Scale hierarchies and string phenomenology

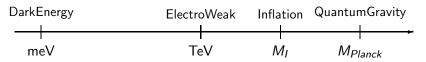
I. Antoniadis

Albert Einstein Center, University of Bern and LPTHE, UPMC/CNRS, Sorbonne Universités, Paris

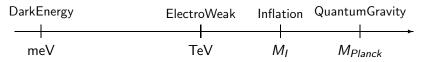
9th Crete Regional Meeting in String Theory In memoriam: Ioannis Bakas Kolymbari, Greece, 13 July 2017

Problem of scales

- describe high energy (SUSY?) extension of the Standard Model unification of all fundamental interactions
- incorporate Dark Energy
 simplest case: infinitesimal (tuneable) +ve cosmological constant
- describe possible accelerated expanding phase of our universe models of inflation (approximate de Sitter)
 - \Rightarrow 3 very different scales besides M_{Planck} :



Problem of scales



- 1 they are independent
- possible connections
 - ullet M_I could be near the EW scale, such as in Higgs inflation but large non minimal coupling to explain

I.A.-Patil '14 and '15

connect inflation and SUSY breaking scales

impose independent scales: proceed in 2 steps

- SUSY breaking at $m_{SUSY} \sim \text{TeV}$ with an infinitesimal (tuneable) positive cosmological constant Villadoro-Zwirner '05 I.A.-Knoops, I.A.-Ghilencea-Knoops '14, I.A.-Knoops '15
- 2 Inflation connected or independent? [14] [17] [25]

Toy model for SUSY breaking

Content (besides N=1 SUGRA): one vector V and one chiral multiplet S with a shift symmetry $S \to S - ic\omega \leftarrow \text{transformation parameter}$

String theory: compactification modulus or universal dilaton

$$s = 1/g^2 + ia \leftarrow$$
 dual to antisymmetric tensor

Kähler potential K: function of $S + \bar{S}$

string theory:
$$K = -p \ln(S + \bar{S})$$

Superpotential: constant or single exponential if R-symmetry $W=ae^{bS}$

$$\int d^2 \theta W$$
 invariant $b < 0 \Rightarrow$ non perturbative

can also be described by a generalized linear multiplet [11]

Scalar potential

$$V_F = a^2 e^{\frac{b}{l}} I^{p-2} \left\{ \frac{1}{p} (pl - b)^2 - 3l^2 \right\}$$
 $l = 1/(s + \bar{s})$ Planck units

- $b > 0 \Rightarrow SUSY$ local minimum in AdS space with l = b/p
- $b \le 0 \Rightarrow$ no minimum with l > 0 $(p \le 3)$

but interesting metastable SUSY breaking vacuum

when R-symmetry is gauged by V allowing a Fayet-Iliopoulos (FI) term:

$$V_D = c^2 I(pI - b)^2$$
 for gauge kinetic function $f(S) = S$

- b > 0: $V = V_F + V_D$ SUSY AdS minimum remains
- b = 0: SUSY breaking minimum in AdS (p < 3)
- b < 0: SUSY breaking minimum with tuneable cosmological constant Λ

Scalar potential for b = 0

$$V = a^2(p-3)I^p + c^2p^2I^3$$

can be obtained for p = 2 and l the string dilaton:

- all geometric moduli fixed by fluxes in a SUSY way
- D-term contribution : D-brane potential (uncancelled tension)
- F-term contribution : tree-level potential (away from criticality)

String realisation: framework of magnetised branes

minimisation and spectrum

Minimisation of the potential: V' = 0, $V = \Lambda$

In the limit
$$\Lambda \approx 0 \ (p=2) \Rightarrow$$
 [27]

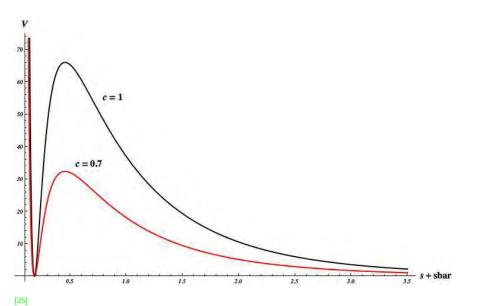
$$b/I = \rho \approx -0.183268 \Rightarrow \langle I \rangle = b/\rho$$

$$\frac{a^2}{bc^2} = 2\frac{e^{-\rho}}{\rho} \frac{(2-\rho)^2}{2+4\rho-\rho^2} + \mathcal{O}(\Lambda) \approx -50.6602 \quad \Rightarrow c \propto a$$

