Aspects of Berry phase in QFT

Vasilis Niarchos

Durham University
based on work with Marco Baggio and Kyriakos Papadodimas
(1701.05587, 1610.07612 (+ G. Vos), 1508.03077, 1409.4212, 1409.4217)

9th Crete Regional Meeting in String Theory Kolymbari, July 10, 2017

Berry phase in QFT

- Berry phase is a basic property of Quantum Mechanics
lack of holonomy in adiabatic variation of parameters
- QFTs depend on parameters: masses, general couplings etc...

Expect a rich pattern of Berry-like properties

Towards a systematic exploration of Berry phase in (continuum) QFT

Potential lessons

- geometry of parameter-spaces (space-of-theories)
- (non-perturbative) relations between correlation functions
- new experimentally observable predictions from QFT

Technical approach

Berry phase by quantizing QFT in the Hamiltonian framework

Obvious issues:

- UV divergences:
renormalize
- IR issues: e.g. continuous spectra
put theory on a hypercylinder: $\mathbb{R} \times \mathcal{Q}, \mathcal{Q}$ compact

Main messages of this talk

1. Geometric phases can be non-trivial even in trivial QFTs ! (Berry phase of photons)
2. Connection \& parallel transport in Conformal Perturbation Theory is Berry phase in disguise
3. Exact, non-perturbative computations of Berry phase in interacting QFTs are possible (supersymmetry, tt* geometry)

Spectral formula for Berry curvature

Berry phase in Quantum Mechanics

Adiabatic variation of coupling constants in a quantum mechanics
Hamiltonian

$$
H=H(\vec{\lambda}), \quad \vec{\lambda}=\left(\lambda_{1}, \lambda_{2}, \ldots\right)
$$

$$
|\Psi(\vec{\lambda})\rangle_{T}=e^{i \gamma} e^{-\frac{i}{\hbar} \int_{0}^{T} d t E_{\Psi}(t)}|\Psi(\vec{\lambda})\rangle_{0}
$$

Berry phase

- Berry phase is an intrinsic property of the quantum system, it depends only on path C

$$
\gamma=i \oint_{C} d \vec{\lambda}\langle\Psi(\vec{\lambda})| \partial_{\vec{\lambda}}|\Psi(\vec{\lambda})\rangle
$$

or

$$
\gamma=i \oint_{C} d \vec{\lambda} \mathcal{A (\vec { \lambda })} \quad \begin{aligned}
& \text { connection on a vector bundle } \\
& \text { of spaces of states } \\
& \text { (Hilbert spaces) }
\end{aligned}
$$

- For D degenerate states the $U(1)$ phase upgrades to a $U(D)$ transform
\Rightarrow Berry connection is non-abelian
- this connection has curvature

$$
F_{\mu \nu}=\frac{\partial \mathcal{A}_{\nu}}{\partial \lambda^{\mu}}-\frac{\partial \mathcal{A}_{\mu}}{\partial \lambda^{\nu}}+\left[\mathcal{A}_{\mu}, \mathcal{A}_{\nu}\right]
$$

- elementary derivation of a general spectral formula for the curvature

$$
\left(F_{\mu \nu}^{(n)}\right)_{a b}=\sum_{m \neq n} \sum_{c, d} \frac{1}{\left(E_{n}-E_{m}\right)^{2}}\langle n, b| \partial_{\mu} H|m, c\rangle g_{(m)}^{c d}\langle m, d| \partial_{\nu} H|n, a\rangle-(\mu \leftrightarrow \nu)
$$

in sector with energy E_{n} and degenerate states $|n, a\rangle$

$$
g_{a b}=\langle a \mid b\rangle
$$

Non-trivial Berry phases in a simple QFT

1 Berry phase of photons

- Consider electromagnetism with a θ interaction

$$
\mathcal{L}=-\frac{1}{4 e^{2}} F_{\mu \nu} F^{\mu \nu}+\frac{\theta}{64 \pi^{2}} F_{\mu \nu} \tilde{F}^{\mu \nu}
$$

