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Introduction 

Entanglement Entropy in Gauge 
Theories is non-trivial to define.  

Interesting: Gauge Theories are 
ubiquitous. 
 
Non-Trivial: because there are 
Non-local excitations, e.g. Wilson 
and ‘tHooft Loops.  



Introduction 

In a system with local degrees of 
freedom, like a spin system,  the 
entanglement entropy is straight 
forward to define.  



Introduction 

E.g. in a spin system 

       Spin System: single qubit at each   
site                 
 
2- dim Hilbert space at site i:  

Z2

|± >

Hi



Interested in the entanglement between a 
subset of spins, called the  ``inside’’  with 
the rest,  the ``outside’’ 



Full Hilbert space:  

H =
O

Hi

Admits a tensor product decomposition 

⇢ = TrH
out

| ><  |

H = H
in

⌦H
out



⇢ = TrH
out

| ><  |

Von Neumann entropy 

 
 
SEE = SvN = �TrHin⇢ log ⇢



Entanglement In A Gauge Theory 

•  Not as simple to define.  

•  Because there are non-local 
degrees of freedom, e.g., Wilson 
loops, or loops of electric flux.  

•  Physical Hilbert space of states 
does not admit a tensor product 
decomposition between  H

in

,H
out



Entanglement Entropy In  Gauge Theory 

•  Lattice Gauge Theory 
 
•  Hamiltonian Framework: time 

continuous, Spatial lattice 
 
•  Discussion applies in d+1 dimensions. 

•  (Diagrams in 2 spatial dimensions) 



Entanglement Entropy In A    
Gauge Theory :  



•  The Gauss Law constraint means 
the  inside and outside links ending 
on boundary vertices are not 
independent.  

•  Resulting in a lack of a tensor 
product decomposition.  

•  General feature: Discrete gauge 
theories, Abelian, Non-Abelian 

Entanglement in Gauge Theories 



The Gauss law constraint must apply at 
every boundary vertex, e.g. the red one 
in this figure. 



This is the essential 
obstruction or complication in 
defining the entanglement 
entropy for gauge theories.  



Gauge Fixing in different ways 
leads to dependent answers which 
are therefore gauge dependent. 



•  Casini, Huerta, Rosabal (CHR): Phys. 
Rev. D. 89, 085012 (2014) proposed a 
definition in the Abelian case.  

•  Identified the presence of a non-trivial 
centre in the algebra of operators as 
the essential complication.  

•  Different choices of centre gives 
different definitions.  
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Extended Hilbert Space Definition  

Work in an extended Hilbert Space 
Obtained by taking the tensor product 
of the Hilbert spaces on each link. 
 
 
 

H

H =
O

Hij

Ghosh, Soni, ST, arXiv: 1501.2593 
S. Aoki, T. Iritani, M. Nozaki, T. Numasawa, N. 
Shiba, H. Tasaki, arXiv: 1502.04267 



Entanglement Entropy In A    
Gauge Theory :  



     admits a tensor product 
decomposition. 
H

Hin =
O

(ij)2in

Hij

H
out

=
O

(ij)2out

H
ij

H = H
in

O
H

out



Hginv ⇢ H

Embed State             in      as follows: H

Orthogonal 
complement 

| >2 Hginv

H = Hginv �H?
ginv

| >



 Extended Hilbert Space Definition 
 
        
 
Construct   
 

⇢in = TrH
out

| ><  |

SEE = �TrHin(⇢in log ⇢in)



Renyi Entropies Can be Defined 
similarly. 



Properties of Extended Hilbert Space 
Definition 

•  Definition Unambiguous. 

•  Gauge Invariant 

•  Meets Strong Subadditivity property 



Properties of Extended Hilbert Space 
Definition 

Simple, can be easily generalised: 
 
•  Discrete and Continuous, 

•   Abelian, Non-Abelian Groups. 

•  Also, with matter. 



Properties of Extended Hilbert Space 
Definition 

Definition unambiguous. 
 
          Gives rise to a unique state in   
 
And after tracing out over           a unique  
       
 

| > H

H
out

⇢



Properties: 

      Endowed with a natural inner product 
from that on       . Meets positivity 
condition. 
 

