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whose memory lives also through this series of meetings   

 An elegant scientist and a very kind person 



  Introduction 

These authors show that the geometry (Kähler potential) of CY moduli  

This talk is about an (analytic) extension of a beautiful paper by

Gomis, Komargodski, Hsin, Schwimmer, Seiberg, Theisen  (1509.08511)

space          is related to Weyl anomalies, and that it can be computed 

from the sphere partition function. 

This opens a new line of attack to a time-honoured problem,

MCY

without relying on mirror symmetry.  It also motivates a

a striking conjecture:  that          has zero Kähler classMCY

Gromov-Witten 
invariants



With Daniel Plencner we generalized 

the Gomis et al anomaly to manifolds  

arXiv: 1612.06386

This shows in particular that the hemisphere partition function 
computes the other piece of  geometric data besides               : 

The central charge             , 

 with boundary

M⌦ =
|c⌦|2

e�K

c⌦(�)

K(�, �̄)

and the mass of CY D-branes



Few reminders and earlier work:

 CY moduli space factorizes locally:

Mc ⇥Mtc

complex structure

(c,c)

Kähler moduli

(c,a)

h1,1h2,1

twisted-chiral   chiral  

fields of  N=(2,2)  σ-model



Studied extensively for 30 years.  

of type-II string theory compactified on CY3:
N = 2Strong constraints from            supersymmetry of

Metric on complex-structure m.s. is classical but

 on Kähler m.s. it has instanton corrections

Gromov-Witten invariants

Assuming mirror symmetry, gives the latter from the former

when mirror manifold and map is known. But usually it is not. 



Recent progress came from calculations of partition functions 
of N=(2,2)  GLSM  using  susy localization

Benini, Cremonesi  1206.2356
Doroud, Gomis, Le Floch, Lee  1206.2606

Honda + Okuda  1308.2217 

Hori + Romo  1308.2438 


Sugishita + Terashima  1308.1973  

sphere

hemisphere

It was conjectured (and checked in examples) that:

Z(S2) =

✓
r

r0

◆c/3

e�K(�,�̄) Z(S2/Z2) =

✓
r

r0

◆c/6

c⌦(�)

Jockers, Kumar, Lapan, Morrison, Romo (1208.6244)



An argument based on tt* eqns was given  by   Gomis + Lee (1210.6022) 

Gomis, Komargodski, Hsin, Schwimmer, Seiberg, Theisen  

is more elegant and powerful. 

Osborn ’91

The proof of 

It is based on the N=2 supersymmetric completion of a Weyl anomaly

first discovered by 

 In the rest of this talk I will review this work of Gomis et al,

  then extend it to manifolds with boundary in 2D. 



  Bulk super-Weyl anomaly  

Anomalies : non-conservation in correlation functions due to contact terms  

h@µjµ O1(p1) · · · On(pn)i 6= 0

When r.h.s. is proportional to momenta:  non-conservation only 
in presence of spacetime-dependent background fields

e.g.  

G G

=) @µj
µ
A = F ^ F

axial charge violated by 
instantons 

@µj
µ
A



  For chiral anomalies:  background is gauge or gravitational  

  For trace (Weyl) anomaly, can be exactly-marginal couplings:

  In 2D the 2-point function of marginal operators reads: 

hOI(z) ¯OJ̄(w)i = gIJ̄ R 1

|z � w|4 = gIJ̄
1

2

(@ ¯@)2
⇥
log(|z � w|2µ2

)

⇤2

differential regularization of distribution

Osborn ’91

Osborn, Petkou ’93


. . .

Bzowski, McFadden, Skenderis ’13 ‘15

Zamolodchikov metric anomaly



  Turn on space-dependent couplings         :�I

@Z
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  NO anomaly for constant couplings. But supersymmetry

  relates it to a term that does not vanish when  @µ�I = 0

Gomis et al  (1509.08511)

  This term can be removed by non-susy local counterterm;

  but SUSY gives it universal meaning

@ ¯@ log |z � w| ⇠ �(2)(z � w)where we used  

9



In computing the anomaly we choose to preserve the vector-like 
N = 2

N = (2, 2) U(1)V ⇥ U(1)A                SCFTs have R-symmetry.

symmetry, so we must couple it to the supergravity in
which this symmetry is gauged by a field V µ

Closset + Cremonesi (1404.2636)

In superconformal gauge:

gµ⌫ = e2�⌘µ⌫ , V µ = ✏µ⌫@⌫a

Classically      and    decouple, but in the quantum theory they dont  � a
due to the Weyl and axial anomalies. 

Technical details:



Supersymmetry puts these fields in a twisted-chiral multiplet

⌃(yµ) = (� + ia) + ✓+�̄+ + ✓̄��� + ✓+✓̄�w

y

± = x

± ⌥ i✓
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The tc field obeys
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D+⌃ = D�⌃ = 0

where

It is useful to also promote the marginal couplings to vevs of tc fields

⇤I = �I(y±) + · · · , ⇤̄I = �̄I(ȳ±) + · · ·

so as to make the susy of the anomaly manifest.

Seiberg
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The bulk anomaly  iA(�⌃) := �⌃ logZV (M) is the susy invariant 

Gomis et al  (1509.08511)
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This obeys Wess-Zumino consistency

 and can be integrated with the result: 

super-Liouville super-Osborn 



 Expand in components:
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 (Cohomologically) non-trivial, real anomalies

 Variation of local invariant counterterm 
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The non-vanishing term for constant couplings is the red one

It could be removed by change of scheme in bosonic theory,
but supersymmetry relates it to the non-trivial blue terms !

