BH S-Matrix and the YM Meron Wormhole

Nava Gaddam

July 14, 2017

9th Crete Regional Meeting on String Theory, Kolymbari 2017

Based on:

- JHEP 1611 (2016) 131 with P. Betzios and O. Papadoulaki
- On going work with P. Betzios, O. Papadoulaki and G. 't Hooft

Schwarzschild vs In-falling

Often claimed:

Information paradox for the Schwarzschild observer is solved!

- AdS/CFT? Unitary boundary theory.

Therefore, all the interesting puzzles and paradoxes concern in-falling observers. (Firewalls, Fuzzballs, Mirror Operators, Non-locality, etc.)

Schwarzschild vs In-falling

Often claimed:

Information paradox for the Schwarzschild observer is solved!

- AdS/CFT? Unitary boundary theory.

Therefore, all the interesting puzzles and paradoxes concern in-falling observers. (Firewalls, Fuzzballs, Mirror Operators, Non-locality, etc.)

In this talk, I will say (almost) nothing about the in-falling observer!

Black Hole S-Matrix 1

Let's say I throw a (massless) particle (with position $u_{\text {in }}^{+}$and momentum $p_{\text {in }}^{-}$) into a black hole.

Black Hole S-Matrix 1

Let's say I throw a (massless) particle (with position $u_{\text {in }}^{+}$and momentum $p_{\text {in }}^{-}$) into a black hole.

Question
How is the information about this particle retrieved by the Schwarzschild observer?

Black Hole S-Matrix 1

Let's say I throw a (massless) particle (with position $u_{\text {in }}^{+}$and momentum $p_{\text {in }}^{-}$) into a black hole.

Question
How is the information about this particle retrieved by the Schwarzschild observer?

Plan for the talk

Black Hole S-Matrix

Inverted Harmonic Oscillators

Yang-Mills Meron-Wormhole - a gravitational instanton

Conclusions

Gravitational back-reaction

[Aichelburg-Sexl; Dray-'t Hooft]

The effect is quantum gravitational, albeit semi-classical. No out-going modes without quantum mechanics. No back-reaction without gravity. So, observed effect is zero when $G \rightarrow 0$ or $\hbar \rightarrow 0$.

The scattering algebra

Relation between in and out states can be expanded in partial waves:

$$
\hat{u}_{l m}^{ \pm}=\mp \frac{8 \pi G}{R^{2}\left(l^{2}+l+1\right)} \hat{p}_{l m}^{ \pm}=: \mp \lambda \hat{p}_{l m}^{ \pm}
$$

Out-going mode is a Fourier transform of the in-going mode!

The scattering algebra

Relation between in and out states can be expanded in partial waves:

$$
\hat{u}_{l m}^{ \pm}=\mp \frac{8 \pi G}{R^{2}\left(l^{2}+l+1\right)} \hat{p}_{l m}^{ \pm}=: \mp \lambda \hat{p}_{l m}^{ \pm}
$$

Out-going mode is a Fourier transform of the in-going mode! Canonical commutation relations yield the scattering algebra:

$$
\begin{aligned}
{\left[\hat{u}_{l m}^{ \pm}, \hat{p}_{l^{\prime} m^{\prime}}^{\mp}\right] } & =i \delta_{l l^{\prime}} \delta_{m m^{\prime}} \\
{\left[\hat{u}_{l m}^{+}, \hat{u}_{l^{\prime} m^{\prime}}^{-}\right] } & =i \lambda \delta_{l l^{\prime}} \delta_{m m^{\prime}} \\
{\left[\hat{p}_{l m}^{+}, \hat{p}_{l^{\prime} m^{\prime}}^{-}\right] } & =-\frac{i}{\lambda} \delta_{l l^{\prime}} \delta_{m m^{\prime}}
\end{aligned}
$$

Black Hole S-Matrix 2

Algebra leads to an inner product on the Hilbert-space. Massage the Fourier transform to find:

$$
\binom{\phi^{\text {out }}\left(+, \rho^{-}\right)}{\phi^{\text {out }}\left(-, \rho^{-}\right)}=\int_{-\infty}^{\infty} d x\left(\begin{array}{c}
A(+,+, x) \\
A(+,-, x) \\
A(-,+, x)
\end{array} A(-,-, x)\right)\binom{\phi^{\text {in }}\left(+, x+\log \lambda-\rho^{-}\right)}{\phi^{\text {in }}\left(-, x+\log \lambda-\rho^{-}\right)}
$$

