Ninth Crete Regional Meeting in String Theory - 2017

Exotic RG Flows from Holography

Leandro Silva Pimenta

AstroParticules et Cosmologie - Université Paris Diderot

Ph.D. supervisors: Elias Kiritsis & Francesco Nitti

Bibliography

Published work in: E. Kiritsis, F. Nitti and LSP arxiv:1611.05493 [hep-th]

Based on earlier work:

F. Nitti, Wenliang Li and E. Kiritsis arxiv:1401.0888 [hep-th]

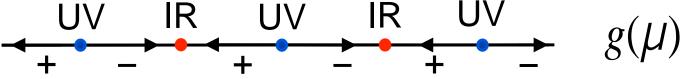
V. Niarchos and E. Kiritsis arxiv:1205.6205 [hep-th]

Outline of the talk

- 1. Introduction to holographic RG flows.
- 2. 1st order formalism and "standard" RG flows
- 3. Introduce the exotic RG flows:
 - a) Irrelevant VEV flows: flows between two minima of the bulk potential,
 - b) Skipping flows: flow does not stop the nearest fixed point,
 - c) Bouncing flows: multi-branched β -function.
- 4. Conclusions and Outlook

1 - Introduction

- (Perturbative) QFT RG flow: set of 1st order equations.
- For a single coupling g: dg/dlogμ = β(g)
 Flow direction ↔ sign of β.
- 1st order flows localized between consecutive zeroes of
 β; fixed points cannot be skipped.

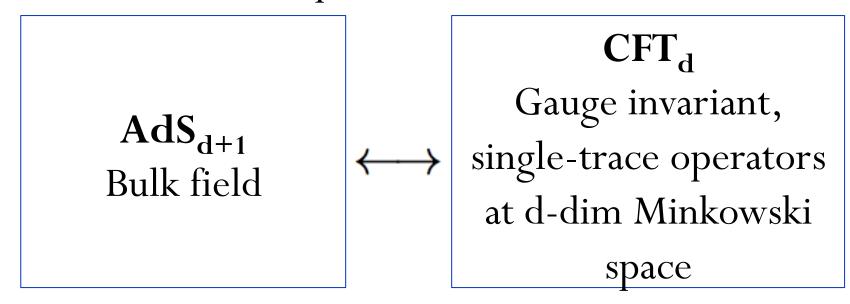


• In AdS/CFT the RG flows become geometrical.

Leandro S. Pimenta - Exotic RG Flows from Holography

The AdS/CFT correspondence

One-to-one correspondence between:



In particular (invert): Scalar operator $\mathcal{O}(\mathbf{x}) \longleftrightarrow$ Scalar field $\mathcal{O}(\mathbf{x},\mathbf{u})$ Stress-en. tensor $T_{\mu\nu}(\mathbf{x}) \longleftrightarrow$ Metric $g_{\mu\nu}(\mathbf{x},\mathbf{u})$

The AdS/CFT correspondence

- Consider a boundary scalar operator $\mathcal{O}(x)$ with conformal dimension $\Delta > d/2$.
- The asymptotic expansion of ϕ is: $\phi(x,u) = e^{u(\Delta-d)}\phi_0(x) + e^{u\Delta}\phi_+(x) + \cdots$ where $\Delta(\Delta-d)=m^2$.
- The leading term contains the source of $\mathcal{O}(x)$: $\int d^d x \, \phi_0(x) \mathcal{O}(x).$
- The sub-leading term is the VEV of $\mathcal{O}(\mathbf{x})$:

$$\langle \mathcal{O}(x) \rangle_{\phi_0} = (2\Delta - d)\phi_+.$$

Holographic RG flows

Fields evolving along the holographic direction in asymptotically AdS space-times RG flows driven by the breaking of conformal symmetry in the boundary gauge theory

Holographic dimension \longleftrightarrow Energy scale in QFT

(Perturbative) QFT : 1st order flow equations Holographic RG: 2nd order flow equations

