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 Berry phase in QFT 

• Berry phase is a basic property of Quantum Mechanics 
☞ lack of holonomy in adiabatic variation of parameters 

• QFTs depend on parameters: masses, general couplings etc… 
 
Expect a rich pattern of Berry-like properties
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Towards a systematic exploration of Berry phase in (continuum) QFT 

Potential lessons  
 
- geometry of parameter-spaces (space-of-theories) 
 
- (non-perturbative) relations between correlation functions 
 
- new experimentally observable predictions from QFT 
 
…
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Technical approach 
 
Berry phase by quantizing QFT in the Hamiltonian framework 
 
Obvious issues: 

• UV divergences:     
☞  renormalize  

• IR issues:  e.g. continuous spectra 
☞  put theory on a hypercylinder :                  ,          compact 
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Main messages of this talk 

1. Geometric phases can be non-trivial even in trivial QFTs !   
    (Berry phase of photons) 

2. Connection & parallel transport in Conformal Perturbation Theory is   
    Berry phase in disguise 

3. Exact, non-perturbative computations of Berry phase in interacting    
    QFTs are possible  
    (supersymmetry, tt* geometry)
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Spectral formula for Berry curvature
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Adiabatic variation of coupling constants in a quantum mechanics  

Hamiltonian H = H(~�) , ~� = (�1,�2, . . .)

| (~�)iT = ei� e�
i
~
R T
0 dtE (t) | (~�)i0

Berry phase

 Berry phase in Quantum Mechanics
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• Berry phase is an intrinsic property of the quantum system,  
it depends only on path C 
 
 
 
or 
 
 

• For D degenerate states the U(1) phase upgrades to a U(D) transform 
⇒ Berry connection is non-abelian 
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Berry connection  
 
connection on a vector bundle  
of spaces of states  
(Hilbert spaces)

� = i

I

C
d~� A(~�)



• this connection has curvature 
 
 

• elementary derivation of a general spectral formula for the curvature 
 
 
 
 
 
in sector with energy En and degenerate states  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Non-trivial Berry phases in a simple QFT
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• Consider electromagnetism with a θ interaction 
 

• θ has non-trivial implications if it varies in spacetime, or if there are 
boundaries/walls 

• interested in adiabatic changes of θ in time 

• this theory is free: as we change e and θ adiabatically the spectrum is 
unchanged, but the energy eigenstates can rotate

L = � 1

4e2
Fµ⌫F

µ⌫ +
✓

64⇡2
Fµ⌫ F̃

µ⌫

e.g. Wilczek, PRL ‘89

 1   Berry phase of photons
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• Hamiltonian 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• Place on                   and quantize in Coulomb gauge 
 
 
 
 
 
 

• Evaluate the spectral sum in the formula for Berry curvature 
 
The curvature has non-vanishing components only for identical 
external states 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• for a general multi-photon state                  with         
       positive helicity photons,         negative helicity photons 
 
 
 
 
 
 
 

☞ a non-trivial Berry phase for photons 

☞ independent of momentum
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☞ Implications: 

     linearly polarized light changes polarization under (e,θ) variation 
 
 
 
 
 
 
 
 
 
☞ experimentally visible?  (e.g. topological insulators…) 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Conformal Perturbation Theory 
vs 

Berry phase
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CFT in d+1 dimensions with a non-trivial conformal manifold  
(continuous family of CFTs connected by exactly marginal deformations)  
 

Natural notions of geometry on the space of { λi } 
 

Zamolodchikov metric: 

 

but also notions of parallel transport, connection  

on the vector bundle of operators over the conformal manifold:  
how one compares operators at near-by CFTs

�S =

Z
d

d+1
x�

iOi(x)

Kutasov ’89, Sonoda et al ’90s,…

gij = hOi(1)Oj(0)i
Zamolodchikov ‘86
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• in conformal perturbation theory a covariant derivative incorporates 
regularization prescriptions 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• the curvature of this connection involves integrated correlation 
functions 
 