Black Hole S-Matrix 2

Algebra leads to an inner product on the Hilbert-space. Massage the Fourier transform to find:

$$
\binom{\phi^{\text {out }}\left(+, \rho^{-}\right)}{\phi^{\text {out }}\left(-, \rho^{-}\right)}=\int_{-\infty}^{\infty} d x\left(\begin{array}{c}
A(+,+, x) \\
A(+,-, x) \\
A(-,+, x)
\end{array} A(-,-, x)\right)\binom{\phi^{\text {in }}\left(+, x+\log \lambda-\rho^{-}\right)}{\phi^{\text {in }}\left(-, x+\log \lambda-\rho^{-}\right)}
$$

This defines an S-matrix mapping the in and out states:

$$
\begin{aligned}
S\left(k_{l}, \lambda_{l}\right) & =e^{-i k_{l} \log \lambda_{l}}\binom{A\left(+,+, k_{l}\right) A\left(+,-, k_{l}\right)}{A\left(-,+, k_{l}\right) A\left(-,-, k_{l}\right)} \\
& =\frac{1}{\sqrt{2 \pi}} \Gamma\left(\frac{1}{2}-i k_{l}\right) e^{-i k_{l} \log \lambda_{l}}\left(\begin{array}{cc}
e^{-i \frac{\pi}{4}} e^{-k_{l} \frac{\pi}{2}} & e^{i \frac{\pi}{4}} e^{k_{l} \frac{\pi}{2}} \\
e^{i \frac{\pi}{4}} e^{k_{l} \frac{\pi}{2}} & e^{-i \frac{\pi}{4}} e^{-k_{l} \frac{\pi}{2}}
\end{array}\right)
\end{aligned}
$$

Can check for unitarity, explicitly.

Antipodal entanglement

Drawing stolen from 't Hooft!

Radiation from antipodal points is entangled!

Plan for the talk

Black Hole S-Matrix

Inverted Harmonic Oscillators

Yang-Mills Meron-Wormhole - a gravitational instanton

Conclusions

Rearranging degrees of freedom

[Betzios-N.G-Papadoulaki]

Question 1
What kind of a quantum mechanical potential allows for only scattering states?

Rearranging degrees of freedom

[Betzios-N.G-Papadoulaki]

Question 1

What kind of a quantum mechanical potential allows for only scattering states?

- An unstable one

Rearranging degrees of freedom

[Betzios-N.G-Papadoulaki]

Question 1

What kind of a quantum mechanical potential allows for only scattering states?

- An unstable one

Question 2
And what potential allows for energy eigenstates such as those of Rindler space?

Rearranging degrees of freedom

[Betzios-N.G-Papadoulaki]

Question 1

What kind of a quantum mechanical potential allows for only scattering states?

- An unstable one

Question 2

And what potential allows for energy eigenstates such as those of Rindler space?

- Ubiquity of Rindler space suggests a quadratic potential

Inverted Harmonic Oscillators

A collection of inverted harmonic oscillators:

$$
\begin{aligned}
H_{t o t} & =\sum_{l m} \frac{1}{2}\left(p_{l m}^{2}-x_{l m}^{2}\right) \\
& =\sum_{l m} \frac{1}{2}\left(\tilde{u}_{l m}^{+} \tilde{u}_{l m}^{-}+\tilde{u}_{l m}^{-} \tilde{u}_{l m}^{+}\right)
\end{aligned}
$$

S-Matrix of each oscillator $=$ that of corresponding partial wave!

The algebra revisted

Remember the λ-dependent algebra! Different time coordinate for each oscillator?

$$
\begin{aligned}
{\left[\hat{u}_{l m}^{ \pm}, \hat{p}_{l^{\prime} m^{\prime}}^{\mp}\right] } & =i \delta_{l l^{\prime}} \delta_{m m^{\prime}} \\
{\left[\hat{u}_{l m}^{+}, \hat{u}_{l^{\prime} m^{\prime}}^{-}\right] } & =i \lambda \delta_{l l^{\prime}} \delta_{m m^{\prime}} \\
{\left[\hat{p}_{l m}^{+}, \hat{p}_{l^{\prime} m^{\prime}}^{-}\right] } & =-\frac{i}{\lambda} \delta_{l l^{\prime}} \delta_{m m^{\prime}}
\end{aligned}
$$

The algebra revisted

Remember the λ-dependent algebra! Different time coordinate for each oscillator?

