Theta angle in holographic QCD

Matti Järvinen

Institute Philippe Meyer \& LPT,
École Normale Supérieure, Paris

9th Crete Regional Meeting - Kolymbari - 10 July 2017
[arXiv:1609.08922 with D. Arean,
I. latrakis, and E. Kiritsis]

Outline

1. Axial anomaly in QCD at large N
2. V-QCD and the axial symmetry
3. Results for CP-odd observables

The $U(1)_{A}$ problem

One light mode missing in the experimentally observed spectrum:
The mass of η^{\prime} is 958 MeV , not small

- The would-be pion for the breaking of $U(1)_{A}$
- Does not obey the GMOR relation

Solution: $U(1)_{A}$ broken by quantum effects: axial (triangle) anomaly

- Measure of the path integral not invariant under $U(1)_{A}$ \Rightarrow the Goldstone theorem does not apply

The $U(1)_{A}$ problem

It is known exactly how $U(1)_{A}$ is broken:

$$
\partial_{\mu} J_{A}^{\mu}=\frac{N_{f}}{16 \pi^{2}} \operatorname{Tr} G \tilde{G}-2 i \sum_{i} m_{i} \bar{\psi}_{i} \gamma_{5} \psi_{i}
$$

Connection to the θ-angle - CP-odd terms in QCD
$Z_{\mathrm{QCD}} \sim \int D \bar{\psi} D \psi e^{i \int d^{4} \times\left[\frac{\theta}{32 \pi^{2}} \operatorname{Tr} G \tilde{G}-\sum_{i} m_{i} e^{i \phi_{i}} \bar{\psi}_{R}^{i} \psi_{L}^{i}-\sum_{i} m_{i} e^{-i \phi_{i}} \bar{\psi}_{L}^{i} \psi_{R}^{i}+\cdots\right]}$

- $U(1)_{A}$ transformation can remove $\sum_{i} \phi_{i}$, but shifts θ (due to noninvariance of $D \bar{\psi} D \psi$)
- $\bar{\theta} \equiv \theta+\sum_{i} \phi_{i}$ invariant physical parameter, unless some of the m_{i} vanishes (experimentally $\lesssim 10^{-10}$)

The $U(1)_{A}$ anomaly at large N

- In the 't Hooft (probe) limit ($g^{2} N_{c}$ and N_{f} fixed, $N_{c} \rightarrow \infty$) anomalous contribution absent at leading order, appears at NLO: anomaly $\sim \mathcal{O}\left(N_{f} / N_{c}\right)$
- In the Veneziano limit
$\left(g^{2} N_{c}\right.$ and $N_{f} / N_{c} \equiv x$ fixed, $N_{c} \rightarrow \infty$ and $\left.N_{f} \rightarrow \infty\right)$ anomaly present at leading order

Witten-Veneziano formula for the mass of η^{\prime} :

$$
m_{\eta^{\prime}}^{2} \simeq m_{\pi}^{2}+x \frac{\chi}{\bar{f}_{\pi}^{2}}=m_{\pi}^{2}+\frac{N_{f}}{N_{c}} \frac{\chi}{\bar{f}_{\pi}^{2}}
$$

where $\chi=$ the topological susceptibility $\bar{f}_{\pi}=\mathcal{O}(1)$, and x small

Order of limits and $U(1)_{A}$

Tricky issue with order of limits: chiral $\left(m_{q} \rightarrow 0\right)$ and probe $\left(x=N_{f} / N_{c} \rightarrow 0\right)$ limits do not commute

1. Chiral limit at finite x : light π^{\prime} s and heavy η^{\prime} with suppressed couplings to heavy states
2. Probe limit at finite m_{q} : degenerate π^{\prime} 's and η^{\prime}, enhanced chiral symmetry $S U \rightarrow U$

- QCD at Veneziano limit interpolates between the two regimes
- Implement this in a holographic model?

