Exact results for class \mathbf{S}_{k}

Elli Pomoni

9th Crete Regional Meeting

Motivation: $\mathrm{N}=2$ exact results

* Seiberg-Witten theory: effective theory in the IR
* Nekrasov: instanton partition function
* Pestun: observables in the UV (path integral on the sphere localizes)

B String/M-/F-theory realizations

* Gaiotto: $4 D$ N=2 class S: $6 D(2,0)$ on Riemann surface $C_{g, n}$
* $A G T$: $4 D$ partition functions $=2 D$ CFT correlators

$$
2 D / 4 D
$$

* $4 D$ SC Index $=2 D$ correlation function of a TFT

relations

What can we do for $\mathrm{N}=1$ theories?

- Superconformal Index
[] Intriligator and Seiberg: generalized SW technology
■ No Localization
- An S^{4} partition function plagued with scheme ambiguities.
[Gerchkovitz, Gomis, Komargodski 2014]
(V) Derivatives of the free energy scheme independent.
[Bobev, Elvang, Kol, Olson, Pufu 2014]
* $N=1$ SuperConformal

Class $S_{k}\left(S_{r}\right)$:
[Gaiotto,Razamat 2015]

* Obtained by orbifolding N=2 (inheritance)
* Labeled by punctured Riemann Surface
* Index $=2 D$ correlation function of a TFT

Plan

Is there $A G T_{k}$?
 $4 D$ partition functions $=2 D$ CFT correlators

* Spectral curves for $N=1$ theories in class S_{k}
* From the curves: 2D symmetry algebra and representations
* Conformal Blocks \rightarrow Instanton partition function
* Free trinion partition functions on $S^{4} \rightarrow$ 3pt functions

Theories in Class \mathbf{S}_{k}

4D field theory point of view

$\mathrm{N}=2$ class S mother theory

	$U(1)_{t}$	$U(1)_{\alpha_{c}}$	$U(1)_{\beta_{i+1-c}}$	$U(1)_{\gamma_{i}}$
$V_{(i, c)}$	0	0	0	0
$\Phi_{(i, c)}$	-1	0	-1	+1
$Q_{(i, c-1)}$	$+1 / 2$	-1	+1	0
$\widetilde{Q}_{(i, c-1)}$	$+1 / 2$	+1	0	-1

$\mathrm{N}=1$ class S_{k} orbifold daughter

> Large global symmetry group
> extra $U(1)^{2 k-1}$

Class \mathbf{S} and \mathbf{S}_{k}

6D $\mathbf{(2 , 0)}$ SCFT on Riemann surface: 4D N=2 theories of class S

Transverse C^{2} / Z_{k} Orbifold the $6 D(2,0)$ SCFT to $6 D(1,0)$ SCFT
6D (1,0) SCFT on Riemann surface: 4D $\mathbf{N}=1$ theories of class $\mathbf{S}_{\mathbf{k}}$

	x^{0}	x^{1}	x^{2}	x^{3}	x^{4}	x^{5}	x^{6}	x^{7}	x^{8}	x^{9}	x^{10}
N M5-branes	-	-	-	-	.	\cdot	-	\cdot	.	\cdot	-
A_{k-1} orbifold	-	-	.	-	-	.	.

[Gaiotto,Razamat 2015]

Curves from M-theory

$$
\begin{aligned}
& t=e^{-\frac{x^{6}+i x^{10}}{R_{10}}} \\
& v=x^{4}+i x^{5}
\end{aligned}
$$

2D surface $F(t, v)=0$ in the 4D
The NS5/D4 is the classical configuration. space $\left\{x^{4}, x^{5}, x^{6}, x^{10}\right\}=\{v, t\}$.