- θ has non-trivial implications if it varies in spacetime, or if there are boundaries/walls
- interested in adiabatic changes of θ in time
- this theory is free: as we change e and θ adiabatically the spectrum is unchanged, but the energy eigenstates can rotate
- Hamiltonian

$$
\begin{gathered}
H=\frac{1}{2} \int d^{3} x\left[e^{2}\left(\vec{\pi}+\frac{\theta}{8 \pi^{2}} \vec{B}\right)^{2}+\frac{1}{e^{2}} \vec{B}^{2}+\vec{\pi} \cdot \vec{\nabla} A_{0}\right] \\
\pi_{i}=\frac{\partial \mathcal{L}}{\partial \partial_{t} A_{i}}=\frac{1}{e^{2}} E_{i}-\frac{\theta}{8 \pi^{2}} B_{i} \\
\partial_{e^{2}} H=\frac{1}{e^{4}} \int d^{3} x\left(\vec{E}^{2}-\vec{B}^{2}\right), \quad \partial_{\theta} H=\frac{1}{8 \pi^{2}} \int d^{3} x \vec{E} \cdot \vec{B}
\end{gathered}
$$

- Place on $\mathbb{R} \times \mathbb{T}^{3}$ and quantize in Coulomb gauge

$$
\begin{gathered}
\vec{A}(t, \vec{x})=\sum_{\vec{k}} \sum_{\epsilon= \pm} \sqrt{\frac{\hbar e^{2}}{2 \omega_{k} V}}\left(\vec{e}_{\epsilon}(\vec{k}) a_{\vec{k}, \epsilon} e^{-i \omega_{k} t+i \vec{k} \cdot \vec{x}}+\bar{e}_{\epsilon}(\vec{k}) a_{\vec{k}, \epsilon}^{\dagger} e^{i \omega_{k} t-i \vec{k} \cdot \vec{x}}\right) \\
\omega_{k}=c|\vec{k}|, \quad k_{i}=\frac{2 \pi n_{i}}{R}, \quad n_{i} \in \mathbb{Z}, \quad V=R^{3}
\end{gathered}
$$

- Evaluate the spectral sum in the formula for Berry curvature

The curvature has non-vanishing components only for identical external states

- for a general multi-photon state $\left|\mathfrak{n}_{+}, \mathfrak{n}_{-}\right\rangle$with \mathfrak{n}_{+}positive helicity photons, \mathfrak{n}_{-}negative helicity photons

$$
\begin{gathered}
\left(F_{\tau \bar{\tau})_{\left(\mathfrak{n}_{+}, \mathfrak{n}_{-}\right)}}=\frac{\mathfrak{n}_{+}-\mathfrak{n}_{-}}{8} \frac{1}{(\operatorname{Im} \tau)^{2}}\right. \\
\tau=\frac{\theta}{2 \pi}+i \frac{4 \pi}{e^{2}}
\end{gathered}
$$

a non-trivial Berry phase for photons
independent of momentum

Implications:
linearly polarized light changes polarization under (e, θ) variation

$$
\begin{aligned}
& \left|p_{z}, \hat{x}\right\rangle=\frac{1}{\sqrt{2}}\left[\left|p_{z},+\right\rangle+\left|p_{z},-\right\rangle\right] \\
& \mid \\
& \left|p_{z}, \hat{\phi}\right\rangle=\frac{1}{\sqrt{2}}\left[e^{i \phi}\left|p_{z},+\right\rangle+e^{-i \phi}\left|p_{z},-\right\rangle\right]
\end{aligned}
$$

experimentally visible? (e.g. topological insulators...)
e.g. Essin-Moore-Vanderbilt, PRL '09

