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Introduction

In quantum field theory, scale invariance has an interpretation in
terms of particle physics. In scale-invariant theory, the strength of
particle interactions does not depend on the energy of the
particles involved.

In statistical mechanics, scale invariance is a feature of phase
transitions. The key observation is that near a phase transition or
critical point, fluctuations occur at all length scales.

Universality is the observation that widely different microscopic
systems can display the same behavior at a phase transition.
Thus phase transitions in many different systems may be
described by the same underlying scale-invariant theory.
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Introduction

The modern way to think about that scale invariant theories comes
from the concept of Renormalization Group (RG) flow. The scale
invariant theories live at the fixed point of RG flows.

Therefore, one of the fundamental questions in theoretical physics
is to understand the structure of fixed points of the RG flow(s).

Further importance of this question stems from the relation
between fixed points of the RG flow and quantum gravity which
could be provided by using the AdS/CFT correspondence.
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Introduction

Remarkably, with a few known exceptions, unitary scale-invariant
relativistic field theories always exhibit full conformal symmetry.

The mechanism behind symmetry enhancement remains poorly
understood.

What is the necessary and sufficient condition for this enhancement?
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Introduction Physics origins of SFT

A general scale invariant theory (SFT) has a local conserved
scale current Sµ [Wess (1960)]

Sµ = xνTµ
ν + Vµ,

where Vµ is the so-called ’virial current’.

The conservation of scale current gives

0 = ∂µSµ = Tµ
µ + ∂µVµ,

which means that for scale invariant theories

Tµ
µ = −∂µVµ
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Introduction Physics origins of SFT

A conformal current must be of the form [Wess(1960)]

K µ = υνTµ
ν + (∂.υ)Ṽµ + ∂ν∂.υ Lνµ,

where ∂(µυν) = 2
D gµν∂.υ and Ṽµ is the same as Vµ up to the

possible addition of a conserved current and Lµν is some local
operator.

Conservation of the conformal current (∂µK µ = 0) gives

Tµ
µ = −∂µṼµ plus Ṽµ = −∂νLνµ.
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Introduction Physics origins of SFT

Obviously if the ’virial current’ in a SFT is conserved, that SFT
actually is a CFT.

The Less obvious case where a unitary SFT can be a CFT is
when the virial current is a total derivative, i.e, if

Vµ = −∂νLνµ.

In that case one can define an improved stress-energy tensor

T̃µν = Tµν +
1
3

(∂µ∂ν − ηµν�)L,

which is conserved and traceless [Polchinski(1987)].
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SFT D = 2

In D = 2, scale invariance plus unitarity implies conformal
invariance but with some implicit assumptions
[Zamolodchikov(1986),Polchinski(1987)]

The stress-energy tensor has canonical scaling. This assumption
would be correct for the theories which have a discrete spectrum
of scaling dimensions.

Scale invariant but not conformal invariant theory of [Riva and
Cardy(2005)] does not satisfy this assumption (apart from the
violation of unitarity).

The stress-energy tensor 2-point function exists.
Scale invariant but not conformally invariant unitary 2D
sigma-models violate this assumption because of their
non-compact target space [Hull and Townsend (1986)].

Naseh (IPM) Scale vs Conformal from EE July.2017 8 / 25



SFT D = 3 and D ≥ 5

For D ≥ 3, the situation was unclear up to 2011.

Polchinski in 1987 undertook a detailed review of the pre-existing
literature and found no counterexamples.

No candidate for Virial current, and thus are automatically
conformally invariant

the Belavin-Migdal-Banks-Zaks fixed points for non-abelian gauge
theories coupled to fermions in D = 4 [Belavin and Migdal
(1974),Banks and Zaks(1982)].

The Wilson-Fisher λφ4 fixed point in D = 4− ε [Wilson,1973].
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SFT D = 3 and D ≥ 5

Systematic searches among theories having candidates for a
nonconserved virial current have not turned up any
counterexamples either.

Nontrivial candidates for a non-conserved Vµ. However, this never
happens for the one-loop fixed points in 4− ε dimensions

Multi-field generalizations of λφ4

L =
1
2

(∂φi )
2 +

1
4!
λijklφiφjφkφl , Vµ = M [ij]φi∂µφj .

setting the one-loop β-functions to zero, have Tµ
µ = 0 and are

conformally invariant [Polchinski(1988)].

Weyl fermions with arbitrary quartic and Yukawa interactions
[Dorigoni,Rychkov(2009)].

L̃ = ψ̄aσ̄
µ∂µψa +

1
2

(y iabsiψaψb + y∗iabsi ψ̄aψ̄b),

VL+L̃
µ = M [ij]φi∂µφj + Nabψ̄aσ̄µψb.
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SFT D = 3 and D ≥ 5

Consequently, a general conjecture was that the
Zamolodchikov-Polchinski theorem is true also in D ≥ 3.