Take in account tension of the branes: include quantum effects.
M-Cheory: a single Ms brane with non Erivial lopology

	x^{0}	x^{1}	x^{2}	x^{3}	x^{4}	x^{5}	x^{6}	x^{7}	x^{8}	x^{9}	$\left(x^{10}\right)$
M NS5 branes	-	-	-	-	-	-
N D4-branes	-	-	-	-	.	.	-	.	.	.	-
A_{k-1} orbifold	-	-	.	-	-	.	.

$$
v \sim e^{\frac{2 \pi i}{k}} v
$$

Sk CUPVES [1512.06079 Coman,EP,Taki,Yagi]

SW or IR curve Σ of $g=k N-1$

$$
x^{k N}=-\sum_{\ell=1}^{N} \phi_{k \ell}^{(4)}(t) x^{k(N-\ell)}
$$

$$
\phi_{k \ell}^{(4)}(t)=\frac{(-1)^{\ell} \mathfrak{c}_{L}^{(\ell, k)} t^{2}+u_{k \ell} t+(-1)^{\ell} \mathfrak{c}_{R}^{(\ell, k)} q}{t^{k \ell}(t-1)(t-q)}
$$

Gaiolto or UV curve $C_{0, n}$
a sphere with 4 punctures

$$
\begin{gathered}
\mathcal{N}=1 \operatorname{SU}(N) \operatorname{SCQCD}_{k} \\
\mathfrak{c}^{(s, k)}=\sum_{i_{1}<\cdots<i_{s}=1}^{N} m_{i_{1}}^{k} \cdots m_{i_{s}}^{k}
\end{gathered}
$$

The AGT-W correspondence

[Alday,Gaiotto,Tachikawa] [Wyllard]

A relation between:

4D N=2 theories of class S with $\mathrm{SU}(2) / \mathrm{SU}(\mathrm{N})$ factors
2D Liouville/Toda CFT

$$
\mathcal{Z}_{\mathbb{S}^{4}}\left[\mathcal{T}_{g, n}\right]=\int d a \mathcal{Z}_{\text {pert }}\left|\mathcal{Z}_{\text {inst }}\right|^{2}=\int d \alpha C \ldots C\left|\mathcal{B}_{\alpha}^{\alpha_{i}}\right|^{2}=\left\langle\prod_{i=1}^{n} V_{\alpha_{i}}\right\rangle_{\mathcal{C}_{g, n}}
$$

4D gauge theory	2D CFT	
instanton partition function	conformal block	
perturbative part	3-point function	
coupling constants	cross ratios	
masses	external momenta	
Coulomb moduli	internal momenta	
generalized S-duality	crossing symmetry	
Omega background	Coupling constant/central charge	$b^{2}=\frac{\epsilon_{1}}{\epsilon_{2}}$

The 4D/2D relation from the curve

Example:
N=2 SU(2) Free trinion

Close to the punctures:

$$
\phi_{2}^{(3)}(z) \sim \frac{m_{j}^{2}}{\left(z-z_{j}\right)^{2}}
$$

Recall 2D Ward Idenkities:

$$
\left\langle T(z) \mathrm{V}_{1}\left(z_{1}\right) \mathrm{V}_{2}\left(z_{2}\right) \mathrm{V}_{3}\left(z_{3}\right)\right\rangle=\sum_{j=1}^{3}\left[\frac{h_{j}}{\left(z-z_{j}\right)^{2}}+\frac{\partial_{j}}{z-z_{j}}\right]\left\langle\mathrm{V}_{1}\left(z_{1}\right) \mathrm{V}_{2}\left(z_{2}\right) \mathrm{V}_{3}\left(z_{3}\right)\right\rangle
$$

$$
h_{i}=-m_{i}^{2} \quad \phi_{2}^{(3)}(z)=\frac{\left\langle T(z) \vee_{1}\left(z_{1}\right) \mathrm{V}_{2}\left(z_{2}\right) \mathrm{V}_{3}\left(z_{3}\right)\right\rangle}{\left\langle\mathrm{V}_{1}\left(z_{1}\right) \mathrm{V}_{2}\left(z_{2}\right) \mathrm{V}_{3}\left(z_{3}\right)\right\rangle}
$$

Free trinions the curves are equivalent to Ward identities!

