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Introduction

QFT is usually thought of as an RG flow connecting a UV fixed point
to an IR fixed point (which may be empty). It is defined by specifying
the UV fixed point (a CFT) and a finite set of parameters that can be
thought of as coefficients of relevant and marginal operators, that
describe the particular RG trajectory. This is known as flowing down
the RG.



From the perspective of the long distance theory, the RG trajectory
can often be described as a perturbation of the IR fixed point by a
set of irrelevant operators. However, this flow up the RG is in
general on a very different footing — it does not correspond to a
well defined QFT.

The basic reason is that there is an infinite number of different RG
trajectories that look at long distances like a particular IR fixed
point perturbed by a finite set of irrelevant operators, so we have
to supply an infinite amount of data to specify the particular RG
trajectory we are interested in. (This is related to the irreversibility
of RG flow)



All this has an analog in the context of holography. Relevant
perturbations of string theory in an asymptotically AdS spacetime
correspond in the bulk to perturbations that do not modify the UV
AdS asymptotics, and are therefore specified by a finite number of
parameters, while irrelevant perturbations change the geometry in
the UV and thus one in general needs an infinite number of
parameters to specify the new geometry.



In this talk we will discuss a variation on this theme. It was inspired
by two papers, arXiv 1608.05534, 1608.05499, which discussed a
perturbation of a CFT, by an irrelevant operator that is supposed to
be better behaved than the general case, and moreover in a certain
sense be solvable.

| will next briefly review their results and then discuss a holographic
analog of their system.

Our main interest in these systems is that they interpolate between
a CFT in the IR and a system with a Hagedorn entropy in the UV.
Understanding holography for this case better is thus a useful step
towards extending it to spacetimes with other asymptotics, such as
flat spacetime.



TT deformation of CFT,

We start with a two dimensional CFT, and add to the Lagrangian
the deformation

0L =tTT

where T and T are the holomorphic and anti-holomorphic
components of the stress tensor.

The perturbing operator has dimension four, therefore the

coupling t has units of length squared. At distances > +/t the
theory approaches the original CFT, and at short distances one in
general expects the description to break down.



When we turn on t, the theory breaks conformal symmetry. The
authors of arXiv 1608.05534, 1608.05499 show that if one defines
the perturbation T T at a generic point along the RG trajectory as

TT(y) = lim (T(z)T(y) — ©(2)O(y))

T—Y

one can say a lot about the theory. In particular, one can compute
exactly the energies of states in the original CFT as a function of the
coupling t, and they are insensitive to the UV completion.



For example, starting with a state with Ly = L, = h in the original

CFT, which corresponds on a cylinder with circumference R to a
state with energy
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The result for general (h, ﬁ) is also known.



Consider, for example, states with h = ¢/24.
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For states with h — i < RT one has E(R,t) = E(R, 0), i.e. their
energies are not influenced by the perturbation.
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It is interesting to calculate the entropy of the TT deformed CFT.
Since above we only computed the energies of the states of the
original CFT after deformation, calculating their entropy only gives
a lower bound on the total entropy — there could be additional
states in the deformed theory that are not present in the original

CFT, e.g. states whose energies go like 1/4/t, which decouple in
the limitt — 0.



Anyway, keeping track only of the states visible in the IR CFT gives
an entropy that behaves like
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which exhibits a crossover from 2d CFT (Cardy) behavior at low
energies to Hagedorn behavior at high energies, S = fyE , with
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The fact that the high energy entropy is Hagedorn implies that the
UV behavior is not governed by a fixed point of the RG. It is an
open question to what extent the description above, as an
irrelevant deformation of an IR CFT, gives rise to a well defined
guantum theory, and if not, where and how it breaks down.

Partly with these issues in mind, we will ask the question whether
theories of the sort described above can be realized in the context
of holography. In particular, if the low energy CFT has an AdS dual,
can we realize the deformed theory by perturbing the AdS dual?



Holographic perspective

One way to realize the AdS dual of the TT deformed CFT described
above is to start with an AdS;/CFT, dual pair, construct the stress
tensor of the CFT in the AdS language, and perform the
deformation. Since the stress tensor is a 'single trace” operator,
this is a double trace deformation. It corresponds to changing the
boundary conditions for bulk fields on AdS5.

| will not pursue this direction here. Instead, | will show that there
is a single trace deformation that shares many elements with the

above discussion. | will next describe it and comment on some of

its properties.



One of the interesting properties of the QFT work reviewed above is
that the story is universal. Indeed, every CFT, can be deformed in
the way we described.

It is natural to ask whether there is a similarly universal deformation
of string theory on AdS5 (with NS B-field). The answer is yes —any
theory with an AdS; factor contains an operator, D (x), constructed
in KS (1999), which is a quasi-primary of the spacetime Virasoro, and
has the same OPE with the spacetime stress tensor as the operator
TT that figured in our previous discussion.

