Weyl Anomalies and D-brane Charges

Constantin Bachas

9th Crete Regional Meeting in String Theory Kolymbari, July 9-16 2017

An elegant scientist and a very kind person

whose memory lives also through this series of meetings

Introduction

This talk is about an (analytic) extension of a beautiful paper by Gomis, Komargodski, Hsin, Schwimmer, Seiberg, Theisen (1509.08511)

These authors show that the geometry (Kähler potential) of CY moduli space $\mathcal{M}_{C Y}$ is related to Weyl anomalies, and that it can be computed from the sphere partition function.

Gromov-Witten
invariants

This opens a new line of attack to a time-honoured problem, without relying on mirror symmetry. It also motivates a a striking conjecture: that $\mathcal{M}_{C Y}$ has zero Kähler class

With Daniel Plencner we generalized the Gomis et al anomaly to manifolds with boundary
arXiv: 1612.06386

This shows in particular that the hemisphere partition function computes the other piece of geometric data besides $K(\lambda, \bar{\lambda})$:

$$
\begin{aligned}
& \text { The central charge } c^{\Omega}(\lambda), \\
& \text { and the mass of CY D-branes } \quad M^{\Omega}=\frac{\left|c^{\Omega}\right|^{2}}{e^{-K}}
\end{aligned}
$$

Few reminders and earlier work:

- CY moduli space factorizes locally:
$h_{\substack{\text { complex structure } \\ h^{2,1} \\ \text { chiral }}}^{\mathcal{M}_{c} \times \mathcal{M}_{\text {tc }}}$

Studied extensively for 30 years.

Strong constraints from $\mathcal{N}=2$ supersymmetry of of type-II string theory compactified on CY3:

Metric on complex-structure m.s. is classical but on Kähler m.s. it has instanton corrections

Gromov-Witten invariants

Assuming mirror symmetry, gives the latter from the former when mirror manifold and map is known. But usually it is not.

Recent progress came from calculations of partition functions of $N=(2,2) \quad G L S M$ using susy localization

sphere
Benini, Cremonesi 1206.2356
Doroud, Gomis, Le Floch, Lee 1206.2606

Honda + Okuda 1308.2217
hemisphere

$$
\text { Hori + Romo } 1308.2438
$$

Sugishita + Terashima 1308.1973

It was conjectured (and checked in examples) that:
Jockers, Kumar, Lapan, Morrison, Romo (1208.6244)

$$
Z\left(S^{2}\right)=\left(\frac{r}{r_{0}}\right)^{c / 3} e^{-K(\lambda, \bar{\lambda})}
$$

$$
\mathcal{Z}\left(S^{2} / Z_{2}\right)=\left(\frac{r}{r_{0}}\right)^{c / 6} c^{\Omega}(\lambda)
$$

An argument based on \dagger^{*} eqns was given by Gomis + Lee (1210.6022)

The proof of Gomis, Komargodski, Hsin, Schwimmer, Seiberg, Theisen is more elegant and powerful.

It is based on the $\mathrm{N}=2$ supersymmetric completion of a Weyl anomaly first discovered by Osborn '91

In the rest of this talk I will review this work of Gomis et al, then extend it to manifolds with boundary in 2D.

Bulk super-Weyl anomaly

Anomalies : non-conservation in correlation functions due to contact terms

$$
\left\langle\partial_{\mu} j^{\mu} \mathcal{O}_{1}\left(p_{1}\right) \cdots \mathcal{O}_{n}\left(p_{n}\right)\right\rangle \neq 0
$$

When r.h.s. is proportional to momenta: non-conservation only in presence of spacetime-dependent background fields

For chiral anomalies: background is gauge or gravitational For trace (Weyl) anomaly, can be exactly-marginal couplings:

Osborn '91
Osborn, Petkou '93

Bzowski, McFadden, Skenderis '13 ’15

In 2D the 2-point function of marginal operators reads:

