Exact results for class S_k

Elli Pomoni

9th Crete Regional Meeting

Motivation: N=2 exact results

- * Seiberg-Witten theory: effective theory in the IR
- * Nekrasov: instanton partition function
- * Pestun: observables in the UV (path integral on the sphere localizes)

- **★** Gaiotto: 4D N=2 **class S**: 6D (2,0) on Riemann surface C_{g,n}
- * AGT: 4D partition functions = 2D CFT correlators
- **4** 4D SC Index = 2D correlation function of a TFT

2D/4D relations

What can we do for N=1 theories?

- Superconformal Index
- Intriligator and Seiberg: generalized SW technology
- No Localization
- An S⁴ partition function plagued with scheme ambiguities.

 [Gerchkovitz, Gomis, Komargodski 2014]
- Derivatives of the free energy scheme independent.
 [Bobev, Elvang, Kol, Olson, Pufu 2014]

★ N=1 SuperConformal

[Gaiotto, Razamat 2015] * Labeled by punctured Riemann Surface

★ Index = 2D correlation function of a TFT

Plan

Is there AGT_k ? 4D partition functions = 2D CFT correlators

- \clubsuit Spectral curves for N=1 theories in class S_k
- * From the curves: 2D symmetry algebra and representations
- * Conformal Blocks Instanton partition function
- ***** Free trinion partition functions on $S^4 \longrightarrow 3pt$ functions

4D field theory point of view

N=2 class S mother theory

	$U(1)_t$	$U(1)_{\alpha_c}$	$U(1)_{\beta_{i+1-c}}$	$U(1)_{\gamma_i}$
$V_{(i,c)}$	0	0	0	0
$\Phi_{(i,c)}$	-1	0	-1	+1
$Q_{(i,c-1)}$	+1/2	-1	+1	0
$\widetilde{Q}_{(i,c-1)}$	+1/2	+1	0	-1

N=1 class S_k orbifold daughter

Large global symmetry group extra U(1)^{2k-1}

Class S and Sk

6D (2,0) SCFT on Riemann surface: 4D N=2 theories of class S

Transverse C^2/Z_k Orbifold the 6D (2,0) SCFT to 6D (1,0) SCFT

6D (1,0) SCFT on Riemann surface: 4D N=1 theories of class Sk

	x^0	x^1	x^2	x^3	x^4	x^5	x^6	x^7	x^8	x^9	x^{10}
N M5-branes				_	•	•		•	•	•	
A_{k-1} orbifold	•	•	•	•	_	_	•	_	_	•	•

[Gaiotto,Razamat 2015]

Curves from M-theory

[Witten 1997]

The NS5/D4 is the classical configuration.

2D surface F(t,v)=0 in the 4D space $\{x^4, x^5, x^6, x^{10}\}=\{v,t\}$.

Take in account tension of the branes: include quantum effects.

M-theory: a single M5 brane with non trivial topology

	x^0	x^1	x^2	x^3	x^4	x^5	x^6	x^7	x^8	x^9	(x^{10})
M NS5 branes	_	_	_	_	_	_	•	•	•	•	•
N D4-branes	_	_	_	_	•	•	_	•	•	•	_
A_{k-1} orbifold	•	•		•	_	_	•	_	_		

 $v \sim e^{\frac{2\pi i}{k}}v$

Sk CUIVES [1512.06079 Coman, EP, Taki, Yagi]

$$(v^k - m_1^k)(v^k - m_2^k)t^2 + P(v)t + q(v^k - m_3^k)(v^k - m_4^k) = 0$$

$$P(v) = -(1+q)v^{2k} + u_k v^k + u_{2k}$$

vevs of gauge invariant operators: parameterize the Coulomb branch

$$\langle \operatorname{tr} \left(\Phi_{(1)} \cdots \Phi_{(k)} \right) \rangle \sim u_k$$

$$\langle \operatorname{tr} \left(\Phi_{(1)} \cdots \Phi_{(k)} \right) \rangle \sim u_k \quad \langle \operatorname{tr} \left(\Phi_{(1)} \cdots \Phi_{(k)} \right)^2 \rangle \sim u_{2k}$$

SW or IR curve Σ of q=kN-1

$$x^{kN} = -\sum_{\ell=1}^{N} \phi_{k\ell}^{(4)}(t) x^{k(N-\ell)}$$

$$\phi_{k\ell}^{(4)}(t) = \frac{(-1)^{\ell} \mathfrak{c}_L^{(\ell,k)} t^2 + u_{k\ell} t + (-1)^{\ell} \mathfrak{c}_R^{(\ell,k)} q}{t^{k\ell} (t-1)(t-q)}$$

Gaiotto or UV curve Co,n a sphere with 4 punctures

$$\mathcal{N} = 1 \; \mathrm{SU}(N) \; \mathrm{SCQCD}_k$$

$$\mathfrak{c}^{(s,k)} = \sum_{i_1 < \dots < i_s = 1}^N m_{i_1}^k \cdots m_{i_s}^k$$

The AGT-W correspondence

[Alday, Gaiotto, Tachikawa] [Wyllard]

A relation between:

- ▶ 4D N=2 theories of class S with SU(2)/SU(N) factors
- 2D Liouville/Toda CFT

$$\mathcal{Z}_{\mathbb{S}^4} \left[\mathcal{T}_{g,n} \right] = \int da \, \mathcal{Z}_{pert} \, |\mathcal{Z}_{inst}|^2 = \int d\alpha \, C \dots C \, |\mathcal{B}_{\alpha}^{\alpha_i}|^2 = \langle \prod_{i=1}^n V_{\alpha_i} \rangle_{\mathcal{C}_{g,n}}$$

4D gauge theory	2D CFT					
instanton partition function	conformal block					
perturbative part	3-point function					
coupling constants	cross ratios					
masses	external momenta					
Coulomb moduli	internal momenta					
generalized S-duality	crossing symmetry					
Omega background	Coupling constant/central charge					

$$b^2 = \frac{\epsilon_1}{\epsilon_2}$$

while those at t=1 and t=q are simple punctures \bullet , see [20].