Physical spectrum:

massive dilaton, U(1) gauge field, Majorana fermion, gravitino

All masses of order $m_{3/2} \approx e^{\rho/2} I_a \leftarrow \text{TeV scale}$



Properties and generalizations

Metastability of the ground state: extremely long lived

$$I \simeq$$
 0.02 (GUT value $lpha_{GUT}/2$) $m_{3/2} \sim \mathcal{O}(\text{TeV}) \Rightarrow$ decay rate $\Gamma \sim e^{-\mathcal{B}}$ with $B \approx 10^{300}$

 Add visible sector (MSSM) preserving the same vacuum matter fields φ neutral under R-symmetry

$$K = -2\ln(S + \bar{S}) + \phi^{\dagger}\phi$$
 ; $W = (a + W_{MSSM})e^{bS}$
 \Rightarrow soft scalar masses non-tachyonic of order $m_{3/2}$ (gravity mediation)

Toy model classically equivalent to [6]

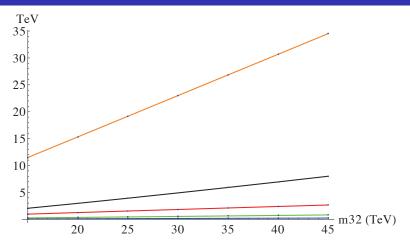
$$K = -p \ln(S + \bar{S}) + b(S + \bar{S})$$
; $W = a$ with V ordinary $U(1)$

• Dilaton shift can be identified with $B-L \supset \text{matter parity } (-)^{B-L}$

Properties and generalizations

- R-charged fields needed for anomaly cancellation
- A simple (anomaly free) variation: f=1 and p=1 tuning still possible but scalar masses of neutral matter tachyonic possible solution: add a new field Z in the 'hidden' SUSY sector \Rightarrow one extra parameter
- alternatively: add an S-dependent factor in Matter kinetic terms $K = -\ln(S+\bar{S}) + (S+\bar{S})^{-\nu} \sum \Phi \bar{\Phi} \quad \text{for } \nu \gtrsim 2.5$ or the B-L unit charge of SM particles \Rightarrow similar phenomenology
- distinct features from other models of SUSY breaking and mediation
- gaugino masses at the quantum level
 - ⇒ suppressed compared to scalar masses and A-terms

Typical spectrum



The masses of sbottom squark (yellow), stop (black), gluino (red), lightest chargino (green) and lightest neutralino (blue) as a function of the gravitino mass. The mass of the lightest neutralino varies between \sim 40 and 150 GeV [5]

Inflation in supergravity: main problems

ullet slow-roll conditions: the eta problem \Rightarrow fine-tuning of the potential

$$\eta = V''/V$$
, $V_F = e^K(|DW|^2 - 3|W|^2)$

K: Kähler potential, W: superpotential canonically normalised field: $K = X\bar{X} \Rightarrow \eta = 1 + \dots$

- trans-Planckian initial conditions \Rightarrow break validity of EFT no-scale type models that avoid the η -problem
- stabilisation of the (pseudo) scalar companion of the inflaton chiral multiplets > complex scalars
- moduli stabilisation, de Sitter vacuum, ...

Starobinsky model of inflation

$$\mathcal{L} = \frac{1}{2}R + \alpha R^2$$

Lagrange multiplier $\phi \Rightarrow \mathcal{L} = \frac{1}{2}(1+2\phi)R - \frac{1}{4\alpha}\phi^2$

Weyl rescaling \Rightarrow equivalent to a scalar field with exponential potential:

$$\mathcal{L} = \frac{1}{2}R - \frac{1}{2}(\partial\phi)^2 - \frac{M^2}{12}\left(1 - e^{-\sqrt{\frac{2}{3}}\phi}\right)^2$$
 $M^2 = \frac{3}{4\alpha}$

Note that the two metrics are not the same

supersymmetric extension:

add D-term $\mathcal{R}\bar{\mathcal{R}}$ because F-term \mathcal{R}^2 does not contain \mathcal{R}^2

⇒ brings two chiral multiplets

SUSY extension of Starobinsky model

$$K = -3\ln(T + \bar{T} - C\bar{C})$$
; $W = MC(T - \frac{1}{2})$

- ullet T contains the inflaton: $\operatorname{Re} T = e^{\sqrt{\frac{2}{3}}\phi}$
- $C \sim \mathcal{R}$ is unstable during inflation

