \hat{H}_1^3 = d
ho_0 \wedge F_{01} , \text{ on } U_1$

 $\{\rho_0, \rho_1\}$ is a partition of unity subordinate to the cover $\{U_0, U_1\}$. \hat{H} is globally defined on S^3 as on U_{01}

 $-\hat{H}_0 + \hat{H}_1 = d(\rho_1 + \rho_0) \wedge F_{01} = d1 \wedge F_{01} = 0$.

T-duality	H-fluxes	C-spaces	Conclusions
0000000	O		00
T-dual coordinates			

- Furthermore Stoke's theorem reveals that $[H^3] = [\hat{H}^3]$. The rest of the compatibility conditions for the gerbe are trivially satisfied.
- The bundle space of P_{01} restricted on S^2 is the lens space L_N^3 which in turn is Buscher dual to S^3 with N units of *H* flux
- The Buscher dual angular coordinate $\tilde{\theta}$ is identified with the θ_{01} coordinate of the gerbe in the C-space!
- The "gebre space" is the union of $S^3 \cup L^3_N$.

T-duality	H-fluxes	C-spaces	Conclusions
0000000	O	000000000●0	00
General case			

Take *M* to be a circle bundle over $Q, \pi : M \to Q$, with 3-form flux *H* such that [H] = aw, where $w \in H^2(Q, \mathbb{Z})$ and $H^1(S^1, \mathbb{Z}) = \mathbb{Z}\langle a \rangle$.

• Consider a trivialization of M

$$\pi^{-1}(W_{\alpha}) = \varphi_{\alpha}^{-1}(W_{\alpha} \times S^{1})$$

and the cover of M with the two open sets

 $U_0 = \cup_{lpha} \varphi_{lpha}^{-1}(W_{lpha} \times V_0) , \quad U_1 = \cup_{lpha} \varphi_{lpha}^{-1}(W_{lpha} \times V_1)$ where $S^1 = V_0 \cup V_1$

- ► Consider a representative *F* of the class $w \in H^2(Q)$ and its pull back to *M* with the projection map π . Take $F_{01} = F|_{U_{01}}$ and construct a representative \hat{H} of the *H* flux as before
- The Buscher T-dual space \tilde{M} is the circle bundle over Q with first Chern class w.
- ► The T-dual angular coordinate $\hat{\theta}$ is identified with the θ_{01} angular coordinate of the gerbe in C-space.

T-duality	H-fluxes	C-spaces	Conclusions
0000000	O	000000000●	00
General case			

- ► The gerbe construction gives the same T-dual space under a variety of choice of open covers. This can be turned into a statement of covariance for the Buscher T-duality rules
- The gerbe construction does not need the isometries of the Buscher construction. So potentially T-dual spaces can be identified for manifolds without isometries
- Although the gerbe construction can always be done, it is not always obvious that it will lead to an identification of a "T-dual space"

There are other proposals [Blumenhagen, Hassler, Lüst; Hassler] and [Cederwall]

T-duality	H-fluxes	C-spaces	Conclusions
0000000	O	00000000000	•O
Conclusion			

- C-spaces proposal has all the characteristics required for the definition of manifestly T-duality covariant theory: Dirac quantisation of the H^3 -flux, topological geometrisation condition, generalized geometry and O(d, d) covariance, and incorporates T-duality via the identification of T-dual angular coordinates with the gerbe circle fibres
- The gerbes open a window to understanding T-duality beyond the isometry set up of Buscher rules which may be useful in the context of mirror symmetry.
- It requires more coordinates than double of those of spacetime and the underlying space may not be a manifold.

T-duality	H-fluxes	C-spaces	Conclusions
0000000	O	00000000000	•O
Conclusion			

- C-spaces proposal has all the characteristics required for the definition of manifestly T-duality covariant theory: Dirac quantisation of the H^3 -flux, topological geometrisation condition, generalized geometry and O(d, d) covariance, and incorporates T-duality via the identification of T-dual angular coordinates with the gerbe circle fibres
- The gerbes open a window to understanding T-duality beyond the isometry set up of Buscher rules which may be useful in the context of mirror symmetry.
- It requires more coordinates than double of those of spacetime and the underlying space may not be a manifold.