$$
\begin{aligned}
{\left[\hat{u}_{l m}^{ \pm}, \hat{p}_{l^{\prime} m^{\prime}}^{\mp}\right] } & =i \delta_{l l^{\prime}} \delta_{m m^{\prime}} \\
{\left[\hat{u}_{l m}^{+}, \hat{u}_{l^{\prime} m^{\prime}}^{-}\right] } & =i \lambda \delta_{l l^{\prime}} \delta_{m m^{\prime}} \\
{\left[\hat{p}_{l m}^{+}, \hat{p}_{l^{\prime} m^{\prime}}^{-}\right] } & =-\frac{i}{\lambda} \delta_{l l^{\prime}} \delta_{m m^{\prime}}
\end{aligned}
$$

Can make the algebra λ-independent. Price we pay: chemical potential!

The partial waves

- How do the partial waves differ from each other?

The partial waves

- How do the partial waves differ from each other? Via a chemical potential; the energies are given by

$$
k_{l}=\omega_{l}+\frac{l^{2}+l+1}{c}, \quad \text { and } \quad E_{\text {tot }}^{\text {Rindler }}=\sum_{l} k_{l} .
$$

- Remember

$$
\frac{\ell^{2}+\ell+1}{c}=\frac{1}{\lambda}=\frac{R^{2}\left(\ell^{2}+\ell+1\right)}{8 \pi G}
$$

The algebra is now λ-independent and all the ℓ dependence is in the chemical potential. Unique time-coordinate!

The spectrum

$1=2$

The spectrum

Relation to 2d Quantum Gravity

IHOs have been studied for ever. Also in context of 2d QG and black holes. [Lage- N refs.]
Time delays
Singlet sector Matrix model calculations - intermediate state doesn't live long enough to represent a 2d black hole.
Singlet sector \sim One oscillator

Relation to 2d Quantum Gravity

IHOs have been studied for ever. Also in context of 2d QG and black holes. [Lage- N refs.]

Time delays
Singlet sector Matrix model calculations - intermediate state doesn't live long enough to represent a 2d black hole.
Singlet sector \sim One oscillator
Here, many spherical waves. NOT in the singlet sector.
[See talks by Betzios \& Papadoulaki]

Degeneracy of states

Given an initial state of some total energy, can distribute it among finite no. of partial waves. Exponential degeneracy for large energies:

Hardy-Ramanujan

$$
p(n) \sim \exp \left(\pi \sqrt{\frac{2 n}{3}}\right)
$$

Degeneracy of states

Given an initial state of some total energy, can distribute it among finite no. of partial waves. Exponential degeneracy for large energies:

Hardy-Ramanujan

$$
p(n) \sim \exp \left(\pi \sqrt{\frac{2 n}{3}}\right)
$$

Can also study the number density. Approximate thermality?

$$
\begin{aligned}
& N_{++}^{\text {out }}(k)=\frac{N_{++}^{\mathrm{in}}(k)}{1+e^{2 \pi k}}+\frac{N_{--}^{\mathrm{in}}(k)}{1+e^{-2 \pi k}} \\
& N_{--}^{\text {out }}(k)=\frac{N_{--}^{\mathrm{in}}(k)}{1+e^{2 \pi k}}+\frac{N_{++}^{\mathrm{in}}(k)}{1+e^{-2 \pi k}}
\end{aligned}
$$

Lessons learnt?

- Some features of BH horizons needn't be all that complicated!

Lessons learnt?

- Some features of BH horizons needn't be all that complicated!
- Antipodal entanglement $=$ Entanglement between reflected and transmitted pieces of the wave-function!

Lessons learnt?

- Some features of BH horizons needn't be all that complicated!
- Antipodal entanglement = Entanglement between reflected and transmitted pieces of the wave-function!
- Bell-pairs here vs many-body entanglement in gauge/gravity duality? Each 'particle' is actually a partial wave. Need a more refined understanding of the Hilbert space to compare with gauge/gravity duality.

Lessons learnt?

- Some features of BH horizons needn't be all that complicated!
- Antipodal entanglement = Entanglement between reflected and transmitted pieces of the wave-function!
- Bell-pairs here vs many-body entanglement in gauge/gravity duality? Each 'particle' is actually a partial wave. Need a more refined understanding of the Hilbert space to compare with gauge/gravity duality.
- Cannot naively second quantise.

Lessons learnt?