Conformal Perturbation Theory

VS

Berry phase

CFT in $d+1$ dimensions with a non-trivial conformal manifold (continuous family of CFTs connected by exactly marginal deformations)

$$
\delta S=\int d^{d+1} x \lambda^{i} \mathcal{O}_{i}(x)
$$

Natural notions of geometry on the space of $\left\{\lambda^{i}\right\}$

Zamolodchikov metric:

$$
g_{i j}=\left\langle\mathcal{O}_{i}(\infty) \mathcal{O}_{j}(0)\right\rangle
$$

but also notions of parallel transport, connection
on the vector bundle of operators over the conformal manifold:
how one compares operators at near-by CFTs

- in conformal perturbation theory a covariant derivative incorporates regularization prescriptions
$\nabla_{\mu}\left\langle\varphi_{1}\left(z_{1}\right) \cdots \varphi_{n}\left(z_{n}\right)\right\rangle \sim\left[\int d^{d+1} x\left\langle\mathcal{O}_{\mu}(x) \varphi_{1}\left(z_{1}\right) \ldots \varphi_{n}\left(z_{n}\right)\right\rangle\right]_{\text {regularised }}$
- the curvature of this connection involves integrated correlation functions

Roughly:
$\left[\nabla_{\mu}, \nabla_{\nu}\right]_{12} \sim \int d^{d+1} x \int d^{d+1} y\langle\underbrace{}_{\text {antisymmery }} \underbrace{(x) \mathcal{O}_{\nu}}_{[\mu}](y) \varphi_{1}\left(z_{1}\right) \varphi_{2}\left(z_{2}\right)\rangle$

- integrations lead to divergences regularisation leads to non-vanishing commutators \Rightarrow curvature
- Ranganathan-Sonoda-Zwiebach ('93) prescription (cut out small balls around operators, do not allow collisions, remove divergent pieces)
- 4-point operator formula for the curvature

on \mathbb{R}^{4}

$$
\left(F_{\mu \nu}\right)_{k l}=\frac{1}{(2 \pi)^{4}} \int_{|x| \leq 1} d^{4} x \int_{|y| \leq 1} d^{4} y\left\langle\varphi_{l}(\infty) \mathcal{O}_{[\mu}(x) \mathcal{O}_{\nu]}(y) \varphi_{k}(0)\right\rangle
$$

- In CFT there is a natural correspondence between states and operators

OPERATOR-STATE correspondence

in radial quantization or on $\mathbb{R} \times S^{d}$

$$
|I\rangle \sim \mathcal{O}_{I}(0)|0\rangle
$$

- The Berry connection for states should map to a natural connection for operators in Conformal Perturbation Theory
- Two seemingly different expressions for curvature

Berry double d-dim integral
$\left(F_{\mu \nu}\right)_{I J}=\sum_{n \notin \mathcal{H}_{I}} \sum_{a, b \in \mathcal{H}_{n}} \frac{1}{\left(\Delta_{I}-\Delta_{n}\right)^{2}}\langle J| \partial_{\mu} H|n, a\rangle g_{(n)}^{a b}\langle n, b| \partial_{\nu} H|I\rangle-(\mu \leftrightarrow \nu)$

CFT
$\left(F_{\mu \nu}\right)_{I J}=\int_{|x| \leq 1} d^{d+1} x \int_{|y| \leq 1} d^{d+1} y\left\langle\mathcal{O}_{J}(\infty) \mathcal{O}_{\mu}(x) \mathcal{O}_{\nu}(y) \mathcal{O}_{I}(0)\right\rangle-(\mu \leftrightarrow \nu)$ double (d+1)-dim integral

Claim: these expressions compute the same object !