T-duality	H-fluxes	C-spaces	Conclusions
0000000	O	00000000000	•O
Conclusion			

- C-spaces proposal has all the characteristics required for the definition of manifestly T-duality covariant theory: Dirac quantisation of the H^3 -flux, topological geometrisation condition, generalized geometry and O(d, d) covariance, and incorporates T-duality via the identification of T-dual angular coordinates with the gerbe circle fibres
- The gerbes open a window to understanding T-duality beyond the isometry set up of Buscher rules which may be useful in the context of mirror symmetry.
- ► It requires more coordinates than double of those of spacetime and the underlying space may not be a manifold.

T-duality	H-fluxes	C-spaces	Conclusions
0000000	O	00000000000	•O
Conclusion			

- C-spaces proposal has all the characteristics required for the definition of manifestly T-duality covariant theory: Dirac quantisation of the H^3 -flux, topological geometrisation condition, generalized geometry and O(d, d) covariance, and incorporates T-duality via the identification of T-dual angular coordinates with the gerbe circle fibres
- The gerbes open a window to understanding T-duality beyond the isometry set up of Buscher rules which may be useful in the context of mirror symmetry.
- ► It requires more coordinates than double of those of spacetime and the underlying space may not be a manifold.

T-duality	H-fluxes	C-spaces	Conclusions
0000000	O	00000000000	O•
What do all these mean	for DFT?		

- This will allow for a consistent O(d, d) formulation on the spacetime. However smooth O(d, d) covariance cannot be identified with T-duality.
- In such a formulation the doubled space is not essential. But adding new coordinates may lead to interesting algebraic structures
- The solutions of this theory will produce all the T-dual pairs, as the standard Einstein formulation, but smooth O(d, d) transformations will not relate different T-dual pairs
- If the incorporation Buscher T-duality rules is not negotiable, then an alternative way of formulating the theory must be found in which the $\theta_{\alpha\beta}$ coordinates have an essential role

T-duality	H-fluxes	C-spaces	Conclusions
0000000	O	00000000000	O•

What do all these mean for DFT?

- This will allow for a consistent O(d, d) formulation on the spacetime. However smooth O(d, d) covariance cannot be identified with T-duality.
- In such a formulation the doubled space is not essential. But adding new coordinates may lead to interesting algebraic structures
- The solutions of this theory will produce all the T-dual pairs, as the standard Einstein formulation, but smooth O(d, d) transformations will not relate different T-dual pairs
- If the incorporation Buscher T-duality rules is not negotiable, then an alternative way of formulating the theory must be found in which the $\theta_{\alpha\beta}$ coordinates have an essential role

T-duality	H-fluxes	C-spaces	Conclusions
0000000	O	00000000000	O•
What do all these mean	for DFT?		

- This will allow for a consistent O(d, d) formulation on the spacetime. However smooth O(d, d) covariance cannot be identified with T-duality.
- In such a formulation the doubled space is not essential. But adding new coordinates may lead to interesting algebraic structures
- The solutions of this theory will produce all the T-dual pairs, as the standard Einstein formulation, but smooth O(d, d) transformations will not relate different T-dual pairs
- If the incorporation Buscher T-duality rules is not negotiable, then an alternative way of formulating the theory must be found in which the $\theta_{\alpha\beta}$ coordinates have an essential role

T-duality	H-fluxes	C-spaces	Conclusions
0000000	O	00000000000	O•
What do all these	e mean for DFT?		

- This will allow for a consistent O(d, d) formulation on the spacetime. However smooth O(d, d) covariance cannot be identified with T-duality.
- In such a formulation the doubled space is not essential. But adding new coordinates may lead to interesting algebraic structures
- The solutions of this theory will produce all the T-dual pairs, as the standard Einstein formulation, but smooth O(d, d) transformations will not relate different T-dual pairs
- If the incorporation Buscher T-duality rules is not negotiable, then an alternative way of formulating the theory must be found in which the $\theta_{\alpha\beta}$ coordinates have an essential role

T-duality	H-fluxes	C-spaces	Conclusions
0000000	O	00000000000	O•
What do all these	e mean for DFT?		

- This will allow for a consistent O(d, d) formulation on the spacetime. However smooth O(d, d) covariance cannot be identified with T-duality.
- In such a formulation the doubled space is not essential. But adding new coordinates may lead to interesting algebraic structures
- The solutions of this theory will produce all the T-dual pairs, as the standard Einstein formulation, but smooth O(d, d) transformations will not relate different T-dual pairs
- If the incorporation Buscher T-duality rules is not negotiable, then an alternative way of formulating the theory must be found in which the $\theta_{\alpha\beta}$ coordinates have an essential role