This conjecture is false, at least in D = 3 and in D ≥ 5.

The counterexample is astonishingly simple: It is the free Maxwell
theory [El-Showk,Nakayama,Rychkov (2011)].

The main idea is that to show the impossibility of improving the
stress-energy tensor.

Another way to see this is that the field strength operator Fµν is
neither a primary nor a descendant.
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SFT D = 4 and Perturbative Proof

But what happen in D = 4?

No non-trivial counterexample up to yet!

It is shown that in perturbation theory about a conformal fixed
point the only possible asymptotics is conformally invariant
[Luty,Polchinski,Rattazi(2012),Baume,Keren-Zur,Rattazzi,Vitale
(2014)].

The method in the first one is based on approach of Komargodski
and Schwimmer to proof of a-theorem and the second one is based
on using the local Callan-Symanzik equation idea.

It is shown that limit cycles associated with scale but not
conformally invariant unitary theories do not exist in perturbation
theory [Fortin,Grinstein,Stergiou(2015)].
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Scale Anomaly D = 4 and non-Perturbative Proof

At non-perturbative level, this problem can be studied by using the
non-perturbative effects in field theory such as scaling anomalies.

Under the global scale transformations we have
[Farnsworth,Luty,Prelipina(2013)]

∫
d4x
√
−g〈Tµ

µ +∇µVµ〉 =

∫
d4x
√
−g
(
−aE4 + cW 2 − eR2

)
.

The coefficients a and c are the standard conformal anomaly
coefficients of a CFT while the e term appears only in a SFT.

It is shown that unitarity imposes that e ≥ 0
[Farnsworth,Luty,Prelipina(2013),Bzowski and Skenderis(2014)].

In the presence of a dimension two scalar operator O2, the term
ξ
∫

d4xRO2 can be added to the action, which only shifts the
anomaly coefficient e, [Farnsworth,Luty,Prelipina(2013)].
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Scale Anomaly D = 4 and non-Perturbative Proof

The two-point function of the trace of stress-energy tensor in a 4D
anomalous scale invariant theory is given by

〈T (q)T (−q)〉 = −e q4 log
q2

µ2 + C(µ)q4,

where µ is an arbitrary renormalization scale and C(µ) is a scheme
dependent constant.

Note that the Fourier transformation of just the q4 term is a
derivative of delta function, so if e = 0 we have

〈T (x)T (0)〉 = 0, x 6= 0

which means that in a unitary theory, T must be equal to zero as
an operator identity and the scale invariant theory becomes fully
conformal.
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Scale Anomaly D = 4 and non-Perturbative Proof

It is shown that unitary scale-invariant field theories must be either
conformal field theories, or the trace of the stress-energy tensor
behaves like a generalized free field.
[Dymarsky,Komargodski,Schwimmer,Theisen(2013)].

Moreover it is shown that if no scalar operator of dimension
precisely 2 appears in the spectrum of a theory which it’s
stress-energy tensor is generalized free field, that theory would be
conformal.
[Dymarsky,Farnsworth,Komargodski,Luty,Prilepina(2014)].

In the presence of an operator of dimension 2 that can mix with T ,
one can show that there is at least one improvement such that T
is not a generalized free field.
[Dymarsky,Farnsworth,Komargodski,Luty,Prilepina(2014)].
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Scale Anomaly D = 4 and non-Perturbative Proof

Thus the only loophole which is remained in that proof is the case
where the stress-energy tensor is generalized field and the scalar
operator with dimension precisely 2 exists in the spectrum1.

It would be nice to fill this gap and prove that none of the possible
improved stress-energy tensors in this situation is a generalized
free field.

In this talk we discuss how the EE can inform us about this
subject.

1We thank Z. Komargodski for many helpful clarifications.
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Entanglement Entropy from Scale Anomaly D = 4

Consider a relativistic SFT on the 4 dimensional manifoldM.

The entanglement entropy is defined by first taking a pure state
and then tracing the modes which reside inside an entangling
surface Υ. The result of this tracing, is a mixed state with a certain
density matrix ρΥ. This entangling surface,Υ, is a submanifold of
M at a fixed time.

The strategy to calculate the entanglement entropy is that to first
obtain the reduced trace TrΥ(ρΥ

n) to find the R´enyi entropy

Sn(ρΥ) =
1

1− n
log TrΥ(ρΥ

n).