H
Hij



Properties 

Thus          meets the strong 
subadditivity condition  

SEE

A, B, C three sets of links that do 
not share any links in common 

SA[B + SB[C � SA[B[c + SB



Gauge Invariant Characterisation Of The 
Extended Hilbert Space Definition 

•  Gauge Invariant: Essentially because  
•                                   
•    
•  With no component along  

 

| >2 Hginv

H?



Gauge Invariant Characterisation Of The 
Extended Hilbert Space Definition 

•  Let us understand the gauge 
invariance  of the definition some 
more. 

•  How can the resulting answer be 
expressed in terms of  gauge invariant 
data? 

 



For simplicity we consider a theory 
without matter.  
 
Any  state can be decomposed into 
different sectors. 
 
Each sector has a fixed amount of 
electric flux coming into the inside 
region.  
 

Gauge Invariant Characterisation 



Let the boundary vertices be labelled as                          
 
 
And let the Electric flux coming in be  
 
 
Then  each  sector is specified by  
A choice of the electric flux vector    . 
        
                            integer in the Abelian 
case (compact U(1)). 

V1, V2, · · ·VN

k = (k1, k2, · · · kN )

k

ka, a = 1, · · ·N



Red dot location of  one boundary vertex 



 Result  (Abelian Case) 

`i’: labels sectors of different electric 
flux 
    : probability to be in sector i 
      
     normalised density matrix in sector 
`i’ 
 

SEE = �
P

i pi log pi �
P

i pi(⇢̄i log ⇢̄i)

⇢̄i

Tri(⇢̄i) = 1

pi



 Result 

``Classical   
Term’’ 

``Quantum Term” 

SEE = �
P

i pi log pi �
P

i pi(⇢̄ log ⇢̄i)



The Extended Hilbert Space definition, 
in Abelian Case,  can be shown to be 
equivalent to the electric center 
prescription of Cassini, Huerta and 
Rosabal. 



Non-Abelian Theory 

An extra contribution arises in the Non-
Abelian case.  
 
Tied to the fact that irreducible 
representations have dimension greater 
than unity.  
(Donnelley) 
 

R. Soni, ST, JHEP 1601 (2016), 136 



Non-Abelian Theory 

 
Let the total flux going inside at a boundary 
vertex transform in an irreducible 
representation       of the group.  
 
Then the  total flux going out at this vertex 
must also be in the same       irreducible 
representation. 
 
And together they must pair to form a singlet 
under the gauge group (Gauss’ Law) 
 

Ra

Ra



Result (Non-Abelian Case) 

The extra entanglement arises due 
to this pairing.  
 
In the `i’th  sector let the 
dimensions of the representations 
at the boundary vertices                         
be  
    
 

V1, V2, · · ·VN

(di1, d
i
2 · · · diN )



Result (Non-Abelian Case) 

Then  

Extra piece 

SEE = �
P

i pi log pi �
P

i Tripi⇢̄i log ⇢̄i

+

P
i pi(

P
a log d

i
a)



  The different sectors, with differing 
electric flux,  are actually different 
super selection sectors.  
 
Operations involving Gauge 
invariant operators  in the inside or 
outside cannot change these 
sectors, or the probabilities      and 
dimensions  

pi

Superselection Sectors 

dia



•  This prevents  some of the 
entanglement  entropy from being 
``extracted” through local 
operations acting only on the 
inside or outside.  

Superselection Sectors 



Extractable Part of Entanglement 

How much of the entanglement 
we have defined can be actually 
used for quantum information 
processing? 



Quantum Information Theory 

•  Entanglement quantified by 
comparison with a reference system 
of N Bell pairs.  

•  Comparison done using 
entanglement distillation or 
entanglement dilution.  



So how well can we do? 
 

The maximum entanglement which 
can be extracted is  

Extracting The Entanglement 

�SEE = �
P

i Tri pi⇢̄i log(⇢̄i)

R. Soni and ST, 1510.07455 
 
K. van Acoleyen, N. Bultnick, J. Haegeman, M. 
Marien, V. B. Scholz, F. Verstraete, 1511.04369 



SEE = �
P

i pi log pi �
P

i Tripi⇢̄i log ⇢̄i

+

P
i pi(

P
a log d

i
a)

Only this term can be extracted 



Entanglement Distillation : 

A B 

2N unentangled 
qubits 



To finally arrive at the situation: 

A B 

N entangled Bell 
pairs 



Carry Out Transformations 
involving Local Operations and 
Classical Communication 
 
Local operations act only in  A and 
one set of N qubits. Or B and the 
other set. Correspond to Gauge 
Invariant Operators. 
 

