Holographic boundary conformal field theory

Amin Farji Astaneh

Institute for Research in Fundamental Scinces (IPM)
9'th Crete regional meeting in String theory

Main motivation

We usually send the boundaries to infinity to get rid of the boundary terms, but ...

The real world has boundaries!

Content

- "Holographic calculation of boundary terms in conformal anomaly,"
A.F.A and S. N. Solodukhin, Phys. Lett. B 769, 25 (2017) [arXiv:1702.00566 [hep-th]].
- "Holographic calculation of entanglement entropy in the presence of boundaries,"
A.F.A, C. Berthiere, D. Fursaev and S. N. Solodukhin, Phys. Rev. D 95, no. 10, 106013 (2017) [arXiv:1703.04186 [hep-th]].

Conformal invariant boundary conditions

- conformal scalar field in d dimensions:

$$
\begin{array}{ll}
\text { Dirichlet b. c. : } & \left.\phi\right|_{\partial \mathcal{M}_{d}}=0, \\
\text { Robin b. c. : } & \left.\left(\partial_{N}+\frac{(d-2)}{2(d-1)} k\right) \phi\right|_{\partial \mathcal{M}_{d}}=0,
\end{array}
$$

- massless Dirac fermion in dimension $d=4$:

$$
\left.\Pi_{-} \psi\right|_{\partial \mathcal{M}}=0,\left.\quad\left(\nabla_{N}+K / 2\right) \Pi_{+} \psi\right|_{\partial \mathcal{M}}=0
$$

where $\Pi_{ \pm}=\frac{1}{2}\left(1 \pm+i \gamma_{*} N^{\mu} \gamma_{\mu}\right)$

- gauge field A_{μ} :

$$
\begin{aligned}
& \text { absolute b. c. : } \quad N^{\mu} F_{\mu \nu}=0 \\
& \text { relative b. c. } \quad N^{\mu} F_{\mu \nu}^{*}=0
\end{aligned}
$$

Conformal anomaly in dimension $d=3$ [Fursaev, Solodukhin]

In this case there are no bulk terms in the anomaly. The whole contribution comes from the boundary.

$$
\int_{\mathcal{M}_{3}}\langle T\rangle=\frac{c_{1}}{96} \chi\left[\partial \mathcal{M}_{3}\right]+\frac{c_{2}}{256 \pi} \int_{\partial \mathcal{M}_{3}} \operatorname{Tr} \hat{k}^{2}
$$

where $\chi\left[\partial \mathcal{M}_{3}\right]=\frac{1}{4 \pi} \int_{\partial \mathcal{M}_{3}} \hat{R}$.
If manifold \mathcal{M}_{3} is flat then using the Gauss-Codazzi equation we arrive at

$$
\int_{\mathcal{M}_{3}}\langle T\rangle=\frac{1}{256 \pi} \int_{\partial \mathcal{M}_{3}}\left(\left(c_{2}-\frac{2}{3} c_{1}\right) \operatorname{Tr} k^{2}+\left(\frac{2}{3} c_{1}+\frac{c_{2}}{2}\right) k^{2}\right) .
$$

If $c_{2}=\frac{2}{3} c_{1}$ then $\operatorname{Tr} k^{2}$ drops out above. As we will see this is exactly what happens in the holographic calculation.

Conformal anomaly in $d=4$ [Fursaev, Solodukhin]

In 4 dimensions

$$
\begin{aligned}
& \int_{\mathcal{M}_{4}}\langle T\rangle=-\frac{a}{180} \chi\left[\mathcal{M}_{4}\right]+\frac{1}{1920 \pi^{2}}\left(\int_{\mathcal{M}_{4}} b \operatorname{Tr} W^{2}\right. \\
& \left.-8 b_{1} \int_{\partial \mathcal{M}_{4}} W^{\mu \nu \alpha \beta} n_{\mu} n_{\beta} \hat{k}_{\nu \alpha}\right)+\frac{c}{280 \pi^{2}} \int_{\partial \mathcal{M}_{4}} \operatorname{Tr} \hat{k}^{3}
\end{aligned}
$$