After that the entanglement entropy is given by

SEE = lim
n→1

Sn = −∂n log TrΥ(ρΥ
n)
∣∣
n=1.
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Entanglement Entropy from Scale Anomaly D = 4

For a closed connected surface Υ, we can define a length scale s.
Therefore

s
d
ds

SEE = −∂n

∫
Mn

d4x
√
−g
(
−aE4 + cW 2 − eR2

) ∣∣∣∣
n=1

+

∫
M1

d4x
√
−g
(
−aE4 + cW 2 − eR2

)
.
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Entanglement Entropy from Scale Anomaly D = 4

A n-sheeted 4 dimensional manifoldMn, in general contains
conical singularities. Calculating the integral of metric curvatures
on manifolds with conical singularities [Fursaev,Solodukhin(2013)]∫
Mn

d4x
√
−gE4 =n

∫
M1

d4x
√
−gE4 + 8π(1− n)

∫
∂Υ
d2χ
√
−γR[γ],∫

Mn

d4x
√
−gW 2 =n

∫
M1

d4x
√
−gW 2 + 8π(1− n)

∫
∂Υ
d2χ
√
−γK [g; t , s;Kαij ],∫

Mn

d4x
√
−gR2 =n

∫
M1

d4x
√
−gR2 + 8π(1− n)

∫
∂Υ
d2χ
√
−γR[g],

where

K [g; t , s;Kαij ] = 2Wµναβ tµsν tαsβ − [Kαij Kαij − 1
2

(Kαi
i )2],

γij and Kαij are the intrinsic metric and the extrinsic curvature of ∂Υ,
α = {t , s} indexing the two normal directions (one timelike tµ and one
spacelike sµ) and the first term on the right hand side of K is nothing
but the pullback of the Weyl tensor onto ∂Υ.
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Entanglement Entropy from Scale Anomaly D = 4

At the end, one arrives at

s
d
ds

SEE = −8π
∫
∂Υ

d2χ
√
−γ
(

aR[γ]− cK [g; t , s;Kαij ] + eR[g]

)
.

The point which should be stressed is that s d
ds SEE is equal to the

minus of Cuniv which captures the important physical information
[Ryu, Takayanagi(2006)] .

For ∂Υ = S2, the Cuniv
∣∣
S2 is a measure of degrees of freedom

[Ryu, Takayanagi(2006)].

We like specially to know the effect of e-anomaly in the universal
quantity Cuniv

∣∣
S2 .
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Entanglement Entropy from Scale Anomaly D = 4

For simplicity, we take a conformally flat metric, gµν = e−2τηµν as
a background metric.

Therefore

Cuniv
∣∣
S2 = 16π

(
a + 3 e

∫
S2

d2χ
[
�τ − (∂τ)2]).

For a generic 4D CFT, the scale anomaly dictates that on
conformally flat backgrounds, the universal part of entanglement
entropy across a sphere is positive.

Based on this fact, let explore the consequences of assuming a
positive sign for Cuniv

∣∣
S2 on such backgrounds in a 4D SFT.
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Entanglement Entropy from Scale Anomaly D = 4

In a unitary SFT, e ≥ 0.

If we assume that e > 0, one can check that for any positive value
of a, there exists a τ for which the Cuniv

∣∣
S2 becomes negative.

Thus, in the absence of a dimension two scalar operator O2 in the
spectrum of a SFT, we have shown that the positivity of Cuniv

∣∣
S2

suggests that a SFT is a CFT.
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Entanglement Entropy from Scale Anomaly D = 4

In the presence of O2, one can add the term ξ
∫

d4xRO2 to the
action in order to change the trace of an energy-momentum
tensor. Therefore,

Cuniv
∣∣
S2 = 16π

(
a + 3 (e − αξ)

∫
S2

d2χ
[
�τ − (∂τ)2]).

where α is a positive number.
For example, for a free scalar theory, the universal part of EE is
calculated by using a heat Kernel method, [Fursaev, Patrushev,
and Solodukhin (2013)], which leads to e = 1/72 and α = 1/12.

Interestingly, the positivity of Cuniv
∣∣
S2 fixes the coefficient of the

nonlinear coupling term to ξ = e/α, where for the free scalar
theory it becomes ξ = 1/6. This value for ξ is exactly the one to
have a conformal scalar theory.
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Conclusion Scale vs Conformal in D = 4

The only loophole in the previous proofs was that the trace of
stress-energy tensor could be generalized free field and a scalar
operator with dimension precisely 2 exists in the spectrum.

Interestingly, positivity of Cuniv (S2) in the absence of a dimension
two scalar operator O2 in the spectrum of a SFT, suggests that
SFT is a CFT.

In the presence of O2 , we show that this assumption can fix the
coefficient of the nonlinear coupling term

∫
d4xRO2 to a conformal

value.
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Thank YOU
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