Non-perturbative computation in SCFTs $t t^{*}$ equations

4d $\mathrm{N}=2$ superconformal manifolds

The curvature of $N=2$ chiral primary vector bundles in $4 d N=2$
superconformal manifolds is computable non-perturbatively

Previously computed by Papadodimas'09 in conformal perturbation theory

The QM derivation of Berry curvature in the $1 / 2$-BPS sector of $\mathrm{N}=2$ chiral primary states reproduces the same result

- 4d $N=2$ has 8 supercharges

$$
(i=1,2 \quad \alpha= \pm)
$$

\& superconformal partners

$$
S_{i}^{\alpha}, \bar{S}^{i, \dot{\alpha}}
$$

- $\mathrm{N}=2$ chiral primaries:

$$
\begin{gathered}
{\left[\bar{Q}_{\dot{\alpha}}^{i}, \phi_{I}\right]=0 \quad \text { (+ complex conjugate) }} \\
\Delta=\frac{R}{2}
\end{gathered}
$$

chiral ring under the Operator Product Expansion (OPE)

$$
\phi_{I}(x) \phi_{J}(0)=C_{I J}^{K} \phi_{K}(0)+\ldots
$$

Exactly marginal interactions are descendants of $\mathrm{N}=2$ chiral primaries

$$
\mathcal{O}_{i}=\int d^{4} \theta \phi_{i}, \quad \overline{\mathcal{O}}_{j}=\int d^{4} \bar{\theta} \bar{\phi}_{j}
$$

Berry curvature in sector of $\mathrm{N}=2$ chiral primary states

$$
\left(F_{\mu \nu}\right)_{I J}=\sum_{n \notin \mathcal{H}_{I}} \sum_{a, b \in \mathcal{H}_{n}} \frac{1}{\left(\Delta_{I}-\Delta_{n}\right)^{2}} \stackrel{\downarrow}{\langle J| \delta_{\mu} H|n, a\rangle g_{(n)}^{a b}\langle n, b| \delta_{\nu} H|I\rangle-(\mu \leftrightarrow \nu)} \downarrow \uparrow
$$

$N=2$ superconformal deformations
conveniently recast as

$$
\begin{gathered}
\left(F_{\mu \nu}\right)_{I \bar{J}}=\lim _{x \rightarrow 0}\left(\tilde{F}_{\mu \nu}\right)_{I \bar{J}} \\
\left(\tilde{F}_{\mu \nu}\right)_{I J}=\langle J| \delta_{\mu} H(H+\hat{R}-x)^{-2} \delta_{\nu} H|I\rangle-(\mu \leftrightarrow \nu)
\end{gathered}
$$

Insert expressions for δH and compute...

After a few elementary steps using SCA relations

$$
H+\hat{R}=H-\frac{R}{2}
$$

$$
\begin{aligned}
&\left(\tilde{F}_{k \bar{l}}\right)_{I \bar{J}}= {\left[\langle\bar{J}| \oint \phi_{k} \frac{(H+\hat{R})^{4}}{(H+\hat{R}-x)^{2}} \oint \bar{\phi}_{\bar{l}}|I\rangle-\langle\bar{J}| \oint \bar{\phi}_{\bar{l}} \frac{(H+\hat{R})^{4}}{(H+\hat{R}-x)^{2}} \oint \phi_{k}|I\rangle\right] } \\
&-4\left[\langle\bar{J}| \oint \phi_{k} \frac{(H+\hat{R})^{2}}{(H+\hat{R}-x)^{2}} \oint \bar{\phi}_{\bar{l}}|I\rangle-\langle\bar{J}| \oint \bar{\phi}_{\bar{l}} \frac{(H+\hat{R})^{2}}{(H+\hat{R}-x)^{2}} \oint \phi_{k}|I\rangle\right]
\end{aligned}
$$

in disguise the `localized’ 4-point function formula in Papadodimas '09

guarantees we get the same result as in Conformal Perturbation Theory

direct computation

requires careful separation of ϕ insertions in time
final result is the same as in Conf. Pert. Theory

Figure 2: The colored dotted lines denote surface integrals of chiral primary operators and their conjugates.