where $\hat{k}_{i j}=k_{i j}-\frac{1}{3} \gamma_{i j} k$ and

$$
\begin{aligned}
& \chi\left[\mathcal{M}_{4}\right]=\frac{1}{32 \pi^{2}} \int_{\mathcal{M}_{4}}\left(R_{\alpha \beta \mu \nu} R^{\alpha \beta \mu \nu}-4 R_{\mu \nu} R^{\mu \nu}+R^{2}\right) \\
& -\frac{1}{4 \pi^{2}} \int_{\partial \mathcal{M}_{4}}\left(-k^{\mu \nu} R_{n \mu n \nu}+k^{\mu \nu} R_{\mu \nu}+k R_{n n}-\frac{1}{2} k R-\frac{1}{3} k^{3}\right. \\
& \left.+k \operatorname{Tr} k^{2}-\frac{2}{3} \operatorname{Tr} k^{3}\right), .
\end{aligned}
$$

Conformal anomaly in $d=4$

If \mathcal{M}_{4} is flat then the

$$
\begin{aligned}
& \int_{\mathcal{M}_{4}}\langle T\rangle=\frac{1}{\pi^{2}} \int_{\partial \mathcal{M}_{4}}\left(\frac{a}{720}\left(-\frac{1}{3} k^{3}+k \operatorname{Tr} k^{3}-\frac{2}{3} \operatorname{Tr} k^{3}\right)\right. \\
& \left.+\frac{c}{280}\left(\operatorname{Tr} k^{3}-k \operatorname{Tr} k^{2}+\frac{2}{9} k^{3}\right)\right) .
\end{aligned}
$$

Charges [Fursaev, Solodukhin]

real scalar : $a=1, \quad b_{1}=b=1, \quad c=1$ (Dirichlet b.c.),
real scalar : $a=1, b_{1}=b=1, c=\frac{7}{9}$ (Robin b.c.),
Dirac fermion: $a=11, b_{1}=b=6, c=5$, (mixed b.c.),
gauge boson : $a=62, b_{1}=b=12, c=8$ (absolute or relative b.c.).

Conformal anomaly in $d=4: \mathcal{N}=4 S U(N)$ super Yang-Mills multiplet [A.F.A, Solodukhin]

The free field multiplet consists of: $n_{s}=6$ scalars, $n_{f}=2$ Dirac fermions and $n_{v}=1$ gauge bosons.
Introducing $\Delta n=n_{s}^{D}-n_{s}^{R}$ we find
$a=90\left(N^{2}-1\right), \quad b=b_{1}=30\left(N^{2}-1\right), \quad c=\left(\frac{70}{3}+\frac{1}{2} \Delta n\right)\left(N^{2}-1\right)$.
and hence the integral anomaly is (we focus only on the boundary terms)

$$
\begin{aligned}
& \int_{\mathcal{M}_{4}}\langle T\rangle_{S Y M}=\frac{\left(N^{2}-1\right)}{24 \pi^{2}} \int_{\partial \mathcal{M}_{4}}\left[\frac{3}{2}\left(k^{\mu \nu}+k n^{\mu} n^{\nu}-\frac{2}{3} k g^{\mu \nu}\right) R_{\mu \nu}\right. \\
& \left.+\left(k \operatorname{Tr} k^{2}-\frac{5}{9} k^{3}\right)+\frac{3 \Delta n}{70} \operatorname{Tr} k^{3}\right]
\end{aligned}
$$

Conformal anomaly in $d=4: \mathcal{N}=4 S U(N)$ super Yang-Mills multiplet [A.F.A, Solodukhin]

if $n_{s}^{D}=n_{s}^{R}=3$, the term $\operatorname{Tr} k^{3}$ drops out from the anomaly. In Ricci flat spacetime we have then

$$
\int_{\mathcal{M}_{4}}\langle T\rangle_{S Y M}=\frac{\left(N^{2}-1\right)}{24 \pi^{2}} \int_{\partial \mathcal{M}_{4}}\left(k \operatorname{Tr} k^{2}-\frac{5}{9} k^{3}\right) .
$$

This is exactly the condition that the preserved supersymmetry in $\mathcal{N}=4$ superconformal theory is maximal. In this case the boundaries preserve $1 / 2$ of supersymmetry. [Gaiotto and Witten]

Holographic boundary conformal field theory

$A d S_{d+1} \xrightarrow{\text { boundary }} \mathcal{M}_{d} \xrightarrow{\text { boundary }} \partial \mathcal{M}_{d-1} \xrightarrow{\text { extension to the bulk }} \mathcal{S}_{d}$. such that $\partial \mathcal{S}_{d}=\partial \mathcal{M}_{d}$.