Zamolodchikov metric anomaly

Turn on space-dependent couplings λ^{I} :

$$
\frac{\partial \mathcal{Z}}{\partial \log \mu} \sim \int_{z} \int_{w} \lambda^{I}(z) \bar{\lambda}^{\bar{J}}(w) \frac{\partial}{\partial \log \mu}\left\langle\mathcal{O}_{I}(z) \overline{\mathcal{O}}_{\bar{J}}(w)\right\rangle \sim \int \partial_{\mu} \lambda^{I} \partial^{\mu} \bar{\lambda}^{\bar{J}} g_{I \bar{J}}
$$

where we used $\quad \partial \bar{\partial} \log |z-w| \sim \delta^{(2)}(z-w)$
\exists NO anomaly for constant couplings. But supersymmetry relates it to a term that does not vanish when $\partial_{\mu} \lambda^{I}=0$
Gomis et al (1509.08511)

This term can be removed by non-susy local counterterm; but SUSY gives it universal meaning

Technical details:

$$
\mathcal{N}=(2,2) \text { SCFTs have } \quad U(1)_{V} \times U(1)_{A} \quad \text { R-symmetry. }
$$

In computing the anomaly we choose to preserve the vector-like symmetry, so we must couple it to the $\mathcal{N}=2$ supergravity in which this symmetry is gauged by a field V^{μ}

Closset + Cremonesi (1404.2636)

In superconformal gauge:

$$
g_{\mu \nu}=e^{2 \sigma} \eta_{\mu \nu}, \quad V^{\mu}=\epsilon^{\mu \nu} \partial_{\nu} a
$$

Classically σ and a decouple, but in the quantum theory they dont due to the Weyl and axial anomalies.

Supersymmetry puts these fields in a twisted-chiral multiplet

$$
\Sigma\left(y^{\mu}\right)=(\sigma+i a)+\theta^{+} \bar{\chi}_{+}+\bar{\theta}^{-} \chi_{-}+\theta^{+} \bar{\theta}^{-} w
$$

whose components are functions of $\quad y^{ \pm}=x^{ \pm} \mp i \theta^{ \pm} \bar{\theta}^{ \pm}$

The tc field obeys $\quad \bar{D}_{+} \Sigma=D_{-} \Sigma=0$

$$
\text { where } \quad D_{ \pm}=\frac{\partial}{\partial \theta^{ \pm}}-i \bar{\theta}^{ \pm} \partial_{ \pm}, \quad \bar{D}_{ \pm}=-\frac{\partial}{\partial \bar{\theta}^{ \pm}}+i \theta^{ \pm} \partial_{ \pm} .
$$

It is useful to also promote the marginal couplings to vevs of tc fields

$$
\Lambda^{I}=\lambda^{I}\left(y^{ \pm}\right)+\cdots, \quad \bar{\Lambda}^{I}=\bar{\lambda}^{I}\left(\bar{y}^{ \pm}\right)+\cdots
$$

so as to make the susy of the anomaly manifest.

The bulk anomaly $i A(\delta \Sigma):=\delta_{\Sigma} \log \mathcal{Z}_{V}(M)$ is the susy invariant

$$
A_{\text {closed }}:=A^{(1)}+A^{(2)}=\frac{1}{4 \pi} \int_{M} d^{2} x \int d^{4} \theta\left[\frac{c}{6}(\delta \Sigma \bar{\Sigma}+\delta \bar{\Sigma} \Sigma)-(\delta \Sigma+\delta \bar{\Sigma}) K(\Lambda, \bar{\Lambda})\right]
$$

Gomis et al (1509.08511)

This obeys Wess-Zumino consistency $\quad \delta_{\Sigma} A\left(\delta \Sigma^{\prime}\right)-\delta_{\Sigma^{\prime}} A(\delta \Sigma)=0$ and can be integrated with the result:

$$
\log \mathcal{Z}_{V} \supset \frac{i}{4 \pi} \int_{M} d^{2} x \int d^{4} \theta\left[\frac{c}{6} \Sigma \bar{\Sigma}-(\Sigma+\bar{\Sigma}) K\right]
$$

super-Liouville super-Osborn

Expand in components:

$$
\begin{aligned}
A^{(1)} & =-\frac{c}{12 \pi} \int_{M} d^{2} x\left[\delta \sigma \square \sigma+\delta a \square a+\frac{1}{2}(\delta w \bar{w}+\delta \bar{w} w)+\partial^{\mu} b_{\mu}^{(1)}\right]+\text { fermions } \\
A^{(2)} & =-\frac{1}{2 \pi} \int_{M} d^{2} x\left[\delta \sigma\left(\partial_{\mu} \lambda^{I} \partial^{\mu} \bar{\lambda}^{\bar{J}}\right) \partial_{I} \partial_{\bar{J}} K-\frac{1}{2} K \square \delta \sigma-\left(\partial^{\mu} \delta a\right) \mathcal{K}_{\mu}+\partial^{\mu} b_{\mu}^{(2)}\right] \\
& \text { where } \quad \mathcal{K}_{\mu}:=\frac{i}{2}\left(\partial_{I} K \partial_{\mu} \lambda^{I}-\partial_{\bar{I}} K \partial_{\mu} \bar{\lambda}^{\bar{I}}\right) \quad \longleftarrow \quad \text { Kähler one-form }
\end{aligned}
$$