$$
\begin{aligned}
\left(F_{i \bar{j}}\right)_{k \bar{l}}= & \frac{1}{(2 \pi)^{4}} \lim _{r \rightarrow 1^{-}} \int_{|x|=r} d \Omega_{3}^{x} \int_{|y|=1} d \Omega_{3}^{y}|x|^{2}|y|^{2}\left(y \cdot \partial_{y}\right)\left(x \cdot \partial_{x}\right) \\
& \left(\frac{|y|^{2}}{|x|^{2}}\left\langle\bar{\phi}_{l}(\infty) \Phi_{i}(x) \bar{\Phi}_{j}(y) \phi_{k}(0)\right\rangle-\frac{|x|^{2}}{|y|^{2}}\left\langle\bar{\phi}_{l}(\infty) \Phi_{i}(y) \bar{\Phi}_{j}(x) \phi_{k}(0)\right\rangle\right) \\
- & \frac{1}{(2 \pi)^{4}} \lim _{r \rightarrow 0} \int_{|x|=r} d \Omega_{3}^{x} \int_{|y|=1} d \Omega_{3}^{y}|x|^{2}|y|^{2}\left(y \cdot \partial_{y}\right)\left(x \cdot \partial_{x}\right) \\
& \left(\frac{|y|^{2}}{|x|^{2}}\left\langle\bar{\phi}_{l}(\infty) \Phi_{i}(x) \bar{\Phi}_{j}(y) \phi_{k}(0)\right\rangle-\frac{|x|^{2}}{|y|^{2}}\left\langle\bar{\phi}_{l}(\infty) \Phi_{i}(y) \bar{\Phi}_{j}(x) \phi_{k}(0)\right\rangle\right)
\end{aligned}
$$

this is the expression we get almost automatically from QM !!

Interesting technical point

QM streamlines the computation

bypasses non-trivial superconformal Ward identities
needed to localize on a double 3-dimensional integral
one has to use conformal Ward identities of the form

$$
\begin{aligned}
& \partial_{x}^{2} \partial_{x}^{2}\left\langle\bar{\phi}_{l}(\infty) \mathcal{O}_{i}(x) \overline{\mathcal{O}}_{j}(y) \phi_{k}(0)\right\rangle=\partial_{y}^{2} \partial_{y}^{2}\left(\frac{|y|^{4}}{|x|^{4}}\left\langle\bar{\phi}_{l}(\infty) \mathcal{O}_{i}(x) \overline{\mathcal{O}}_{j}(y) \phi_{k}(0)\right\rangle\right) \\
& \partial_{y}^{2}\left\langle\bar{\phi}_{l}(\infty) \mathcal{O}_{i}(y) \overline{\mathcal{O}}_{j}(x) \phi_{k}(0)\right\rangle=\partial_{x}^{2}\left(\frac{|x|^{2}}{|y|^{2}}\left\langle\bar{\phi}_{l}(\infty) \mathcal{O}_{i}(y) \overline{\mathcal{O}}_{j}(x) \phi_{k}(0)\right\rangle\right) \\
& \int_{|x|=\mathrm{const}} d \Omega_{3}^{x} \partial_{y}^{2}\left(|y|^{4}\left\langle\bar{\phi}_{l}(\infty) \mathcal{O}_{i}(x) \overline{\mathcal{O}}_{j}(y) \phi_{k}(0)\right\rangle\right) \\
& =\int_{|x|=\mathrm{const}} d \Omega_{3}^{x}|y|^{2}\left(x \cdot \partial_{x}\right)\left(|x|^{2}\left(x \cdot \partial_{x}\right)\left(\frac{1}{|x|^{2}}\left\langle\bar{\phi}_{l}(\infty) \mathcal{O}_{i}(x) \overline{\mathcal{O}}_{j}(y) \phi_{k}(0)\right\rangle\right)\right)
\end{aligned}
$$