- Takayanagi's prescription: ${ }^{1}$

$$
W_{\text {grav }}^{T}=-\frac{1}{16 \pi G} \int_{A d S_{d+1}}(R+2 \Lambda)-\frac{1}{8 \pi G}\left[\int_{\mathcal{M}_{d}} K+\int_{\mathcal{S}_{d}}(K+T)\right]
$$

then

$$
W_{g r}=-\int_{\mathcal{M}_{d}}\langle T\rangle \ln \epsilon
$$

Varying the action w.r.t the boundary metric, $\gamma_{i j}$ one gets

$$
K_{i j}-\gamma_{i j}(K+T)=0
$$

Too restrictive!
${ }^{1}$ Series of papers by Takayanagi, Fujita, Tonni, Nozaki, Ugajin

Holographic boundary conformal field theory

- Minimal surface prescription: [A.F.A, Solodukhin]

In this proposal we extend the boundary minimally into the bulk.
On has to modify the gravitational action by adding a boundary volume term

$$
W_{g r}^{\min }=-\frac{1}{16 \pi G} \int_{A d S_{d+1}}(R-2 \Lambda)-\frac{1}{8 \pi G}\left[\int_{\mathcal{M}_{d}} K+\int_{\mathcal{S}_{d}} \lambda\right] .
$$

Profile of \mathcal{S}_{d} is specified solving

$$
K_{\mathcal{S}}=0
$$

Holographic setup

$$
d s^{2}=\frac{1}{4 \rho^{2}} d \rho^{2}+\frac{1}{\rho} g_{A B}(\rho, X) d X^{A} d X^{B}, X^{A}=\left\{r, x^{i}\right\}, i=1,2,3
$$

the boundary is located at $r=0$.

$$
\begin{aligned}
& g_{A B}=\left(1+\rho g_{r r}^{(1,0)}+r \rho g_{r r}^{(1,1)}+\cdots\right) d r^{2} \\
& +\left(g_{i j}^{(0,0)}+r g_{i j}^{(0,1)}+r^{2} g_{i j}^{(0,2)}+\cdots+\rho g_{i j}^{(1,0)}+r \rho g^{(1,1)}+\cdots{ }_{i j}\right) d x^{i} d x^{j}
\end{aligned}
$$

where

$$
\begin{aligned}
g_{i j}^{(0,0)} & =\gamma_{i j}^{(0)} \\
g_{i j}^{(0,1)} & =-2 k_{i j} \\
g_{i j}^{(0,2)} & =k_{i j}^{2}-R_{r i r j} \\
g_{A B}^{(1,0)} & =-\frac{1}{2}\left(R_{A B}^{(0)}-\frac{1}{6} R^{(0)} g_{A B}^{(0)}\right),
\end{aligned}
$$

Holographic boundary terms of conformal anomaly

[A.F.A, Solodukhin]

- $d=3$

$$
\int_{\mathcal{M}_{3}}\langle T\rangle_{\mathrm{hol}}=\frac{\lambda}{64 \pi G_{N}} \int_{\partial \mathcal{M}_{3}} k^{2}
$$

- $d=4$

$$
\begin{aligned}
& \int_{\mathcal{M}_{4}}\langle T\rangle_{\mathrm{hol}, \mathrm{~ms}}=\frac{N^{2}}{24 \pi^{2}} \int_{\partial \mathcal{M}_{4}}\left[\frac{3}{2}\left(k^{\mu \nu}+k n^{\mu} n^{\nu}-\frac{2}{3} k g^{\mu \nu}\right) R_{\mu \nu}\right. \\
& \left.+\left(k \operatorname{Tr} k^{2}-\frac{5}{9} k^{3}\right)\right]
\end{aligned}
$$

This precisely matches (for $N \gg 1$) the anomaly computed for the free super-multiplet, for $4-\operatorname{dim} \mathcal{N}=4$ SYM with maximal SUSY preservation.