$$
\phi_{\ell}^{(3)}(z)=\frac{\left\langle W_{\ell}(z) \mathrm{V}_{\odot}\left(z_{1}\right) \mathrm{V}_{\bullet}\left(z_{2}\right) \mathrm{V}_{\odot}\left(z_{3}\right)\right\rangle}{\left\langle\mathrm{V}_{\odot}\left(z_{1}\right) \mathrm{V}_{\bullet}\left(z_{2}\right) \mathrm{V}_{\odot}\left(z_{3}\right)\right\rangle}
$$

From the curves to the 2D CFT

$$
\lim _{\epsilon_{1,2} \rightarrow 0}\left\langle\left\langle J_{\ell}(t)\right\rangle\right\rangle_{n}=\phi_{\ell}^{(n)}(t)
$$

$$
\langle\langle J(t)\rangle\rangle_{n} \stackrel{\text { def }}{=} \frac{n \text {-point W-block with insertion of } J(t)}{n \text {-point W-block }}
$$

* \quad The symmetry algebra that underlies the $2 D C F T=W_{k N}$ algebra
* The reps are very special (non-unitary) reps of the $W_{k N}$ algebra
* Obtain them from the $N=2 S U(k N)$ after replacing:

$$
m_{j+N s}^{\mathrm{SU}(N k)} \longmapsto m_{j} \mathrm{e}^{\frac{2 \pi i}{k} s} \quad a_{j+N s}^{\mathrm{SU}(N k)} \longmapsto a_{j} \mathrm{e}^{\frac{2 \pi i}{k} s}
$$

2D Conformal Blocks = Instanton P.F.

* We have the reps of the $W_{k N}$ algebra for $\varepsilon_{1,2}=0$ (from the curve)
* Demand: the structure of the multiplet (null states) not change $\varepsilon_{1,2} \neq 0$
* The blocks for $\varepsilon_{1,2} \neq 0$: proposal for the instanton partition functions:

$$
\mathcal{Z}_{\mathrm{inst}}=\mathcal{B}_{\mathbf{w}}\left(\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}, \mathbf{w}_{4} \mid q\right)
$$

* If w and c turn on $Q \neq 0$ as in Liouville/Toda, then we obtain them from the $N=2 S U(k N)$ after replacing:

$$
m_{j+N s}^{\mathrm{SU}(N k)} \longmapsto m_{j} \mathrm{e}^{\frac{2 \pi i}{k} s} \quad a_{j+N s}^{\mathrm{SU}(N k)} \longmapsto a_{j} \mathrm{e}^{\frac{2 \pi i}{k} s}
$$

Free trinion P.F. = 2D CFT 3pt functions

[in progress Carstensen,EP,Mitev]

$$
\mathcal{Z}_{\text {free trinion }}^{S^{4}}=\left\langle\mathrm{V}_{\odot}(\infty) \mathrm{V}_{\bullet}(1) \mathrm{V}_{\odot}(0)\right\rangle
$$

* For the free trinion theory on S^{4} : explicitly do the PI (determinant)
* We know the conformal blocks: can write crossing equations
* Is the free trinion P.F. a solution of the crossing equations ??
* 3pt functions (dynamics) + Blocks = AGTk

Summary

Is there AGTk?

(I) We constructed spectral curves for $N=1$ theories in class S_{k}
(1) The curves: 2D symmetry algebra ($W_{k N}$) and representations
[Conformal Blocks \rightarrow Instanton partition function

- Free trinion partition functions on $S^{4}=3 p t$ functions
[in progress Carstensen,EP,Mitev]

Future

* Compute the instantons with standard Field theory techniques
* Generalize Nekrasov or use $D(p-4)$ branes
[in progress Bourton, EP]
* Generalize Pestun, to get the partition function on S^{4}
[with Carstensen, Hayling, Panerai, Papageorgakis]
* Go away from the orbifold point (we have the curves and the 2D blocks) [to appear Bourton, EP]
* Get the $A G T_{k}$ from $(1,0) 6$ à la Cordova and Jafferis