2. V-QCD and axial symmetry

Holographic V-QCD: the fusion

The fusion:

1. IHQCD: bottom-up model for glue by using $5 d$ dilaton gravity
[Gursoy, Kiritsis, Nitti; Gubser, Nellore]
2. Adding flavor and chiral symmetry breaking via space filling $D 4-\bar{D} 4$ branes

Consider 1. +2 . in the Veneziano limit with full backreaction \Rightarrow V-QCD models
[MJ, Kiritsis arXiv:1112.1261]

Dictionary

In the flavor/CP-odd sector

1. The tachyon: $T^{i j} \leftrightarrow \bar{\psi}_{R}^{i} \psi_{L}^{j} ; \quad\left(T^{\dagger}\right)^{i j} \leftrightarrow \bar{\psi}_{L}^{i} \psi_{R}^{j}$

- Source: the (complex) quark mass matrix $M^{i j}$ Note: the phase of the tachyon sources the phase of the mass

2. The gauge fields $A_{\mu, L / R}^{i j} \leftrightarrow \bar{\psi}_{L / R}^{i} \gamma_{\mu} \psi_{L / R}^{j} \equiv J_{\mu}^{(L / R)}$

- Sources: chemical potentials and background fields (not turned on in this study)

3. The bulk axion $\mathfrak{a} \leftrightarrow \operatorname{Tr} G \wedge G$

- Source: (normalized) theta angle θ / N_{c}

In the glue sector

1. The dilaton $\lambda \leftrightarrow \operatorname{Tr} G^{2}$

- Source: the 't Hooft coupling $g^{2} N_{c}$

The CP-odd term in V-QCD

CP-odd action \mathcal{S}_{a} arises from the WZW term

- Couples the RR axion C_{3} to the $U(1)_{A}$ gauge field $A=\left(A_{L}-A_{R}\right) / 2$ and the tachyon phase $\xi=\arg \operatorname{det} T / N_{f}$
- Dualizing $C_{3} \rightarrow$ axion field \mathfrak{a} gives

$$
\begin{aligned}
S_{a}= & -\frac{M^{3} N_{c}^{2}}{2} \int d^{5} x \sqrt{-\operatorname{det} g} Z(\lambda) \\
& \times\left[\partial_{M} \mathfrak{a}-x\left(2 V_{a} A_{M}-\xi \partial_{M} V_{a}\right)\right]^{2}
\end{aligned}
$$

[Casero, Kiritsis, Paredes]
Symmetry

$$
A_{\mu} \rightarrow A_{\mu}+\partial_{\mu} \epsilon, \quad \xi \rightarrow \xi-2 \epsilon, \quad a \rightarrow a+2 x V_{a} \epsilon
$$

implies the axial anomaly in QCD (with $\epsilon=\epsilon\left(x_{\mu}\right)$)

Full V-QCD action

Complete V-QCD model

$$
\mathcal{S}_{\mathrm{V}-\mathrm{QCD}}=\mathcal{S}_{g}+\mathcal{S}_{f}+\mathcal{S}_{a}
$$

1. \mathcal{S}_{g} : 5D dilaton-gravity (gluon sector, IHQCD)
2. \mathcal{S}_{f} : Generalized tachyon DBI action for flavor $\left(T, F_{\mu \nu}\right)$
3. \mathcal{S}_{a} : The CP-odd action

- Fine details of \mathcal{S}_{g} and \mathcal{S}_{f} not important for this talk
- Full backreaction between all sectors \Rightarrow solve saddle points numerically
- Analytic results (in chiral limit) implied by symmetry

3. Results

Free energy and topological susceptibility

Using symmetry and "linearization" near the UV
$\mathcal{E}(\bar{\theta})-\mathcal{E}(0) \approx \min _{\xi}\left[-\left.\langle\bar{\psi} \psi\rangle\right|_{m_{q}=0} m_{q}(1-\cos \xi)+\frac{\chi_{\mathrm{YM}}}{2}\left(N_{f} \xi-\bar{\theta}\right)^{2}\right]$

- Agrees precisely with chiral Lagrangians!

For a single branch of vacua $\mathcal{E}=N_{c}^{2} f\left(\bar{\theta} / N_{c}\right)$ Imposing the 2π periodicity of $\bar{\theta}$:

$$
\mathcal{E}(\bar{\theta})=\frac{1}{2} \chi \min _{k}(\bar{\theta}+2 \pi k)^{2}=\mathcal{O}\left(N_{c}^{0}\right)
$$

Topological susceptibility:

$$
\begin{aligned}
& \chi=\left.\frac{d^{2} \mathcal{E}}{d \bar{\theta}^{2}}\right|_{\bar{\theta}=0} \propto \int d^{4} x\langle\operatorname{Tr} G \tilde{G}(x) \operatorname{Tr} G \tilde{G}(0)\rangle \\
& \simeq \frac{1}{\chi_{\mathrm{YM}}^{-1}-N_{f}^{2} / m_{q}\langle\bar{\psi} \psi\rangle}
\end{aligned}
$$

Small m_{q} means $m_{q}\langle\bar{\psi} \psi\rangle \ll x \Lambda_{\text {IR }}^{4}$ - order of limit issue!