⇒ add higher order terms to stabilize it

e.g.
$$C\bar{C} \to h(C,\bar{C}) = C\bar{C} - \zeta(C\bar{C})^2$$
 Kallosh-Linde '13

- SUSY is broken during inflation with C the goldstino superfield
 - \rightarrow model independent treatment in the decoupling sgoldstino limit
 - ⇒ minimal SUSY extension that evades stability problem [19]

Effective field theory of SUSY breaking at low energies

Analog of non-linear σ -model \Rightarrow constraint superfields

Rocek-Tseytlin '78, Lindstrom-Rocek '79, Komargodski-Seiberg '09

Goldstino: chiral superfield X_{NL} satisfying $X_{NL}^2 = 0 \Rightarrow$

$$X_{NL}(y) = \frac{\chi^2}{2F} + \sqrt{2}\theta\chi + \theta^2 F \qquad y^{\mu} = x^{\mu} + i\theta\sigma^{\mu}\bar{\theta}$$
$$= F\Theta^2 \qquad \Theta = \theta + \frac{\chi}{\sqrt{2}F}$$

$$\mathcal{L}_{NL} = \int\!\! d^4 heta X_{NL} ar{X}_{NL} - rac{1}{\sqrt{2}\kappa} \left\{ \int\!\! d^2 heta X_{NL} + h.c.
ight\} = \mathcal{L}_{Volkov-Akulov}$$

R-symmetry with
$$[\theta]_R = [\chi]_R = 1$$
 and $[X]_R = 2$ $F = \frac{1}{\sqrt{2}\kappa} + \dots$

Non-linear SUSY in supergravity

I.A.-Dudas-Ferrara-Sagnotti '14

$$K = -3\log(1 - X\bar{X}) \equiv 3X\bar{X}$$
 ; $W = fX + W_0$ $X \equiv X_{NL}$ $\Rightarrow V = \frac{1}{3}|f|^2 - 3|W_0|^2$; $m_{3/2}^2 = |W_0|^2$

- V can have any sign contrary to global NL SUSY
- NL SUSY in flat space $\Rightarrow f = 3 m_{3/2} M_p$
- R-symmetry is broken by W_0
- Minimal SUSY extension of R² gravity

Non-linear Starobinsky supergravity [16]

$$K = -3\ln(T + \overline{T} - X\overline{X})$$
; $W = MXT + fX + W_0$ \Rightarrow

$$\mathcal{L} = \frac{1}{2}R - \frac{1}{2}(\partial\phi)^2 - \frac{M^2}{12}\left(1 - e^{-\sqrt{\frac{2}{3}}\phi}\right)^2 - \frac{1}{2}e^{-2\sqrt{\frac{2}{3}}\phi}(\partial a)^2 - \frac{M^2}{18}e^{-2\sqrt{\frac{2}{3}}\phi}a^2$$

• axion a much heavier than ϕ during inflation, decouples:

$$m_{\phi} = \frac{M}{3} e^{-\sqrt{\frac{2}{3}}\phi_0} << m_a = \frac{M}{3}$$

- inflation scale M independent from NL-SUSY breaking scale f
 - ⇒ compatible with low energy SUSY
- however inflaton different from goldstino superpartner
- ullet also initial conditions require trans-planckian values for ϕ ($\phi > 1$) $_{[5]}$

Inflation from supersymmetry breaking

I.A.-Chatrabhuti-Isono-Knoops '16, '17

Inflaton: goldstino superpartner in the presence of a gauged R-symmetry

• linear superpotential $W = f X \Rightarrow \text{no } \eta\text{-problem}$

$$V_F = e^K (|DW|^2 - 3|W|^2)$$

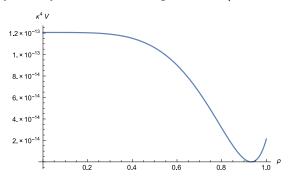
$$= e^K (|1 + K_X X|^2 - 3|X|^2) |f|^2 \qquad K = X\bar{X}$$

$$= e^{|X|^2} (1 - |X|^2 + \mathcal{O}(|X|^4) |f|^2 = \mathcal{O}(|X|^4) \implies \eta = 0 + \dots$$

- inflation around a maximum of scalar potential (hill-top) ⇒ small field
 no large field initial conditions
- ullet gauge R-symmetry: (pseudo) scalar absorbed by the $U(1)_R$
- ullet vacuum energy at the minimum: tuning between V_F and V_D

Two classes of models

• Case 1: R-symmetry is restored during inflation (at the maximum)



 Case 2: R-symmetry is (spontaneously) broken everywhere (and restored at infinity)

example: toy model of SUSY breaking [5] [25]