(Cohomologically) non-trivial, real anomalies

Variation of local invariant counterterm

$$
\sim \int \sqrt{g} R^{(2)} K(\lambda, \bar{\lambda})
$$

The first term in $A^{(2)}$ is the scale anomaly in the 2-point function and $\partial_{I} \partial_{\bar{J}} K=g_{I \bar{J}}$

contact term

The non-vanishing term for constant couplings is the red one It could be removed by change of scheme in bosonic theory, but supersymmetry relates it to the non-trivial blue terms !

Similar remarks for 4D Casimir energy
Assel, Cassani, Di Pietro, Komargodski, Lorenzen, Martelli 1503.05537

Implications

Integrating the anomaly for constant couplings gives

$$
\int_{S^{2}} K \square \sigma=-4 \pi K \quad Z_{V}^{E}\left(S^{2}\right)=\left(\frac{r}{r_{0}}\right)^{c / 3} e^{-K(\lambda, \bar{\lambda})}
$$

so the 2-sphere free energy computes the Kähler potential on the SCFT2 moduli space (both chiral and twisted chiral)

A puzzle

$Z_{V}^{E}\left(S^{2}\right)$ not invariant under Kähler-Weyl transformations

$$
K^{\prime}(\lambda, \bar{\lambda})=K(\lambda, \bar{\lambda})+H(\lambda)+\bar{H}(\bar{\lambda})
$$

Resolution

The variation amounts to change of renormalization scheme:

$$
\begin{gathered}
\Delta_{\mathrm{KW}} A^{(2)}=-\frac{1}{4 \pi} \int_{M} d^{2} x \int d^{4} \theta(\delta \Sigma+\delta \bar{\Sigma}) H+c . c . \\
=-\frac{1}{4 \pi} \int_{M} d^{2} x \int d \theta^{+} d \bar{\theta}^{-}\left(\bar{D}_{+} D_{-} \delta \bar{\Sigma}\right) H+\int_{M} d^{2} x\left(\partial^{\mu} Y_{\mu}\right)+c . c . \\
\text { twisted F-term } \\
\mathcal{R}=\bar{D}_{+} D_{-} \bar{\Sigma}=-\bar{w}+\theta^{+} \bar{\theta}^{-} \partial_{+} \partial_{-}(\sigma-i a)+\cdots
\end{gathered}
$$

curvature superfield

So local, susy and diffeo-invariant counterterm compensates the Kähler-Weyl (gauge) transformation!

An interesting conjecture

If the moduli space had non-vanishing Kähler class one could pick $\lambda^{I}(x)$ such that $S^{2} \rightarrow \mathcal{M}$ is non-trivial 2-cycle

Then there would be no global renormalization scheme and no well-defined generating function

Way out: Moduli space has Kähler class $=0$

Boundary anomaly

Consider half space:

One-point functions of marginal operators:

$$
\left\langle\mathcal{O}_{I}(x)\right\rangle_{\Omega}=d_{I}^{\Omega} \mathcal{R} \frac{1}{\left|x_{1}\right|^{2}}=d_{I}^{\Omega} \partial_{1}^{2}\left[\Theta\left(-x^{1}\right) \log \left|x^{1} \mu\right|\right] \Omega
$$

Focus on B-type branes which are not obstructing Kahler deformations

Take region of Kähler moduli space with no walls of marginal stability.