to finally localize on a double 3d integral

- The rest can be evaluated using OPEs. Only a few terms contribute
- The end result is a nice simple formula that relates the curvature with the chiral ring OPE coefficients and the chiral ring 2-point functions

$$
\begin{array}{r}
\left(F_{i \bar{j}}\right)_{K \bar{L}}=-\left[C_{i}, \bar{C}_{j}\right]_{K \bar{L}}+g_{i \bar{j}} g_{K \bar{L}}\left(1+\frac{R}{c}\right) \\
g_{K \bar{L}}=\left\langle\bar{\phi}_{L}(\infty) \phi_{K}(0)\right\rangle
\end{array}
$$

$\boldsymbol{t t}^{*}$ equations
powerful combined with SUSY localization on S^{4} partition functions

Example: SU(2) N=2 SCQCD

chiral primary operators $\phi_{2 n} \propto\left(\operatorname{Tr}\left[\varphi^{2}\right]\right)^{n}$
in normalization $\quad \phi_{2}(x) \phi_{2 n}(0)=\phi_{2 n+2}(0)+\ldots$
non-trivial info in 2-point functions $\quad\left\langle\phi_{2 n}(x) \bar{\phi}_{2 n}(0)\right\rangle=\frac{g_{2 n}(\tau, \bar{\tau})}{|x|^{4 n}}$
$t t^{*}$ equations

$$
\begin{gathered}
\partial_{\tau} \partial_{\bar{\tau}} \log g_{2 n}=\frac{g_{2 n+2}}{g_{2 n}}-\frac{g_{2 n}}{g_{2 n-2}}-g_{2} \\
g_{0}=1, \quad n=1,2, \ldots \quad \text { semi-infinite Toda }
\end{gathered}
$$

solution recursively from

$$
g_{2}=\partial_{\tau} \partial_{\bar{\tau}} Z_{S^{4}}
$$

SU(2) N=2 SCQCD
$\left\langle\left(\operatorname{Tr} \varphi^{2}\right)^{n_{1}}\left(\operatorname{Tr} \varphi^{2}\right)^{n_{2}}\left(\operatorname{Tr} \bar{\varphi}^{2}\right)^{n_{1}+n_{2}}\right\rangle$

$$
\tau=\frac{\theta}{2 \pi}+\frac{4 \pi i}{g_{Y M}^{2}}
$$

Large-N 't Hooft limit
SU(N) N=2 SCQCD
Large-N 't Hooft limit
SU(N) N=2 SCQCD
$\left\langle\operatorname{Tr} \varphi^{n_{1}} \operatorname{Tr} \varphi^{n_{2}} \operatorname{Tr} \bar{\varphi}^{n_{1}+n_{2}}\right\rangle$

$$
\begin{aligned}
& \hat{C}_{224}^{(0)}=\sqrt{\frac{10}{3}}\left(1-\frac{9 \zeta(3)}{2 \pi^{2}} \frac{1}{(\operatorname{Im} \tau)^{2}}+\frac{525 \zeta(5)}{8 \pi^{3}} \frac{1}{(\operatorname{Im} \tau)^{3}}+\ldots\right), \\
& \hat{C}_{246}^{(0)}=\sqrt{7}\left(1-\frac{9 \zeta(3)}{\pi^{2}} \frac{1}{(\operatorname{Im} \tau)^{2}}+\frac{675 \zeta(5)}{4 \pi^{3}} \frac{1}{(\operatorname{Im} \tau)^{3}}+\ldots\right),
\end{aligned}
$$

$$
\hat{C}_{268}^{(0)}=2 \sqrt{3}\left(1-\frac{27 \zeta(3)}{2 \pi^{2}} \frac{1}{(\operatorname{Im} \tau)^{2}}+\frac{2475 \zeta(5)}{8 \pi^{3}} \frac{1}{(\operatorname{Im} \tau)^{3}}+\ldots\right)
$$

$$
\hat{C}_{2810}^{(0)}=\sqrt{\frac{55}{3}}\left(1-\frac{18 \zeta(3)}{\pi^{2}} \frac{1}{(\operatorname{Im} \tau)^{2}}+\frac{975 \zeta(5)}{2 \pi^{3}} \frac{1}{(\operatorname{Im} \tau)^{3}}+\ldots\right),
$$