Entanglement Distillation 



Let N be  the maximum number of Bell 
pairs we can produce. 
 
 
Then       SEE = N log(2)

(Actually in an asymptotic sense with                  
copies of the system in the                  
Limit.) 
  

N
N ! 1



SEE = �
P

i pi log pi �
P

i Tripi⇢̄i log ⇢̄i

+

P
i pi(

P
a log d

i
a)

Only this term can be extracted 



We have given explicit protocols 
showing that this is the maximum 
bound on the extractable 
entanglement.  

Extracting The Entanglement 

R. Soni and ST, 1510.07455 
 
K. van Acoleyen, N. Bultnick, J. 
Haegeman, M. Marien, V. B. Scholz, F. 
Verstraete, 1511.04369 



Extractable Part of Entanglement 

The Gauge Theory may arise at energy 
 
 
The extractable part is then what can be 
recovered using operations with 
energy             . 
 
Using operations at higher energy more, 
sometimes even the full, entanglement 
can be recovered.  

E ⌧ ⇤

E ⌧ ⇤



Properties of Extended Hilbert Space 
Definition 

•  Agrees with the Replica Trick Path 
Integral (on the lattice).  



Replica Trick 

•  Essentially because each link 
variable is independent in the path 
integral.  

•  The path integral automatically 
gives                embedded in the 
extended Hilbert space 

 
 

| >



| >=

Z t=0�

�1
DUij e�S

<  | =
Z t=1

0+
DUij e�S

 
 
 
 
 
 
 





Continuum Limit  

Start with Pure Gauge Theory (without 
matter) at weak coupling on the lattice in 
vacuum state.  
 
And take the continuum limit. 
 
This gives the replica trick integral with the 
standard Fadeev Popov Gauge fixing (plus a 
caveat   since the path integral needs to be 
regulated in continuum): 

(R. Soni and ST, arXiv 1608.00353 ) 



Continuum Limit  

 
 M is the singular  n-fold cover of 
obtained by introducing a branch cut 
along the boundary  

Rd+1

Z
[DA1]e�S�(f(Aa))|det(�f(A

a)

�!b
)|



Even Bigger Hilbert Space 

•  Result is gauge invariant.  

•  Suggests that we can work with 
an even bigger Hilbert space to 
define entanglement. 

•  Obtained by Including ghosts. 
This extended Hilbert space  has 
negative norm states.  



Even Bigger Hilbert Space 

However physical states correspond 
to cohomology  of the BRST operator. 
 
 
 
 
Thus the result of the entanglement 
entropy so obtained should agree 
with the Extended Hilbert space 
definition.  

QBRST | >= 0

| >' | > +QBRST |� >



Even Bigger Hilbert Space 

This is true and can be made 
precise. 
 
(Abelian case; Soni and SPT in 
prep.) 



U(1) Theory  3+1 dimensions 

A cutoff needs to be introduced to 
make the Path Integral well defined. 

Take 3+1 dim and the spatial region 
whose entanglement we seek to be a 
sphere of radius R 

R



U(1) In 3+1 Dim 

On general grounds we expect: 

Cut-off 
independent 

SEE = A/✏2 + C log(R/✏) + finite



U(1) Theory in 3+1 Dim 

C gets related to the A anomaly 
coefficient 

C = � 31
45

Fursayev, Patrushev, Solodukhin, 1306.400, … 

Tµ
µ = aE4 + bW 2

C = a



U(1) Theory in 3+1 Dim 

How much of this is extractable? 

The ``classical piece” turns out to be: 
�S = �

P
i pi log(pi)

= � 1
3 log(R/✏)

Related to 1+1  Free scalar CFT 

R. Soni and ST, arXiv 1608.00353;  
Donnelley and Wall, PRL, 2015, 114, 111603. 



U(1) in 3+1 Dim 

The resulting extractable piece is then 
 
  
 
 �S

extractable

= � 16
45 log(R/✏)



U(1) in 3+1 Dim 

The extractable part agrees with  the 
result for the full entanglement  recently 
obtained by Casini and Huerta, using a 
trivial center definition. 
 