This operator is constructed as follows:



The left-moving SL(2,R) worldsheet currents can be combined into
the single current

J(z;2) = 22J3(2) — JT(2) — 22T (2)

Where x=position on the boundary, z=position on the worldsheet,
and (J7,J3,J %) giverise to (L_4, Ly, L1) in the spacetime CFT.

The left-moving spacetime stress tensor takes the form (in the
bosonic string)
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The operator D(x) takes the form
D(z) = / 22(0,J 0, + 2027) (D505 + 20270,

This operator has spacetime scaling dimension (2,2). Hence it is a

supergravity field. It is essentially the massive dilaton on AdS5. In
analogy to the TT deformation story, one can ask what happens

when one adds to the Lagrangian of the spacetime CFT the
irrelevant operator 6L = AD (x).



This corresponds from the worldsheet point of view to adding to the
worldsheet action the vertex operator AD(x). One finds:

/ PeD(z, ) ~ / P22J ()] (2)

Thus, the irrelevant deformation of the spacetime CFT corresponds
on the worldsheet to a marginal deformation. Moreover, this is a
current-current deformation, which one expects to be exactly
solvable.

To understand the physics associated with this deformation, we next
make a few comments:



(1) A useful description of this theory is as a null coset of a 10+2
dimensional background. For example, if the background we start
with is AdS3xS3xT*, the deformed theory can be thought of as
follows. We start with the background

AdS;xS3XT*xR11

The extra RY! is parametrized by the coordinates x* = y + 7, while
the AdS; is parametrized by the Poincare coordinates (¢,7,7),
where (y,7) are coordinates on the boundary.



We now gauge the U(1)? symmetry that acts on the coordinates
as

r — T +o; Y — Y+ €,
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The background associated with this coset can be obtained using
standard techniques:



The Lagrangian of the gauged model is
L =k [0¢d¢ + *?(Dy + eA) (07 + €A)] + (0xT + A)(Fz~ + A).
Integrating out the gauge fields gives the background
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with a dilaton that goes like e™® ~ 1 + ke?e??. This
geometry interpolates between AdS; as ¢ = —oo (where it is
convenient to choose the gauge x* = 0), and Ry xR as

¢ — +oo, where it is convenienttosety =y = 0.



(2) The resulting background M;xS3xT* has a very simple physical
interpretation. It is the geometry created by k NS5-branes and p
fundamental strings in the near-horizon geometry of the fivebranes.
It interpolates between the near-horizon geometry of both the
fivebranes and the strings in the IR region ¢ — —o0, and that of just

the fivebranes in the UV region ¢ — oo.

Thus, the irrelevant deformation §L = AD(x) takes us out of the

near-horizon of the strings. The parameter € sets the scale at which
this happens.



(3) Spectrum: one can use the coset description to study the
spectrum of perturbative strings in the background

M3 xS3xT*

One finds a continuum of states labeled by the momentum and
winding around the y circle, (n, w). The mass shell formula is:
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where j = —5 tis, with s € R the radial momentum of the
state, and the A’s are (left and right) internal excitation levels.



Consider for example the winding one case (w=1), and write

w = % + E (measure the energy above the BPS one)

In the undeformed limit t = 0 one has
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a relation between the worldsheet quantum numbers and the
dimension of the corresponding state for long strings in the
spacetime CFT (MO, 2000).



Putting all this together, one finds the mass-shell condition

(o) = (5) =2 (o 2) G

which is precisely the spectrum for a TT deformed CFT with
central charge ¢ = 6k, with t = l2. This theory is nothing but
the theory on a long string, so we conclude that the supergravity
deformation §L = AD(x) acts on that theory as a TT deformation.

For w > 1 one finds the spectrum of the Z,,, twisted sector of the
theory MV /S,,, on w strings.



(4) Black holes: as one increases the energy, the above long
strings move towards the boundary, where their coupling

increases (SW 1999) and eventually they cross over to black holes
(GKRS 2005).

Therefore, we would expect that the entropy of black holes in the
background M;XxS3xT* should agree with that of the symmetric
product CFT Mp/Sp describing the strings. This is indeed the case:



In the boundary theory, the entropy is dominated by states in
which we distribute the available energy equally between the p
factors of M, and one has

S(E) = pSm(E/p) = 2m+/2kpE + kbE2,



In the bulk the entropy comes from the black hole
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The Bekenstein-Hawking entropy of this black hole is
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It agrees with the boundary formula if we set the coupling to

t = w2



Future work

There is clearly a lot to do. E.g. :

> In the TT deformed CFT:

= Understand the symmetries of the deformed theory.
= Calculate correlation functions on the plane.
= Understand the UV limit of the theory.

» In deformed Ad S5 :

» Understand the operator D(x, X) in the boundary CFT.

= Calculate correlation functions on the plane and compare to
the boundary analysis.

= Understand the symmetries of the deformed theory.
= Understand the double trace TT deformation.