The lpt-function coefficients are related to a

$$
\begin{aligned}
& \text { holomorphic boundary charge } c^{\Omega}(\lambda) \\
& 4 d_{I}=\frac{c_{I}^{\Omega}}{c^{\Omega}}=\partial_{I}\left(K+\log c^{\Omega}\right) \quad \text { Ooguri, Oz, Yin `96 }
\end{aligned}
$$

For the mirror A-type branes $\quad c^{\Omega}=\int_{\gamma_{\text {Lag }}} \Omega^{(3,0)}$

Argument: vacuum projection of boundary state

$$
\left.\Pi_{\mathrm{vac}}|\Omega\rangle\right\rangle:=c^{\Omega}|0\rangle_{\mathrm{RR}}+\sum_{I} c_{I}^{\Omega}|I\rangle_{\mathrm{RR}}
$$

is flat section of the improved connection
$\nabla-C \quad$ on moduli space
structure constants of chiral ring

Our result: prove these relations from Weyl-Osborn anomaly, and show that hemisphere p.f. computes bnry charge

$$
\mathcal{Z}_{+}\left(D^{2}\right)=\left(\frac{r}{r_{0}}\right)^{c / 6} c^{\Omega}(\lambda), \quad \mathcal{Z}_{-}\left(D^{2}\right)=\left(\frac{r}{r_{0}}\right)^{c / 6} c^{\Omega}(\bar{\lambda}) .
$$

Under Kähler Weyl transformations $c^{\Omega} \rightarrow c^{\Omega} e^{F}$
The boundary entropy is the scheme-independent combination

$$
\begin{aligned}
& \qquad g^{\Omega}=\frac{\left|c^{\Omega}\right|}{e^{-K / 2}}=\sqrt{\frac{\mathcal{Z}_{+}\left(D^{2}\right) \mathcal{Z}_{-}\left(D^{2}\right)}{\mathcal{Z}\left(S^{2}\right)}} \\
& \text { D-brane mass }
\end{aligned}
$$

In string-theory compactifications, g^{Ω} and c_{I}^{Ω} are the mass and RR charges of the $1 / 2$ BPS D-brane states \uparrow

dyons in field-theory limits

These are related to worldsheet anomalies !

Technical details:

3 steps in calculation:

Take into account the divergence terms in $A_{\text {closed }}$

$$
\begin{aligned}
& b_{\mu}^{(1)}=\frac{1}{4}\left(\partial_{\mu} \delta \sigma\right) \sigma-\frac{3}{4} \delta \sigma \partial_{\mu} \sigma+\frac{1}{4}\left(\partial_{\mu} \delta a\right) a-\frac{3}{4} \delta a \partial_{\mu} a \\
& b_{\mu}^{(2)}=\frac{1}{4}\left(\partial_{\mu} \delta \sigma\right) K-\frac{1}{4} \delta \sigma \partial_{\mu} K .
\end{aligned}
$$

Add `minimal' boundary term needed for susy

Extra boundary-superinvariant additions using formalism of boundary superspace

Reference boundary completion

The type-B susy generator is $\quad \mathcal{D}_{\text {susy }}=\epsilon\left(Q_{+}+Q_{-}\right)-\bar{\epsilon}\left(\bar{Q}_{+}+\bar{Q}_{-}\right)$
where

$$
\mathcal{Q}_{ \pm}=\frac{\partial}{\partial \theta^{ \pm}}+i \bar{\theta}^{ \pm} \partial_{ \pm}, \quad \overline{\mathcal{Q}}_{ \pm}=-\frac{\partial}{\partial \bar{\theta}^{ \pm}}-i \theta^{ \pm} \partial_{ \pm}
$$

The transformation of the D-term is a total derivative

$$
\Delta_{\text {susy }}[\mathcal{S}]_{\text {top }}=\int d^{4} \theta \mathcal{D}_{\text {susy }} \mathcal{S}=i \epsilon \int d^{4} \theta\left(\bar{\theta}^{+} \partial_{+} \mathcal{S}+\bar{\theta}^{-} \partial_{-} \mathcal{S}\right)+c . c .
$$

We want to write as the susy transformation of a boundary term.

Standard manipulations give:

$$
\begin{gathered}
\Delta_{\text {susy }}[\mathcal{S}]_{\text {top }}=-\Delta_{\text {susy }}\left(\partial_{1}[S]_{\text {bnry }}\right)+\partial_{0} Y \\
\text { with } \quad[\mathcal{S}]_{\text {bnry }}=-\frac{i}{2}\left([\mathcal{S}]_{\theta^{+} \bar{\theta}^{-}}-[\mathcal{S}]_{\theta^{-} \bar{\theta}^{+}}\right)-\frac{1}{4} \partial_{1}[\mathcal{S}]_{\emptyset} \\
\text { so that } \quad \\
\mathrm{I}_{D}(\mathcal{S}):=\int d^{2} x[\mathcal{S}]_{\text {top }}+\int d x^{0}[S]_{\text {bnry }}
\end{gathered}
$$

is our susy-invariant standard completion.