Hamilton-Jacobi (1st order) formalism

Holographic RG flows: the setup

$$S[g,\varphi] = \int d^{d+1}x \sqrt{-g} \left(R - \frac{1}{2} \partial_a \phi \partial^a \phi - V(\phi) \right)$$
• Analytic and strictly negative V(ϕ).
• Solutions preserving Poincaré invariance:

$$ds^{2} = du^{2} + e^{2A(u)}\eta_{\mu\nu}dx^{\mu}dx^{\nu}$$

Coupling: $\phi = \phi(u)$
Energy scale: $\mu \equiv \mu_{0}e^{A(u)}$

• Einstein equations:

$$2(d-1)\ddot{A}(u) + \dot{\phi}^2(u) = 0$$
$$d(d-1)\dot{A}(u)^2 - \frac{1}{2}\dot{\phi}^2(u) + V(\phi) = 0$$

Leandro S. Pimenta - Exotic RG Flows from Holography

2 - First order formalism and "standard" RG flows

1st order formalism: Superpotential

Define the function $W(\phi)$ via

$$W(\phi(u)) = -2(d-1)\dot{A}(u)$$

To satisfy the Einstein equation $2(d-1)\ddot{A}(u) + \dot{\phi}^2(u) = 0$ the scalar field must obey:

$$W'(\phi) = \dot{\phi}(u)$$
 .

The remaining Einstein equation takes the form:

$$V(\phi) = \frac{1}{2}W'^2(\phi) - \frac{d}{4(d-1)}W^2(\phi)$$

There are 3 integration constants.

1st order formalism: Superpotential Coupling: $\phi = \phi(u)$ Energy scale: $\mu \equiv \mu_0 e^{A(u)}$ • Using the first order formalism. $\dot{\phi}(u) = W'(\phi) \qquad \dot{A}(u) = -\frac{W(\phi)}{2(d-1)}$ the holographic β -function is: $\beta(\phi) \equiv \frac{d\phi}{dA} = -2(d-1)\frac{d\log W}{d\phi}$

- Zeroes of the holographic β-function correspond to vanishing W'(φ): critical points.
- Each $W(\phi)$ determines a holographic RG flow.

Properties of $W(\phi)$

The non-trivial part is encoded in the superpotential and our goal is to solve the equation:

$$V(\phi) = \frac{1}{2}W'^2(\phi) - \frac{d}{4(d-1)}W^2(\phi)$$

for flows interpolating between fixed points. We start with some general properties:

- If W(φ) and V(φ) are finite the geometry is regular.
- 2) $W(\phi)$ is bounded from below by

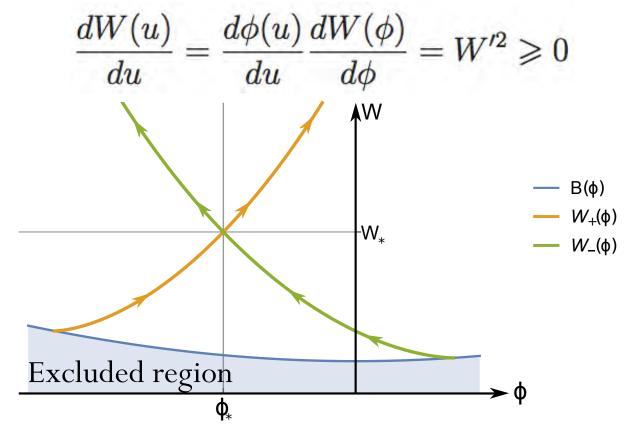
$$B(\phi) := \sqrt{-\frac{4(d-1)}{d}V(\phi)}$$

Properties of $W(\phi)$

3) At any point there are two solutions:

$$W'(\phi)\equiv rac{dW}{d\phi}=\pm\sqrt{rac{2d}{(d-1)}}\,(W^2-B^2),$$

4) W($\phi(u)$) increases monotonically with u:



Critical points of $W(\phi)$

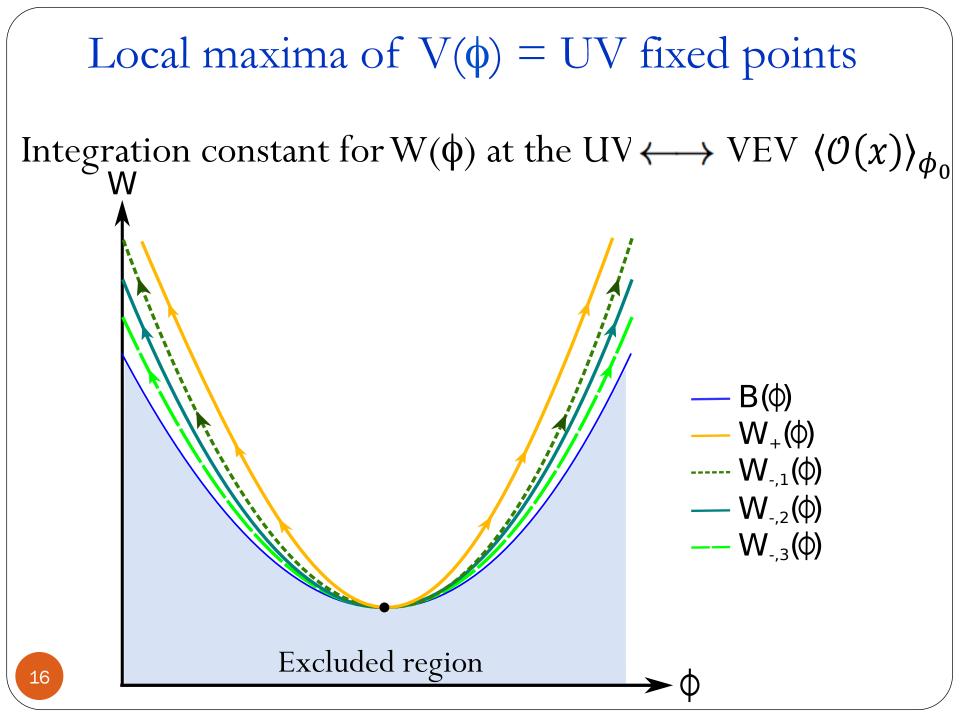
Critical points of the superpotential equation are the extrema of $W(\phi)$ but not necessarily of $V(\phi)$.

$$\beta(\phi) \equiv \frac{d\phi}{dA} = -2(d-1)\frac{d\log W}{d\phi}$$

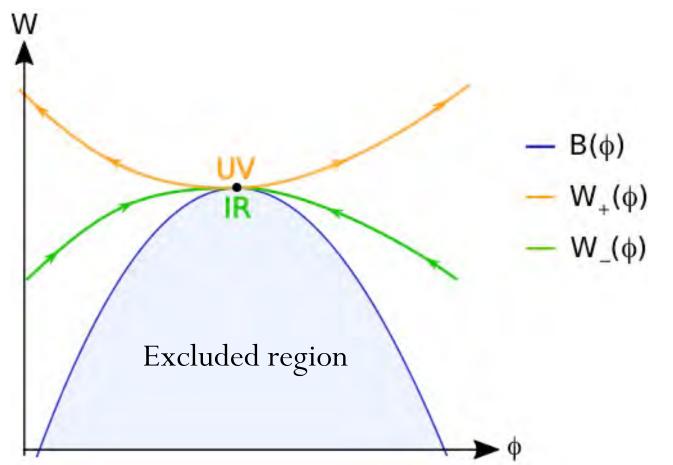
There are two kinds of critical points, those where:
a) W"(φ) is finite,
b) W"(φ) is infinite.

Through the superpotential equation they imply: a) $V'(\phi)=0$, the scalar field stops (fixed points), b) $V'(\phi)\neq 0$, the scalar does not stop (bounces).