Figure 2: The UV curves of the trinion and of the $SCQCD_k$ to spheres. The full punctures are depicted by \odot and placed at t=0 at t=1 and at t=q.

Gaiotto Shifts in x for k = 1. Due to the orbifold relation (2 k = 1, but not for k > 1. This shift is the consequence of the present for k = 1 but, as we shall see more in detail later, disapequation $\sum_{i=0}^{N} x^{i} \phi_{i}$ to $\sum_{i=0}^{N} x^{i} \phi'_{i}$ by making the tranformation x

equation
$$\sum_{i=0}^{N} x^{i} \phi_{i}$$
 to $\sum_{i=0}^{N} x^{i} \phi'_{i}$ by making the tranformation x

B
$$\phi'_{\ell} = \sum_{j=N-\ell}^{N} \binom{j}{N-\ell} \phi_{N-j} (-\kappa \phi_{1})^{j+i-N} = \sum_{j=N-\ell}^{\ell} \binom{j}{N-\ell} \phi_{$$

We remind that $\phi_0 = 1$ before and after the transformation.

 $\Omega_2 = d\lambda_{SW} = dx \wedge dt$ unchanged however the structure of the po

does change, see [28]. If we put the shift parameter κ equal to $\frac{1}{N}$, curve is known as the Garotto curve. Let us denote the curve contains the curve of the curve of

we shall review later, their expansion around the poles in t gives

Figure 9.13: Triality, using trivalent diagrams.

C

A

⁵The UV curves are characterized by the meromorphic differentials $\phi_s^{(n)}$ the punctures \star discussed in [28] will not be relevant for our purposes here.

From the curves to the 2D CFT

$$\lim_{\epsilon_{1,2}\to 0} \langle \langle J_{\ell}(t) \rangle \rangle_n = \phi_{\ell}^{(n)}(t)$$

$$\langle\langle\,J(t)\,\rangle\rangle_n\stackrel{\mathrm{def}}{=}\frac{n\text{-point W-block with insertion of }J(t)}{n\text{-point W-block}}$$

- ***** The symmetry algebra that underlies the 2D CFT = W_{kN} algebra
- ***** The reps are **very special** (non-unitary) reps of the W_{kN} algebra
- **★** Obtain them from the N=2 SU(kN) after replacing:

$$m_{j+Ns}^{\mathrm{SU}(Nk)} \longmapsto m_j e^{\frac{2\pi i}{k}s} \qquad a_{j+Ns}^{\mathrm{SU}(Nk)} \longmapsto a_j e^{\frac{2\pi i}{k}s}$$

2D Conformal Blocks = Instanton P.F.

- ***** We have the reps of the W_{kN} algebra for $\varepsilon_{1,2} = 0$ (from the curve)
- ***** Demand: the structure of the multiplet (null states) not change $\varepsilon_{1,2} \neq 0$
- **The blocks for** $\varepsilon_{1,2} \neq 0$: proposal for the instanton partition functions:

$$\mathcal{Z}_{\text{inst}} = \mathcal{B}_{\mathbf{w}}(\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4 | q)$$

If w and c turn on $Q \neq 0$ as in Liouville/Toda, then we obtain them from the N=2 SU(kN) after replacing:

$$m_{j+Ns}^{\mathrm{SU}(Nk)} \longmapsto m_j e^{\frac{2\pi i}{k}s} \qquad a_{j+Ns}^{\mathrm{SU}(Nk)} \longmapsto a_j e^{\frac{2\pi i}{k}s}$$

Free trinion P.F. = 2D CFT 3pt functions

[in progress Carstensen, EP, Mitev]

$$\mathcal{Z}_{\mathrm{free\ trinion}}^{S^4} = \langle V_{\odot}(\infty)V_{\bullet}(1)V_{\odot}(0) \rangle$$

- ***** For the free trinion theory on S^4 : explicitly do the PI (determinant)
- * We know the conformal blocks: can write crossing equations
- * Is the free trinion P.F. a solution of the crossing equations ??
- \Rightarrow 3pt functions (dynamics) + Blocks = AGT_k

Summary

Is there AGTk?

 \Box Free trinion partition functions on $S^4 = 3pt$ functions

[in progress Carstensen, EP, Mitev]

Future

- * Compute the instantons with standard Field theory techniques
- \bigstar Generalize Nekrasov or use D(p-4) branes [in progress Bourton, EP]
- ★ Generalize Pestun, to get the partition function on S⁴ [with Carstensen, Hayling, Panerai, Papageorgakis]
- Go away from the orbifold point (we have the curves and the 2D blocks) [to appear Bourton, EP]
- **★** Get the AGT_k from (1,0) 6D à la Cordova and Jafferis