For the case of interest, the integrated superfield is $\delta \mathcal{S}$

$$
\text { with } \quad \mathcal{S}=\frac{1}{4 \pi}\left[\frac{c}{6} \Sigma \bar{\Sigma}-(\Sigma+\bar{\Sigma}) K\right]
$$

$$
x^{+}=x^{-}, \quad \theta \equiv e^{-i \beta} \theta^{+}=e^{i \beta} \theta^{-}, \quad \bar{\theta} \equiv e^{i \beta} \bar{\theta}^{+}=e^{-i \beta} \bar{\theta}^{-}
$$

Restrictions of bulk superfields, e.g.

$$
\left.\Sigma\right|_{\partial M}=\sigma+i a+\theta \bar{\chi}_{+}+\bar{\theta} \chi_{-}+\theta \bar{\theta}\left[w-i \partial_{1}(\sigma+i a)\right]
$$

Usual D-term and F-term integrals of bnry superfields are invariant

Brunner + Hori (hep-th/0303135)

WZ-consistency, locality and parity covariance leads to ansatz for boundary-superinvariant contribution to anomaly:

$$
\int d x^{0}[\mathcal{B}]_{\theta \bar{\theta}} \quad \text { where } \quad \mathcal{B}=\left.\frac{i}{8 \pi}\left[\# \frac{c}{12}\left(\Sigma^{2}-\bar{\Sigma}^{2}\right)+\bar{\Sigma} G^{\Omega}(\Lambda, \bar{\Lambda})-\Sigma G^{\Omega}(\bar{\Lambda}, \Lambda)\right]\right|_{\partial M}
$$

and reality condition

$$
G^{\Omega}(\bar{\Lambda}, \Lambda)=\left[G^{\Omega}(\Lambda, \bar{\Lambda})\right]^{\star}
$$

Collecting everything:

$$
A_{\text {open }}=\int_{M} d^{2} x[\delta \mathcal{S}]_{\mathrm{top}}+\int_{\partial M} d x^{0}\left([\delta \mathcal{S}]_{\text {bnry }}+[\delta \mathcal{B}]_{\theta \bar{\theta}}\right)
$$

where $\quad \mathcal{S}=\frac{1}{4 \pi}\left[\frac{c}{6} \Sigma \bar{\Sigma}-(\Sigma+\bar{\Sigma}) K\right]$

$$
\begin{aligned}
& {[\mathcal{S}]_{\text {bnry }}=-\frac{i}{2}\left([\mathcal{S}]_{\theta^{+} \bar{\theta}^{-}}-[\mathcal{S}]_{\theta^{-} \bar{\theta}^{+}}\right)-\frac{1}{4} \partial_{1}[\mathcal{S}]_{\emptyset}} \\
& \mathcal{B}=\frac{i}{8 \pi}\left[\# \frac{c}{12}\left(\Sigma^{2}-\bar{\Sigma}^{2}\right)+\bar{\Sigma} G^{\Omega}(\Lambda, \bar{\Lambda})-\Sigma G^{\Omega}(\bar{\Lambda}, \Lambda)\right]
\end{aligned}
$$

Susy Ward identity: $\quad\left\langle\int \delta \mathcal{L}_{\text {sugra }} \int \delta \mathcal{L}_{\mathrm{SCFT}}\right\rangle=0 \quad$ if $\quad \delta \bar{\Sigma}=\bar{\Lambda}^{I}=0$
\Longrightarrow no terms propto $\delta \Sigma \Lambda^{I}$

$$
\Longrightarrow \quad G^{\Omega}(\lambda, \bar{\lambda})=K(\lambda, \bar{\lambda})+2 \log c^{\Omega}(\lambda)
$$