Critical points of $W(\phi)$ at extrema of $V(\phi)$: fixed points

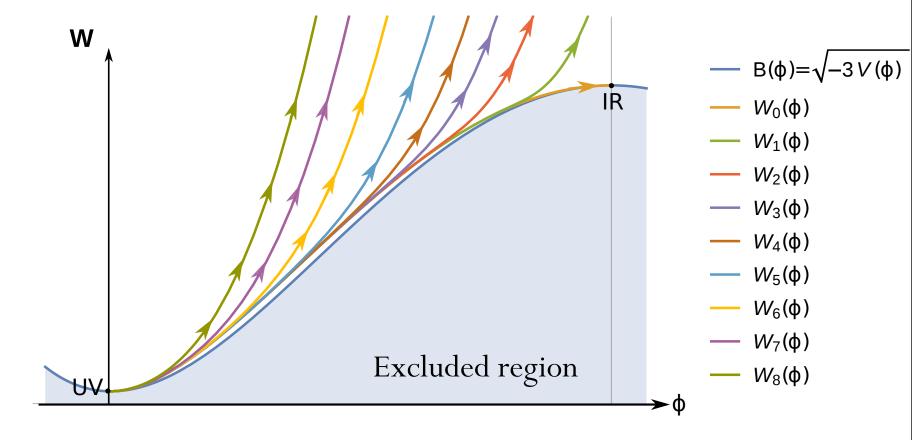


Local minima of V = UV or IR fixed points Only two solutions on each side of the minimum. One ends at an IR fixed point, the flows away from it with finite VEV and zero source.



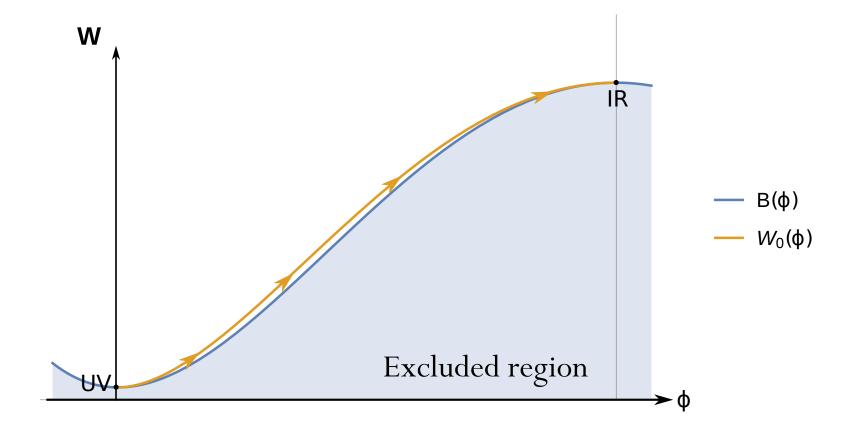
Standard holographic RG flows

Most solutions $W(\phi)$ go to infinity. One is regular.



Standard holographic RG flows

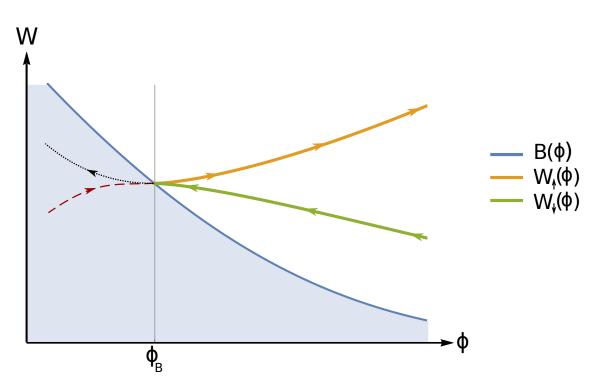
Most solutions $W(\phi)$ go to infinity. One is regular.



Critical points of $W(\phi)$ with V'(ϕ) \neq 0: bounces

Bounces

The metric and scalar field are regular at the bounce.



The holographic β -function has the following form close to a bounce:

$$eta(\phi) \propto \pm \sqrt{\phi - \phi_B} + \mathcal{O}(\phi - \phi_B)$$

Bounces

Solving the flow equations we obtain the following regular scalar field profile:

$$\phi(u) = \phi_B + rac{V'(\phi_B)}{2}(u-u_B)^2 + \mathcal{O}(u-u_B)^3$$

The scale factor has the expansion:

$$A(u) = A_B - \sqrt{rac{V(\phi_B)}{d(d-1)}}(u-u_B) - rac{\left(V'(\phi_B)
ight)^2}{4!(d-1)}(u-u_B)^4 + \mathcal{O}(u-u_B)^5$$

The two branches of the β -function, before and after the bounce, should be glued together, otherwise the solution is geodesically incomplete.