+ ALL instanton

$$
\hat{C}_{448}^{(0)}=3 \sqrt{\frac{14}{5}}\left(1-\frac{18 \zeta(3)}{\pi^{2}} \frac{1}{(\operatorname{Im} \tau)^{2}}+\frac{825 \zeta(5)}{2 \pi^{3}} \frac{1}{(\operatorname{Im} \tau)^{3}}+\ldots\right),
$$

$$
\hat{C}_{4610}^{(0)}=\sqrt{66}\left(1-\frac{27 \zeta(3)}{\pi^{2}} \frac{1}{(\operatorname{Im} \tau)^{2}}+\frac{2925 \zeta(5)}{4 \pi^{3}} \frac{1}{(\operatorname{Im} \tau)^{3}}+\ldots\right)
$$

$$
\begin{aligned}
& \langle 2,2, \overline{4}\rangle_{n}=\frac{4}{N}\left(1-\frac{3 \zeta(3)}{64 \pi^{4}} \lambda^{2}+\frac{45 \zeta(5)}{512 \pi^{6}} \lambda^{3}+\frac{3\left(72 \zeta(3)^{2}-1085 \zeta(7)\right)}{32768 \pi^{8}} \lambda^{4}+\ldots\right), \\
& \langle 2,4, \overline{6}\rangle_{n}=\frac{4 \sqrt{3}}{N}\left(1-\frac{3 \zeta(3)}{128 \pi^{4}} \lambda^{2}+\frac{15 \zeta(5)}{256 \pi^{6}} \lambda^{3}+\frac{99 \zeta(3)^{2}-2275 \zeta(7)}{32768 \pi^{8}} \lambda^{4}+\ldots\right), \\
& \langle 4,4, \overline{8}\rangle_{n}=\frac{8 \sqrt{2}}{N}\left(1+\frac{15 \zeta(5)}{512 \pi^{6}} \lambda^{3}-\frac{665 \zeta(7)}{16384 \pi^{8}} \lambda^{4}+\ldots\right), \\
& \langle 4,6, \overline{10}\rangle_{n}=\frac{4 \sqrt{15}}{N}\left(1+\frac{15 \zeta(5)}{512 \pi^{6}} \lambda^{3}-\frac{35\left(263520 \zeta(3)^{2}-501551 \zeta(7)\right)}{32768 \pi^{8}} \lambda^{4}+\ldots\right),
\end{aligned}
$$

This study led to the first exact non-perturbative computation of non-trivial 3-point functions in 4d QFTs

Baggio-VN-Papadodimas '14

Supersymmetric localization now allows the complete solution of extremal N -point functions in the $\mathrm{N}=2$ chiral ring

Main messages - outlook

- Non-trivial Berry phases appear quite generically in QFT (examples in this talk: E\&M, CFTs)

Possibly new physically interesting effects await to be discovered

- Evaluating the Berry phase of QFTs by putting them on different curved manifolds appears to be a useful strategy
- The Berry phase of $1 / 2$-BPS states in $\mathbf{4 d} \mathbf{N}=\mathbf{2} \& \mathbf{2 d} \mathbf{N}=(\mathbf{2}, \mathbf{2})$ SCFTs is a non-trivial example where non-perturbative computations are possible
- Very interesting to extend these results to:
- lower SUSY,
- non-conformal theories...
- Ultimate goals (work in progress):
\odot non-perturbative relations between correlation functions
© geometry of parameter spaces (space-of-theories)...