Case 1: R-symmetry restored during inflation

$$\mathcal{K}(X,\bar{X}) = \kappa^{-2}X\bar{X} + \kappa^{-2}A(X\bar{X})^{2}$$

$$W(X) = \kappa^{-3}fX \quad \Rightarrow \quad f(X) = 1 \quad (+\beta \ln X \text{ to cancel anomalies but } \beta \text{ very small})$$

$$\mathcal{V} = \mathcal{V}_{F} + \mathcal{V}_{D}$$

$$\mathcal{V}_{F} = \kappa^{-4}f^{2}e^{X\bar{X}(1+AX\bar{X})} \left[-3X\bar{X} + \frac{(1+X\bar{X}(1+2AX\bar{X}))^{2}}{1+4AX\bar{X}} \right]$$

$$\mathcal{V}_{D} = \kappa^{-4}\frac{q^{2}}{2} \left[1 + X\bar{X}(1+2AX\bar{X}) \right]^{2}$$

Assume inflation happens around the maximum $|X| \equiv \rho \simeq 0$ \Rightarrow

Case 1: predictions

slow-roll parameters

$$\eta = \frac{1}{\kappa^2} \left(\frac{V''}{V} \right) = 2 \left(\frac{-4A + x^2}{2 + x^2} \right) + \mathcal{O}(\rho^2) \qquad q = fx$$

$$\epsilon = \frac{1}{2\kappa^2} \left(\frac{V'}{V} \right)^2 = 4 \left(\frac{-4A + x^2}{2 + x^2} \right)^2 \rho^2 + \mathcal{O}(\rho^4) \simeq \eta^2 \rho^2$$

 η small: for instance $x \ll 1$ and $A \sim \mathcal{O}(10^{-1})$

inflation starts with an initial condition for $\phi=\phi_*$ near the maximum and ends when $|\eta|=1$

$$\Rightarrow$$
 number of e-folds $\mathit{N} = \int_{\mathit{end}}^{\mathit{start}} rac{\mathit{V}}{\mathit{V'}} = \kappa \int rac{1}{\sqrt{2\epsilon}} \simeq rac{1}{|\eta_*|} \ln \left(rac{
ho_{\mathrm{end}}}{
ho_*}
ight)$

Case 1: predictions

amplitude of density perturbations
$$A_s = \frac{\kappa^4 V_*}{24\pi^2 \epsilon_*} = \frac{\kappa^2 H_*^2}{8\pi^2 \epsilon_*}$$

spectral index $n_s = 1 + 2\eta_* - 6\epsilon_* \simeq 1 + 2\eta_*$
tensor – to – scalar ratio $r = 16\epsilon_*$

Planck '15 data :
$$\eta \simeq -0.02$$
, $A_s \simeq 2.2 \times 10^{-9}$, $N \gtrsim 50$

$$\Rightarrow r \lesssim 10^{-4}$$
, $H_* \lesssim 10^{12}$ GeV

Question: can a 'nearby' minimum exist with a tiny +ve vacuum energy?

Answer: Yes in a 'weaker' sense: perturbative expansion [21]

valid for the Kähler potential but not for the slow-roll parameters

generic V (not fine-tuned) $\Rightarrow 10^{-9} \lesssim r \lesssim 10^{-4}$, $10^{10} \lesssim H_* \lesssim 10^{12}$ GeV $_{[31]}$

Case 2 example: toy model of SUSY breaking

I.A.-Chatrabhuti-Isono-Knoops '16

Can the dilaton be the inflaton in the simple model of SUSY breaking based on a gauged shift symmetry?

the only physical scalar left over, partner (partly) of the goldstino partly because of a D-term auxiliary component

Same potential cannot satisfy the slow roll condition $|\eta|=|V''/V|<<1$ with the dilaton rolling towards the Standard Model minimum

- \Rightarrow need to create an appropriate plateau around the maximum of V $_{[10]}$ without destroying the properties of the SM minimum
- \Rightarrow study possible corrections to the Kähler potential only possibility compatible with the gauged shift symmetry

Extensions of the SUSY breaking model

Parametrize the general correction to the Kähler potential:

$$K = -p\kappa^{-2}\log\left(s + \overline{s} + \frac{\xi}{b}F(s + \overline{s})\right) + \kappa^{-2}b(s + \overline{s})$$

$$W = \kappa^{-3}a, \quad f(s) = \gamma + \beta s$$

$$P = \kappa^{-2}c\left(b - p\frac{1 + \frac{\xi}{b}F'}{s + \overline{s} + \frac{\xi}{b}F}\right)$$