Similar remarks for 4D Casimir energy  
Assel, Cassani, Di Pietro, Komargodski, Lorenzen, Martelli 1503.05537

The first term in        is the scale anomaly in the 2-point functionA(2)

@ ¯@ log |z|2 = ⇡�(2)(z)as follows from �� = �� logµ ,

contact term
and @I@J̄K = gIJ̄



Z

S2

K ⇤� = �4⇡K

Integrating the anomaly for constant couplings gives      

=) ZE
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so the 2-sphere free energy computes the Kähler potential    

Implications  

on the SCFT2 moduli space (both chiral and twisted chiral)    

A puzzle  

ZE
V (S2) not invariant under Kähler-Weyl transformations   

K 0(�, �̄) = K(�, �̄) +H(�) + H̄(�̄)



Resolution  

The variation amounts to change of renormalization scheme:  

twisted F-term
R = D̄+D�⌃̄ = �w̄ + ✓+✓̄�@+@�(� � ia) + · · ·

curvature superfield

=

So local, susy and diffeo-invariant counterterm  compensates

the Kähler-Weyl (gauge) transformation !  
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An interesting conjecture

If the moduli space had non-vanishing Kähler class one could

Gomis et al  (1509.08511)

pick         such that                 is non-trivial 2-cycle�

I(x)

Then there would be no global renormalization scheme

and no well-defined generating function  

Way out:   Moduli space has Kähler class  = 0 

S2 ! M

cf Morrison, Pleser in progress



 Boundary anomaly 

Consider half space: x

1  0
x

1 � 0

conformal boundary condition ⌦

hOI(x)i⌦ = d
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One-point functions of marginal operators:



The 1pt-function coefficients are  related to a 

boundary charge 

Ooguri, Oz, Yin ‘96

Focus on B-type branes which are not obstructing Kahler deformations

holomorphic c⌦(�)

c⌦I
c⌦

= @I(K + log c⌦)

Take region of Kähler moduli space with no walls of marginal stability.

4dI =

For the mirror A-type branes c⌦ =

Z

�Lag

⌦(3,0)



Argument: vacuum projection of boundary state

⇧vac |⌦ii := c⌦ |0iRR +
X

I

c⌦I |IiRR

 is flat section of the improved connection  on moduli spacer� C
structure constants


of chiral ring



Our result: prove these relations from Weyl-Osborn anomaly,
and show that hemisphere p.f. computes bnry charge

Z+(D
2) =

✓
r

r0

◆c/6

c⌦(�) , Z�(D
2) =

✓
r

r0

◆c/6

c⌦(�̄) .

Under Kähler Weyl transformations c⌦ ! c⌦ eF

The boundary entropy is the scheme-independent combination

g⌦ =
|c⌦|

e�K/2
=

s
Z+(D2)Z�(D2)

Z(S2)

D-brane mass



In string-theory compactifications,       and         are
the mass and RR charges of the 1/2 BPS D-brane states

g⌦

dyons in field-theory limits

These are related to worldsheet anomalies !

c⌦I



 3 steps in calculation:
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Take into account the divergence terms in 

Add `minimal’ boundary term needed for susy

A
closed

Extra boundary-superinvariant additions
using formalism of boundary superspace

Technical details:



Reference boundary completion

Dsusy = ✏ (Q+ +Q�)� ✏̄ (Q̄+ + Q̄�)
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The transformation of the D-term is a total derivative 

We want to write as the susy transformation of a boundary term.

top component



Standard manipulations give:

with

so that

is our susy-invariant standard completion.
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Boundary superspace
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Restrictions of bulk superfields, e.g.

 WZ-consistency, locality and parity covariance leads to ansatz for  

boundary-superinvariant contribution to anomaly:
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and reality condition

Hori  (hep-th/0012179)

Usual D-term and F-term integrals of bnry superfields are invariant 

Brunner + Hori  (hep-th/0303135)



Collecting everything:
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where

central-charge anomaly Weyl-Osborn anomaly

cf Polchinski;  Solodukhin for higher D
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no terms propto �⌃⇤I
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 Kähler-Weyl covariance (up to local counterterms) requires

  section of holomorphic line bundlec⌦ := eh
⌦

K ! K +H + H̄ h⌦ ! h⌦ �H



 final ingredient: susy hemisphere

 . . . .   Seiberg, Festuccia 1105.0689
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 integrated anomaly subtracted so as to vanish for infinitesimal 
 disk depends only the holomorphic boundary charge, plus the

 auxiliary field of the metric.



 Killing-spinor equations imply
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Two solutions for hemisphere with B-type bnry condition:



� = � log(1 + zz̄) + constant , a = 0
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qed



5. Summary + outlook 

Computed the super-Weyl anomaly for N = (2, 2) models on 

a surface with boundary generalizing the result of

Gomis, Komargodski, Hsin, Schwimmer, Seiberg, Theisen  (1509.08511)

Not only the Kähler potential but also the brane charges & mass
are given by an (`Osborn-type’) anomaly. They can be computed

by localization of the hemisphere partition function



Argument easily extended to sphere partition function

Extension to higher dimensions and other co-dimension defects

[in progress with Daniel]

with moduli-changing interface

1 2 CI = e�K(�1,�̄2)

2 log gI = K(�1, ¯�1) +K(�2, ¯�2)�K(�1, ¯�2)�K(�2, ¯�1)

Calabi’s diastasis function

CB, Brunner, Douglas, Rastelli  (1311.2202)



Many thanks to the organizers

of this wonderful (series of) meeting