Bounces

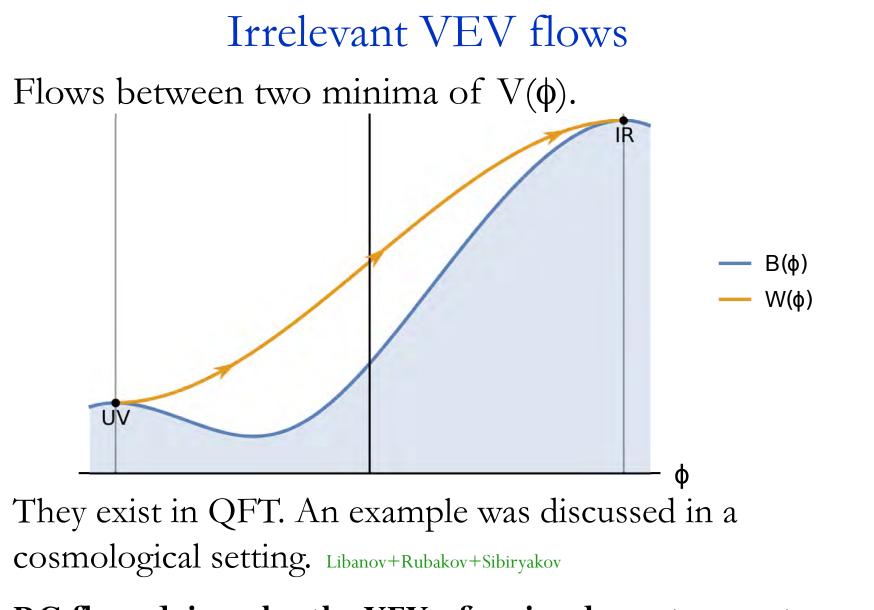
The holographic β -function has the following form close to a bounce:

$$eta(\phi) \propto \pm \sqrt{\phi - \phi_B} + \mathcal{O}(\phi - \phi_B)$$

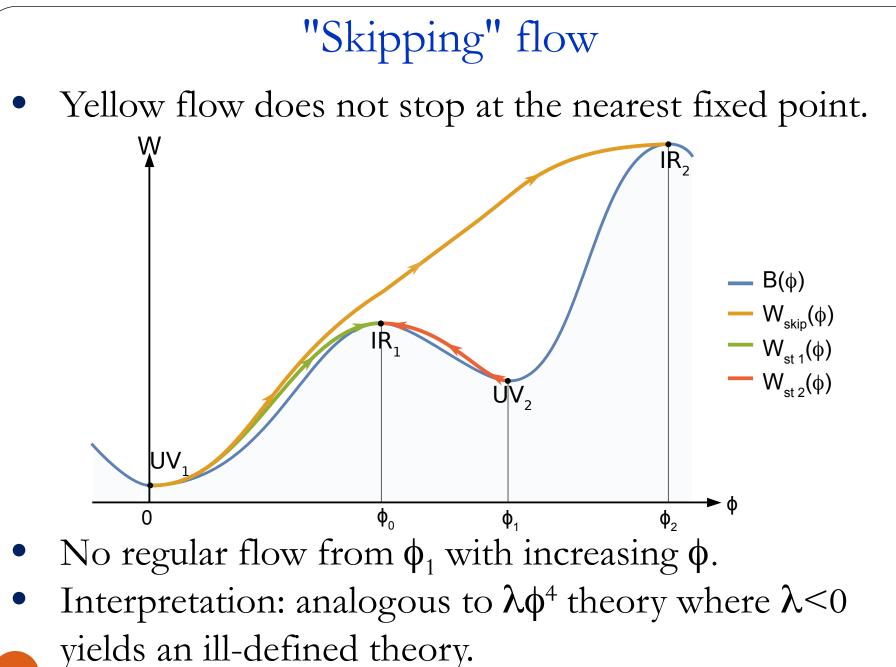
There is a branch change at $\phi = \phi_B$ and the β -function is patch-wise defined.