And also earlier by D’Howker. 
 
The confusion about why this answers 
did not agree with the anomaly 
coefficient can now be understood.  



U(1) in 3+1 Dim 

Note the full answer and the 
extractable piece are both different 
from that for two scalar fields:  
 
C= 
 
 
(Due to the presence of Kabat Terms) 
 

2⇥�(1/90) = �1/45



U(1) Theory: Classical Term 

Classical piece: 
 
 
   : probability for normal 
component of electric field to take 
some value 
 
 
 
 

Sclass = �
X

i

pi log pi

pi

R



U(1) Theory: Classical Term 

This probability is dominated by 
the behaviour of modes with 
wavelength of order the cut –off 
scale transverse to the boundary.  

Soni, SPT: to appear 

< En,lEn,l >⇠ l(l + 1) log(

�

R
)



U(1) Theory 

Planar Boundary: 
 
 
 
 
Log dependence on cutoff      also 
true in 2+1 dimensions.  
 
 

< En(
~k?)En(

~k0?) >⇠ �2(k? � k0?)k
2
? log(k?�)

�



U(1) Theory: Classical term 

As a result one can show that this term 
remains the same if we consider 
states differing from vacuum at finite 
wavelength 

� � ✏

It therefore does not contribute to the 
relative entropy for  two such states 



U(1) Theory: Classical Term 

The Classical term also drops out 
for this reason from   the Mutual 
Information between two regions, 
separated by a macroscopic 
distance, in the continuum limit.  

These conclusions are true in 2+1 
dimensions also.  



  
L � ✏

Mutual Information 

I(A,B) = SA + SB � SAUB

A B 



Classical Terms Non-Abelian Theories 

•  Similar arguments also apply for Non-
Abelian theories. Classical terms drop out 
from Relative Entropy and Mutual 
Information in continuum limit.  

•  As long as theories are asymptotically 
free.  

•  Could be different if behaviour in UV is 
strongly coupled or for a non-trivial CFT.  



Mutual Information and Relative Entropy 

As a result, in the continuum limit the 
Mutual Information only gets 
contributions from the extractable term. 
 
Similarly for Relative Entropy.    



Classical Term 

The fact that the classical term  drops out 
was anticipated by Casini, Huerta and 
Rosabal (CHR). 
 
And verified numerically for free U(1) in 2+1 
dim  (Casini and Huerta, arXiv:1406.299)  
 
They also argued that Mutual Information 
and Relative Entropy are independent of 
choice of centre, in the continuum limit.  



Conclusions 

Bottom line:  
A  definition for the entanglement in gauge 
theories can be given, based on an extended 
Hilbert space.  
 
It gives rise to   a classical and quantum term.  
 
The quantum term is the extractable 
entanglement.  
 
The Replica Trick path integral agrees with this 
definition. 



Conclusions 

Bottom line: 
 
In the continuum, things especially  simplify.  
 
The classical term does not contribute to 
Mutual information and Relative Entropy.  
 
(Also the centre dependence drops out as 
argued by Cassini, Huerta and Rosabal.) 



Conclusions 

•  A definition for entanglement 
entropy was given based on an 
Extended Hilbert Space 
construction.  

•  The definition is applicable to 
Abelian and Non-Abelian Theories, 
and also to theories with matter.  



Conclusions 

•  It has many nice properties.  
     i) It is gauge invariant.  
     ii) Agrees with the Replica Trick,   
etc.  

•  The resulting entanglement has a 
Classical and Quantum term.  

•  The extractable part is given by 
the Quantum term.  



Conclusions 

•  The classical term does not contribute 
to mutual information or relative 
entropy in the continuum limit (with 
some caveats).  

•  Thus, these quantities, in the 
continuum limit,  only get a 
contribution from the extractable part. 



Conclusions 

•  The classical term does contribute to 
the entanglement entropy. As a result, 
the extractable part can be different 
from the full result.   



Conclusions 

Bottom line:  
A sensible definition for the entanglement 
in gauge theories can be given.  
 
In the continuum, things especially  
simplify.  
 
Replica trick path integral in continuum 
limit gives the correct  mutual information 
for gauge theories. 



Conclusions 

•  Implications for gravity remain to be 
fully understood.  
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