Roughly: 
 
 
 
 
 

• integrations lead to divergences 
regularisation leads to non-vanishing commutators ⇒ curvature
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• Ranganathan-Sonoda-Zwiebach (’93) prescription 
(cut out small balls around operators, do not allow collisions, remove 
divergent pieces) 

• 4-point operator formula for the curvature 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• In CFT there is a natural correspondence between states and operators 
 
OPERATOR-STATE correspondence 
 
in radial quantization or on  
 
 
 

• The Berry connection for states should map to a natural connection 
for operators in Conformal Perturbation Theory 
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• Two seemingly different expressions for curvature 
 
 
 
 
 
 
 
 
 
 
Claim: these expressions compute the same object !
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Non-perturbative computation in SCFTs 
tt* equations

23



4d N=2 superconformal manifolds 
 
The curvature of N=2 chiral primary vector bundles in 4d N=2 
superconformal manifolds is computable non-perturbatively  
 
Previously computed by Papadodimas’09 in conformal perturbation 
theory 
 
The QM derivation of Berry curvature in the 1/2-BPS sector of  
N=2 chiral primary states reproduces the same result  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• 4d N=2 has 8 supercharges                       
& superconformal partners  

• N=2 chiral primaries:                                   (+ complex conjugate) 
 
 
chiral ring under the Operator Product Expansion (OPE) 
 
 
Exactly marginal interactions are descendants of N=2 chiral primaries 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Berry curvature in sector of N=2 chiral primary states 
 
 
 
 
conveniently recast as 
 
 
 
 
 
Insert expressions for δΗ and compute…
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After a few elementary steps using SCA relations 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from Papadodimas ’09

this is the expression we get almost automatically from QM !! 



Interesting technical point  
 

QM streamlines the computation 

bypasses non-trivial superconformal Ward identities 
needed to localize on a double 3-dimensional integral
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one has to use conformal Ward identities of the form 
 
 
 
 
 
 
 
 
 
 
 
 
to finally localize on a double 3d integral
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• The rest can be evaluated using OPEs. Only a few terms contribute 

• The end result is a nice simple formula that relates the curvature with 
the chiral ring OPE coefficients and the chiral ring 2-point functions 
 
 
 
 
 
 
☞ tt* equations 

powerful combined with SUSY localization on S4 partition functions 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Example: SU(2) N=2 SCQCD 
 
chiral primary operators  
 
in normalization  
 
non-trivial info in 2-point functions 
 
tt* equations 
 
 
 
solution recursively from
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Gerschkovitz-Gomis-Komargodski ’14
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Baggio-VN-Papadodimas ’14

Baggio-VN-Papadodimas ’16 
(also Gomez-Russo ’16, ‘17)

SU(2) N=2 SCQCD

Large-N ’t Hooft limit 
SU(N) N=2 SCQCD

hTr'n1Tr'n2Tr'̄n1+n2i

+ ALL instanton 
   corrections
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This study led to the first exact non-perturbative computation of 
non-trivial 3-point functions in 4d QFTs 
 
 
Supersymmetric localization now allows the complete solution of 

extremal N-point functions in the N=2 chiral ring
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• Non-trivial Berry phases appear quite generically in QFT  
(examples in this talk: E&M, CFTs) 
 
Possibly new physically interesting effects await to be discovered 
   

• Evaluating the Berry phase of QFTs by putting them on different 
curved manifolds appears to be a useful strategy

 Main messages - outlook 
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• The Berry phase of 1/2-BPS states in 4d N=2 & 2d N=(2,2) SCFTs is a 
non-trivial example where non-perturbative computations are possible 

• Very interesting to extend these results to:  
- lower SUSY,  
- non-conformal theories… 

• Ultimate goals (work in progress): 
 
⦿ non-perturbative relations between correlation functions 
⦿ geometry of parameter spaces (space-of-theories)…
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