- Some features of BH horizons needn't be all that complicated!
- Antipodal entanglement = Entanglement between reflected and transmitted pieces of the wave-function!
- Bell-pairs here vs many-body entanglement in gauge/gravity duality? Each 'particle' is actually a partial wave. Need a more refined understanding of the Hilbert space to compare with gauge/gravity duality.
- Cannot naively second quantise.
- Planckian physics: Incorporate transverse effects via interactions between oscillators.

Plan for the talk

Black Hole S-Matrix

Inverted Harmonic Oscillators

Yang-Mills Meron-Wormhole - a gravitational instanton

Conclusions

Black Hole - a Gravitational Instanton?

Euclidean wormhole
Large gravitational instanton with finite (possibly large) Euclidean size?

$$
d s^{2}=d r^{2}+\left(r^{2}+r_{0}^{2}\right) \underbrace{\left(d \psi^{2}+\sin ^{2}(\psi) d \theta^{2}+\sin ^{2}(\psi) \sin ^{2}(\theta) d \phi^{2}\right)}_{d \Omega_{3}^{2}}
$$

Black Hole - a Gravitational Instanton?

Euclidean wormhole
Large gravitational instanton with finite (possibly large) Euclidean size?

$$
d s^{2}=d r^{2}+\left(r^{2}+r_{0}^{2}\right) \underbrace{\left(d \psi^{2}+\sin ^{2}(\psi) d \theta^{2}+\sin ^{2}(\psi) \sin ^{2}(\theta) d \phi^{2}\right)}_{d \Omega_{3}^{2}}
$$

Supported by non-Abelian field strength with magnetic flux, carrying negative Euclidean energy density near the throat.

Merons: Studied in the late 70s, in flat space (singular; not solutions of EOMs!). [Alfaro-Fubini-Furlan;Callen-Dashen-Gross;Laughton] Smooth but non-covariant merons [Hosoya-Ogura]

Yang-Mills Meron Wormhole

Yang-Mills Meron Wormhole

$$
r=\mathrm{x}-\frac{r_{0}^{2}}{4 \mathrm{x}} \quad \text { with } \quad \mathrm{x}=\sqrt{x_{\mu} x^{\mu}} \geq 0
$$

$$
\begin{aligned}
& r=-\infty \\
& x=0
\end{aligned}
$$

$$
\begin{aligned}
& r=0 \\
& x=r_{0} / 2
\end{aligned}
$$

$$
d s^{2}=\left(1+\frac{r_{0}^{2}}{4 \mathbf{x}^{2}}\right)^{2} \delta_{\mu \nu} d x^{\mu} d x^{\nu} \text { with } r_{0}=\sqrt{\frac{4 \pi G_{N}}{g_{\mathrm{YM}}^{2}}}
$$

Yang-Mills Meron Wormhole

$$
r=\mathrm{x}-\frac{r_{0}^{2}}{4 \mathrm{x}} \quad \text { with } \quad \mathrm{x}=\sqrt{x_{\mu} x^{\mu}} \geq 0
$$

$$
\begin{aligned}
& r=-\infty \\
& x=0
\end{aligned}
$$

$$
\begin{aligned}
& r=0 \\
& x=r_{0} / 2
\end{aligned}
$$

$$
\begin{aligned}
d s^{2} & =\left(1+\frac{r_{0}^{2}}{4 \mathbf{x}^{2}}\right)^{2} \delta_{\mu \nu} d x^{\mu} d x^{\nu} \quad \text { with } \quad r_{0}=\sqrt{\frac{4 \pi G_{N}}{g_{\mathrm{YM}}^{2}}} \\
F_{\mu \rho}^{a} & =\frac{1}{g_{\mathrm{YM}}}\left[\eta_{a \mu \rho} \frac{f_{1}(\mathbf{x})}{\mathrm{x}^{2}}+\left(x_{\mu} \eta_{a \rho \gamma} x_{\gamma}-x_{\rho} \eta_{a \mu \gamma} x_{\gamma}\right) \frac{f_{2}(\mathbf{x})}{\mathbf{x}^{4}}\right]
\end{aligned}
$$

'The Vacuole'

$$
r=\mathrm{x}-\frac{r_{0}^{2}}{4 \mathrm{x}} \text { with } \mathrm{x}=\sqrt{x_{\mu} x^{\mu}} \geq 0
$$

$$
\begin{array}{ll}
r=-\infty \\
x=0
\end{array} \quad \begin{aligned}
& \\
& \\
& \\
& \\
& \\
& \\
& x=r_{0} / 2
\end{aligned}
$$

$$
d s^{2}=\left(1+\frac{r_{0}^{2}}{4 \mathrm{x}^{2}}\right)^{2} \delta_{\mu \nu} d x^{\mu} d x^{\nu} \quad \text { with } \quad r_{0}=\sqrt{\frac{4 \pi G_{N}}{g_{\mathrm{YM}}^{2}}}
$$

Antipodal mapping corresponds to Inversion.