Topological susceptibility

Dependence on m_{q} at $x=2 / 3$

Interpolates between expected results at small and large m_{q}

The free energy

- Small m_{q} : agreement with chiral Lagrangians
- Large m_{q} : finite range of $\bar{\theta}$

Topological susceptibility in the conformal window

So far I discussed only QCD the like phase, but the model also includes the conformal window

- IR fixed point perturbed by a small quark mass
- "Hyperscaling" of meson masses can by computed from tachyon flow
[Evans, Scott; MJ]
The same approach gives the scaling of the topological susceptibility

$$
\chi \propto m_{q}^{\frac{4}{1+\gamma_{*}}} \quad \text { as } \quad m_{q} \rightarrow 0
$$

where γ_{*} is the anomalous dimension of the quark mass at the IR fixed point.

The mass of η^{\prime} in V-QCD

Agreement with Veneziano-Witten (can also be checked analytically)

$$
m_{\eta^{\prime}}^{2} \simeq m_{\pi}^{2}+x \frac{\chi}{\bar{f}_{\pi}^{2}} \simeq-\frac{\langle\bar{\psi} \psi\rangle m_{q}}{f_{\pi}^{2}}+x \frac{N_{f} N_{c} \chi}{f_{\pi}^{2}}
$$

Modified "complex" Efimov spirals

- Complex tachyon violates the Breitenlohner-Freedman bound \Rightarrow oscillates near the fixed point
- The complex quark mass and the VEV $\langle\bar{\psi} \psi\rangle$ have spiral-like behavior

$$
\begin{aligned}
\frac{m_{q} e^{i \xi_{0}}}{\Lambda_{\mathrm{UV}}} & =\frac{K_{\mathrm{IR}} e^{i k_{\mathrm{IR}}}}{K_{m}} \frac{\sin \left(\phi_{\mathrm{IR}}-\phi_{\sigma}-\nu u\right) \cosh \varphi_{\mathrm{IR}}+i \cos \left(\phi_{\mathrm{IR}}-\phi_{\sigma}-\nu u\right) \sinh \varphi_{\mathrm{IR}}}{\sin \left(\phi_{m}-\phi_{\sigma}\right)} e^{-2 u} \\
\frac{\hat{\sigma} e^{i \xi_{0}}}{\Lambda_{\mathrm{UV}}^{3}} & =\frac{K_{\mathrm{IR}} e^{i k_{\mathrm{IR}}}}{K_{\sigma}} \frac{\sin \left(\phi_{\mathrm{IR}}-\phi_{m}-\nu u\right) \cosh \varphi_{\mathrm{IR}}+i \cos \left(\phi_{\mathrm{IR}}-\phi_{m}-\nu u\right) \sinh \varphi_{\mathrm{IR}}}{\sin \left(\phi_{\sigma}-\phi_{m}\right)} e^{-2 u}
\end{aligned}
$$

(Real) spirals common in holographic computations
[E.g. Iqbal,Liu,Mezei 1108.0425]
Comparison to numerical data $\left(x=\underset{\operatorname{Arg}(\hat{\sigma})+\xi_{0}}{2.5)}\right.$ with various $\bar{\theta}$:

Conclusions

- We studied the implementation of the axial anomaly with full backreaction (finite N_{f} / N_{c}) in V-QCD
- Explored CP-odd physics over the parameter space $\left(\bar{\theta}, m_{q}, x\right)$
- Results complement those obtained in effective theories and in Witten-Sakai-Sugimoto model
[Bartolini,Bigazzi,Bolognesi, Cotrone,Manenti,Sisca]
- Extensive agreement with known results in specific limits (chiral, probe, large m_{q})