Three types of possible corrections:

- perturbative: $F \sim (s + \overline{s})^{-n}$, $n \ge 0$
- non-perturbative D-brane instantons: $F \sim e^{-\delta(s+\bar{s})}$, $\delta > 0$
- non-perturbative NS5-brane instantons: $F \sim e^{-\delta(s+\bar{s})^2}$, $\delta > 0$

Only the last can lead to slow-roll conditions with sufficient inflation

Slow-roll inflation

$$F=\xi e^{\alpha b^2\phi^2}$$
 with $\phi=s+ar{s}=1/I\Rightarrow$ two extra parameters $\alpha<0,\,\xi$ they control the shape of the potential

slow-roll conditions:
$$\epsilon = 1/2(V'/V)^2 << 1$$
, $|\eta| = |V''/V| << 1$

 \Rightarrow allowed regions of the parameter space with $|\xi|$ small

additional independant parameters: a, c, b

SM minimum with tuneable cosmological constant Λ : V'=0, $V=\Lambda\approx 0$

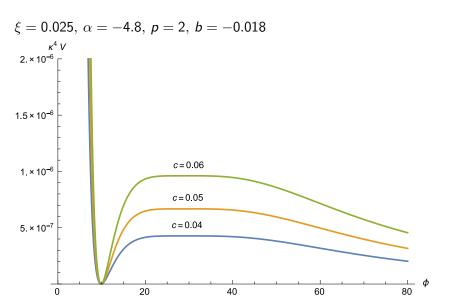
$$\xi=0 \Rightarrow b\phi_{min}=
ho_0$$
, $rac{a^2}{bc^2}=\lambda_0$ with ho_0,λ_0 calculable constants [9]

b controls $\phi_{min} \sim 1/g_s$ choose it of order 10

tuning determines a in terms of c overall scale of the potential

$$\xi \neq 0 \Rightarrow \rho_0, \lambda_0$$
 become functions $I(\xi, \alpha), \lambda(\xi, \alpha)$

numerical analysis ⇒ mild dependence



Fit Planck '15 data and predictions

p = 1: similar analysis \Rightarrow

$$\phi_* = 64.53$$
, $\xi = 0.30$, $\alpha = -0.78$, $b = -0.023$, $c = 10^{-13}$

N	ns	r	A_s
889	0.959	4×10^{-22}	2.205×10^{-9}

SM minimum: $\langle \phi \rangle \approx 21.53$, $\langle m_{3/2} \rangle = 18.36$ TeV, $\langle M_{A_{II}} \rangle = 36.18$ TeV

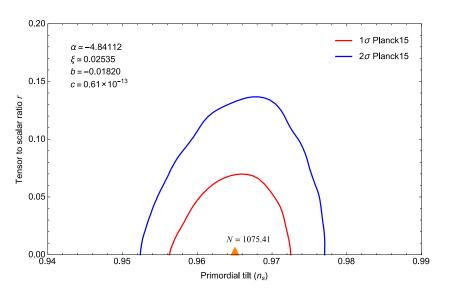
During inflation:

$$H_* = \kappa \sqrt{\mathcal{V}_*/3} = 5.09 \; \text{TeV}, \; \textit{m}^*_{3/2} = 4.72 \; \text{TeV}, \; \textit{M}^*_{\textit{A}_{\mu}} = 6.78 \; \text{TeV}$$

Low energy spectrum essentially the same with $\xi = 0$:

$$m_0^2 = m_{3/2}^2 [-2 + C], \quad A_0 = m_{3/2} C, \quad B_0 = A_0 - m_{3/2}$$

$$\mathcal{C}=1.53$$
 vs at $\xi=0$: $\mathcal{C}_0=1.52$, $m_{3/2}^0=17.27$, although $\langle\phi\rangle_0\approx 9.96_{\,[21]}$



Conclusions

String pheno: consistent framework for particle physics and cosmology

Challenge of scales: at least three very different (besides M_{Planck}) electroweak, dark energy, inflation, SUSY?

their origins may be connected or independent

SUSY with infinitesimal (tuneable) +ve cosmological constant

- interesting framework for model building incorporating dark energy
- identify inflaton with goldstino superpartner inflation at the SUSY breaking scale (TeV?)

General class of models with inflation from SUSY breaking:

(gauged) R-symmetry restored (case 1) or broken (case 2) during inflation small field, avoids the η -problem, no (pseudo) scalar companion