Kähler-Weyl covariance (up to local counterterms) requires $c^{\Omega}:=e^{h^{\Omega}}$ section of holomorphic line bundle

$$
K \rightarrow K+H+\bar{H} \quad h^{\Omega} \rightarrow h^{\Omega}-H
$$

final ingredient: susy hemisphere

. . . . Seiberg, Festuccia 1105.0689

$$
A_{\text {open }} \supset \delta\left\{-\frac{1}{4 \pi} \int d^{2} x\left[\square(\sigma-i a) h^{\Omega}+\square(\sigma+i a) \bar{h}^{\Omega}\right]+\frac{i}{4 \pi} \int d x^{0}\left[\bar{w} h^{\Omega}-w \bar{h}^{\Omega}\right]\right\}
$$

integrated anomaly subtracted so as to vanish for infinitesimal disk depends only the holomorphic boundary charge, plus the auxiliary field of the metric.

Killing-spinor equations imply

$$
\begin{aligned}
& w=2 i \frac{\zeta^{-}}{\zeta^{+}} \partial_{z}\left(\sigma+i a+\log \zeta^{-}\right)=2 i \frac{\bar{\zeta}^{+}}{\bar{\zeta}^{-}} \partial_{\bar{z}}\left(\sigma+i a+\log \bar{\zeta}^{+}\right) \\
& \bar{w}=-2 i \frac{\zeta^{+}}{\zeta^{-}} \partial_{\bar{z}}\left(\sigma-i a+\log \zeta^{+}\right)=-2 i \frac{\bar{\zeta}^{-}}{\bar{\zeta}^{+}} \partial_{z}\left(\sigma-i a+\log \bar{\zeta}^{-}\right)
\end{aligned}
$$

where the unbroken superconformal symmetries are

$$
\epsilon_{+}=\epsilon \zeta^{-}(z), \quad \epsilon_{-}=-\epsilon \zeta^{+}(\bar{z}), \quad \bar{\epsilon}_{+}=\bar{\epsilon} \bar{\zeta}^{-}(z), \quad \bar{\epsilon}_{-}=-\bar{\epsilon} \bar{\zeta}^{+}(z)
$$

Two solutions for hemisphere with B-type bnry condition:

$$
\begin{array}{llll}
(+): & \zeta^{-}=1, & \zeta^{+}=\bar{z}, & \bar{\zeta}^{-}=z,
\end{array} \quad \bar{\zeta}^{+}=1, ~ 子 ~(-): \quad \zeta^{-}=z, \quad \zeta^{+}=-1, \quad \bar{\zeta}^{-}=1, \quad \bar{\zeta}^{+}=-\bar{z}
$$

Supersymmetric hemispheres with B-type bnry condition:

$$
\begin{gathered}
\sigma=-\log (1+z \bar{z})+\text { constant }, \quad a=0 \\
(+): \quad w=\bar{w}=-\frac{2 i}{1+z \bar{z}}, \quad(-): \quad w=\bar{w}=\frac{2 i}{1+z \bar{z}}
\end{gathered}
$$

which implies

$$
Z_{+}\left(D^{2}, \Omega\right)=\mathcal{Z}_{0} c^{\Omega}(\lambda), \quad Z_{-}\left(D^{2}, \Omega\right)=\mathcal{Z}_{0} c^{\Omega}(\bar{\lambda})
$$

5. Summary + outlook

Computed the super-Weyl anomaly for $\mathcal{N}=(2,2)$ models on a surface with boundary generalizing the result of Gomis, Komargodski, Hsin, Schwimmer, Seiberg, Theisen (1509.08511)

Not only the Kähler potential but also the brane charges \& mass are given by an ('Osborn-type') anomaly. They can be computed by localization of the hemisphere partition function

Argument easily extended to sphere partition function with moduli-changing interface

$$
\begin{gathered}
C^{\mathcal{I}}=e^{-K\left(\lambda_{1}, \bar{\lambda}_{2}\right)} \\
2 \log g^{\mathcal{I}}=K\left(\lambda_{1}, \bar{\lambda}_{1}\right)+K\left(\lambda_{2}, \bar{\lambda}_{2}\right)-K\left(\lambda_{1}, \bar{\lambda}_{2}\right)-K\left(\lambda_{2}, \bar{\lambda}_{1}\right)
\end{gathered}
$$

Calabi's diastasis function
CB, Brunner, Douglas, Rastelli (1311.2202)

Extension to higher dimensions and other co-dimension defects
[in progress with Daniel]

Many thanks to the organizers
of this wonderful (series of) meeting