Extra Slides

V-QCD action

Degrees of freedom

- The tachyon τ, and the dilaton λ
- $\lambda=e^{\phi}$ is identified as the 't Hooft coupling $g^{2} N_{c}$
- τ is dual to the $\bar{q} q$ operator

$$
\begin{aligned}
\mathcal{S}_{\mathrm{V}-\mathrm{QCD}} & =N_{c}^{2} M^{3} \int d^{5} \times \sqrt{g}\left[R-\frac{4}{3} \frac{(\partial \lambda)^{2}}{\lambda^{2}}+V_{g}(\lambda)\right] \\
- & N_{f} N_{c} M^{3} \int d^{5} \times V_{f}(\lambda, \tau) \sqrt{-\operatorname{det}\left(g_{a b}+\kappa(\lambda) \partial_{a} \tau \partial_{b} \tau\right)}
\end{aligned}
$$

$V_{f}(\lambda, \tau)=V_{f 0}(\lambda) \exp \left(-a(\lambda) \tau^{2}\right) ; \quad d s^{2}=e^{2 A(r)}\left(d r^{2}+\eta_{\mu \nu} x^{\mu} x^{\nu}\right)$

Need to choose $V_{f 0}, a$, and $\kappa \ldots$

CP-odd action

CP-odd action \mathcal{S}_{a} arises from the WZW term [hep-th/0702155, 1309.2286]
$\mathcal{S}_{a}=\mathcal{S}_{\text {open }}+\mathcal{S}_{\text {closed }} ; \quad \mathcal{S}_{\text {closed }}=-\frac{M^{3}}{2} \int d^{5} x \sqrt{-\operatorname{det} g} \frac{\left|d C_{3}\right|^{2}}{Z(\lambda)}$

$$
\mathcal{S}_{\text {open }}=i \int C_{3} \wedge d \Omega_{1} ; \quad \Omega_{1}=i N_{f}\left[2 V_{a} A-\xi d V_{a}\right]
$$

- Couples the RR axion C_{3} to the $U(1)_{A}$ gauge field $A=\left(A_{L}-A_{R}\right) / 2$ and the tachyon phase $\xi=\arg \operatorname{det} T / N_{f}$

Dualizing $C_{3} \rightarrow$ axion field \mathfrak{a}

$$
Z^{-1} d C_{3}={ }^{*}\left(N_{c} d \mathfrak{a}+i \Omega_{1}\right)
$$

gives
$\mathcal{S}_{a}=-\frac{M^{3} N_{c}^{2}}{2} \int d^{5} x \sqrt{-\operatorname{det} g} Z(\lambda)\left[\partial_{M} \mathfrak{a}-x\left(2 V_{a} A_{M}-\xi \partial_{M} V_{a}\right)\right]^{2}$
Bottom-up: potentials $\left(Z, V_{a}\right)$ to be determined...

$U(1)_{A}$ symmetry and the θ-angle

$$
\mathcal{S}_{a}=-\frac{M^{3} N_{c}^{2}}{2} \int d^{5} x \sqrt{-\operatorname{det} g} Z(\lambda)\left[\partial_{M} \mathfrak{a}-x\left(2 V_{a} A_{M}-\xi \partial_{M} V_{a}\right)\right]^{2}
$$

The $U(1)_{A}$ gauge transformation is

$$
A_{M} \rightarrow A_{M}+\partial_{M} \epsilon, \quad \xi \rightarrow \xi-2 \epsilon, \quad \mathfrak{a} \rightarrow \mathfrak{a}+2 x V_{a} \epsilon
$$

reflecting the axial anomaly in QCD (with $V_{a} \rightarrow 1$ at boundary)

- Implies $\partial_{\mu} J_{A}^{\mu}=N_{f} \operatorname{Tr} G \tilde{G} / 16 \pi^{2}-2 m_{q} i \bar{\psi} \gamma_{5} \psi$
- Gauge invariant $\mathfrak{a}+x V_{a} \xi$ sources $\bar{\theta} / N_{c}=(\theta+\arg \operatorname{det} M) / N_{c}$ How about periodicity of $\bar{\theta}$?
- For diagonal tachyon $T=\tau e^{i \xi} \mathbb{I}, \quad \xi \mapsto \xi+2 \pi$ implies $\bar{\theta} \mapsto \bar{\theta}+2 \pi N_{f}(!)$
- Configurations with $T=\tau \mathbb{I}$ and $T=\tau e^{2 \pi i / N_{f} \mathbb{I}}$, corresponding to $\bar{\theta} \mapsto \bar{\theta}+2 \pi$, both have real det T
\Rightarrow different branch of $\xi=\arg \operatorname{det} T / N_{f}$
- 2π peridiocity appears through branch structure (as it should)