Gaussian fluctuations

$$
S^{(2)}=\int\left[A \mathcal{M}_{A} A+h \mathcal{M}_{h} h+h \mathcal{M}_{(h A)} A\right]
$$

Gaussian fluctuations

$$
\begin{aligned}
& \left.S^{(2)}=\int A \mathcal{M}_{A} A+h \mathcal{M}_{h} h+h \mathcal{M}_{(h A)} A\right] \\
& A_{\mu}^{L, a}\left[\frac{1}{2}\left(\partial_{\mathbf{x}}^{2}+\frac{3}{\mathrm{x}} \partial_{\mathrm{x}}-\frac{4 L^{2}}{\mathrm{x}^{2}}\right)+\frac{4 r_{1}^{4}}{\mathrm{x}^{2}\left(\mathbf{x}^{2}+r_{1}^{2}\right)^{2}}-\frac{2 f\left(f T^{2}+T \cdot L\right)}{\mathrm{x}^{2}}+\frac{2 r_{1}^{2}\left(\mathrm{x}_{\mathbf{x}}-1\right)}{\mathrm{x}^{2}\left(\mathbf{x}^{2}+r_{1}^{2}\right)}\right. \\
& \left.-\frac{4 r_{1}^{2}}{\mathrm{x}^{2}\left(\mathbf{x}^{2}+r_{1}^{2}\right)^{2}}\left(5 r_{1}^{2}+4 f T \cdot S_{1}\left(\mathbf{x}^{2}+r_{1}^{2}\right)\right) \frac{2 f_{1}\left(T \cdot S_{1}\right)}{\mathrm{x}^{2}}-\frac{6 r_{1}^{2}}{\left(\mathrm{x}^{2}+r_{1}^{2}\right)^{2}}\right] A_{\mu}^{L, a} \\
& +A_{\mu}^{T, a}\left[\frac{1}{2}\left(\partial_{\mathbf{x}}^{2}+\frac{3}{\mathrm{x}} \partial_{\mathbf{x}}-\frac{4 L^{2}}{\mathrm{x}^{2}}\right)+\frac{4 r_{1}^{4}}{\mathrm{x}^{2}\left(\mathbf{x}^{2}+r_{1}^{2}\right)^{2}}-\frac{2 f^{2} T^{2}}{\mathrm{x}^{2}}-\frac{2 f T \cdot L}{\mathrm{x}^{2}}\right. \\
& \left.\quad+\frac{2 r_{1}^{2}\left(\mathbf{x} \partial_{\mathbf{x}}-1\right)}{\mathbf{x}^{2}\left(\mathbf{x}^{2}+r_{1}^{2}\right)}-2 \frac{f_{1}}{\mathrm{x}^{2}}\left(S_{1} \cdot T\right)+\frac{2 r_{1}^{2}}{\left(\mathbf{x}^{2}+r_{1}^{2}\right)^{2}}\right] A_{\nu}^{T, a}
\end{aligned}
$$

Conclusions

Summary

- BH horizon has the dynamics of a a collection of Inverted Harmonic Oscillators.
- Euclidean Wormholes supported by a YM Meron—ideal toys for exciting physics (both for quantum gravity and QCD)

Conclusions

Summary

- BH horizon has the dynamics of a a collection of Inverted Harmonic Oscillators.
- Euclidean Wormholes supported by a YM Meron—ideal toys for exciting physics (both for quantum gravity and QCD)

Near-future directions

- Partition function for IHOs [Aharony-Marsano-Minwalla-Papadodimas-Van Raamsdonk]
- Find a Matrix Model for the oscillators (Non-singlet sectors?) [Hartnoll-Huijse-Mazenc; Anninos-Denef-Monten]
- Multi-vacuole (meron) solutions (dilute gas)? Consequences for QCD? [Callan-Dashen-Gross; Steele-Negele]
- Easy to embed in gauge/gravity duality \rightarrow scope for better understanding.