The β -function vanishes at the singularity but the flow does not stop, as the branches must be glued together.

3 - Exotic holographic RG flows

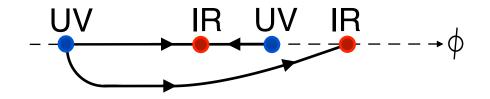


RG flow driven by the VEV of an irrelevant operator.



"Skipping" flow

The flow does not stop at the nearest IR fixed point.

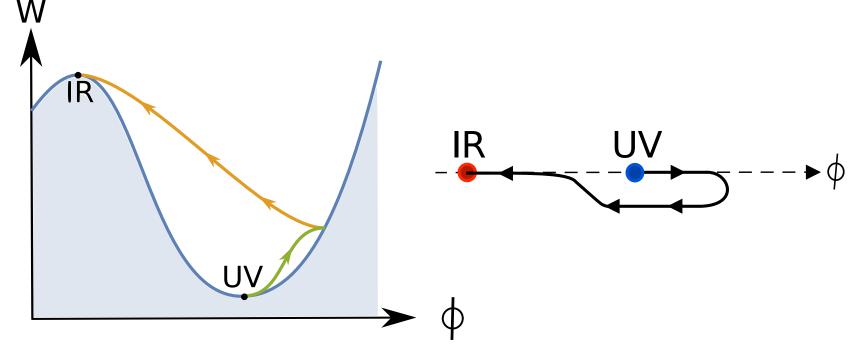


The "exotic" flow skipping the fixed point has lower free energy.

No (perturbative) QFT counterpart !

Bouncing flows

A single running coupling changes direction along the RG flow.



From holography, these bouncing solutions should appear in RG flows in QFT.

This goes beyond perturbation theory.

Bouncing flows

The local form of the holographic β -function near a bounce

$$eta(\phi) \propto \pm \sqrt{\phi - \phi_B} + \mathcal{O}(\phi - \phi_B)$$

is the same as the one proposed as a way to obtain RG cycles without violating the *a*-theorem. Curtright, Jin & Zachos, '11

However, there are **no cycles** in our setup.

Cycles would required infinitely multi-branched **potentials** and we consider a single-valued bulk potential.

Conclusions

Holographic RG flows are richer than perturbative QFT flows for a single renormalized coupling, where:

- A single renormalized coupling can skip fixed points;
- A multi-branched β -function allows the couplings to reverse direction along the flow and continue;

This may be teaching us something new about the strong coupling regime of QFT.

Perspectives

For the single-field case:

- Verify if the exotic single-field flows exist for potentials coming from String Theory and SUGRA,
- Finite temperature case in superpotential language,
- Look for QFT realizations of the exotic flows.

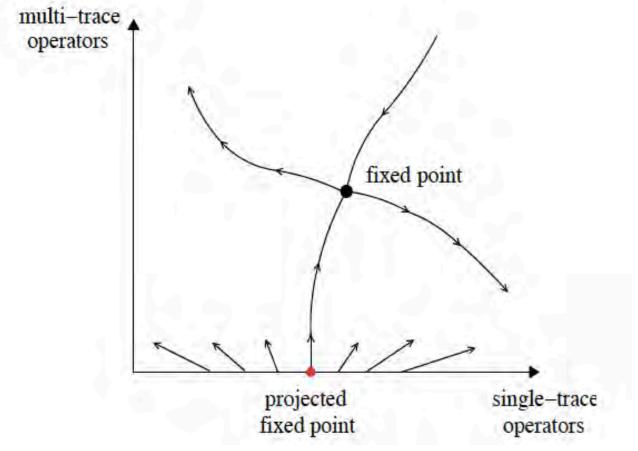
(Ongoing) generalization to the multi-field case.

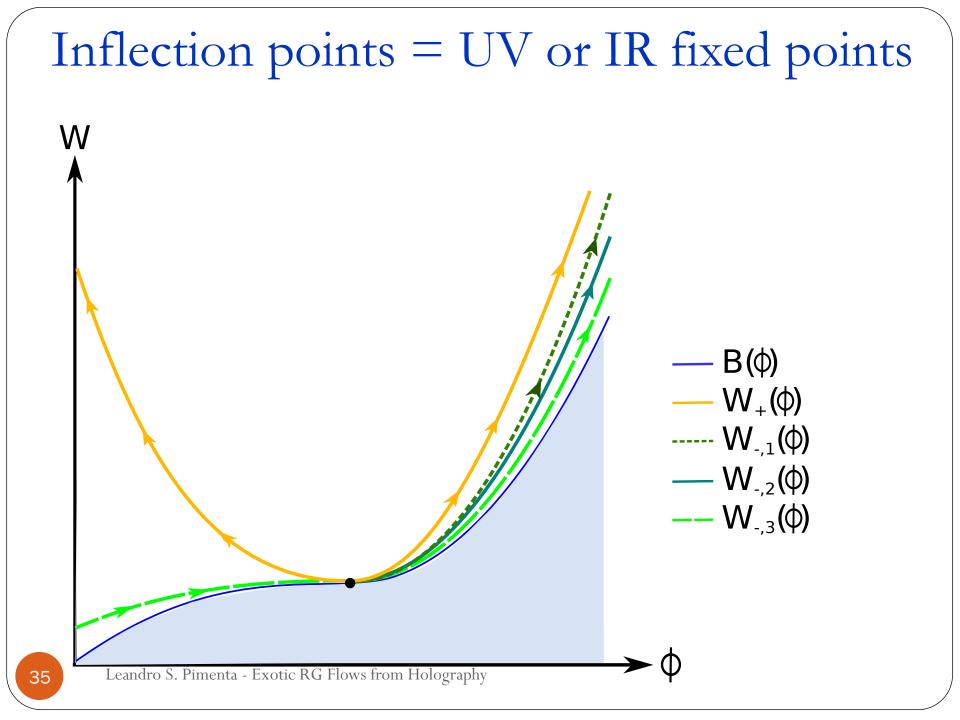
Thank you !

Extra slides

Quantum RG flows

It has also been shown that there is a description of RG flows which leads to 2nd order equations. These are the so called Quantum RG flows. S. Lee - 1305.3908 [hep-th]





Choosing a vacuum

If the IR is regular or computable, the on-shell action is given by the UV contribution alone:

$$S_{on-shell}^{ren} = (C - C_{ct}) \int d^d x \, \phi_-^{d/(d-\Delta)}$$

where *C* is the integration constant in

$$\begin{split} W_{-}(\phi) = & \frac{1}{\ell} \left[2(d-1) + \frac{\Delta_{-}}{2} \phi^{2} + \mathcal{O}(\phi^{3}) \right] \\ & + C |\phi|^{d/\Delta_{-}} \left[1 + \mathcal{O}(\phi) \right] + \mathcal{O}(C^{2}) \end{split}$$

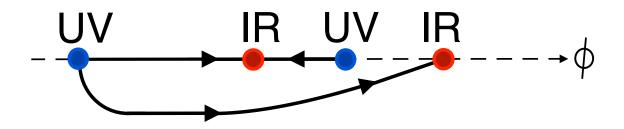
which selects a solution among the continuous family. $C_{\text{Leandro }}$ is a constant from the counter-term.

Choosing a vacuum

The free-energy equals the Euclidean on-shell action.

$$\mathcal{F}_i = -\left(C_i - C_{ct}
ight)\int d^4x\,\phi_-^{d/(d-\Delta)}$$

Therefore, the regular solutions with larger VEV are favorable.



The exotic flow is preferred here. The standard flow is non-perturbatively unstable by buble

nucleation. Exotic RG Flows from Holography

37