Entanglement Entropy

- Consider a quantum mechanical system in a pure ground state which is described by $|\psi\rangle(\rho=|\psi\rangle\langle\psi|)$.

$$
\begin{aligned}
& \uparrow \downarrow \uparrow \uparrow \downarrow \uparrow \uparrow \downarrow \uparrow \uparrow \\
& \downarrow \downarrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \downarrow \uparrow \\
& \uparrow \uparrow \uparrow \downarrow \uparrow \downarrow \downarrow \uparrow \uparrow \downarrow \text { } \\
& \text { }
\end{aligned}
$$

- Reduced density operator:

$$
\rho_{A}=\operatorname{Tr}_{B} \rho=\operatorname{Tr}_{B}|\psi\rangle\langle\psi| .
$$

Then the EE is

$$
S_{E E}(A)=-\operatorname{Tr} \rho_{A} \log \rho_{A} .
$$

Rényi entropy

In a QFT, we firstly construct the Rényi entropy as

$$
S_{n}(A)=\frac{1}{1-n} \log \operatorname{Tr} \rho_{A}^{n}
$$

The EE reads then

$$
S_{E E}(A)=\lim _{n \rightarrow 1} S_{R E}(A)
$$

The main challenge is the computation on a manifold with conical singularity

$$
S_{n}=-\partial_{n} \log \operatorname{Tr} \rho_{A}^{n}=\left(n \partial_{n}-1\right) W_{n}
$$

but

$$
\begin{gathered}
W_{n}=-\frac{(-1)^{2 s}}{2} \int_{\epsilon^{2}} \frac{d \tau}{\tau} \operatorname{Tr} K_{n}\left(\triangle^{(s)}, \tau\right) \\
\operatorname{Tr} K_{n}\left(\triangle^{(s)}, \tau\right) \simeq \sum_{p=0} a_{p}\left(\triangle^{(s)}, n\right) \tau^{(p-d) / 2}, \quad \tau \rightarrow 0
\end{gathered}
$$

and we know many thing about the heat kernels on the cones!

EE in general d

$$
\begin{aligned}
& \uparrow \downarrow \uparrow \uparrow \downarrow \uparrow \uparrow \downarrow \uparrow \uparrow \\
& \downarrow \downarrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \downarrow \uparrow \\
& \uparrow \uparrow \uparrow \downarrow \uparrow \downarrow \downarrow \uparrow \uparrow \downarrow B \\
& \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow \downarrow \downarrow \downarrow \downarrow \\
& S_{E E}(\Sigma)=\frac{s_{d-2}}{\epsilon^{d-2}}+\frac{s_{d-4}}{\epsilon^{d-4}}+\cdots+s_{\log } \log \epsilon+f
\end{aligned}
$$

where

$$
s_{d-2} \propto A(\Sigma) .
$$

$s_{l o g} \propto \mathcal{A}$ (conformal anomaly).

EE for BCFTs in $d=4$ [A.F.A, Berthiere, Fursaev, Solodukhin]

In four dimensions, the entanglement entropy has the following asymptotic dependence on the UV cut-off ϵ,

$$
S(\Sigma)=\frac{s_{2}}{\epsilon^{2}}+\frac{s_{1}}{\epsilon}+s_{l o g} \log \epsilon+\cdots
$$

The logarithmic term $s_{l o g}$ is a combination of conformal invariants constructed on Σ and its boundary $\mathcal{P}=\partial \Sigma$

$$
\begin{gathered}
s_{l o g}=\frac{a}{720 \pi}\left[\int_{\Sigma} R_{\Sigma}+2 \int_{\mathcal{P}} k_{p}\right]-\frac{b}{240 \pi} \int_{\Sigma}\left[W_{i j i j}-\operatorname{Tr} \hat{k}_{i}^{2}\right]+d F_{d}+e F_{e}, \\
F_{d}=-\frac{1}{40 \pi} \int_{\mathcal{P}} \hat{k}_{\mu \nu} v^{\mu} v^{\nu}, \quad F_{e}=-\frac{1}{\pi} \int_{\mathcal{P}}\left(N \cdot p_{i}\right)\left(\hat{k}_{i}\right)_{\mu \nu} v^{\mu} v^{\nu} .
\end{gathered}
$$

F_{e} reflects properties of extrinsic geometry of Σ at the boundary and F_{d} keeps the information about the extrinsic geometry of the boundary itself.

Charges

Theory	a	b	c	d	boundary condition
real scalar	1	1	1	1	Dirichlet
real scalar	1	1	$\frac{7}{9}$	$-\frac{2}{3}$	Robin
Dirac spinor	11	6	5	1	mixed
gauge boson	62	12	8	7	absolute/relative

EE for $\mathcal{N}=4$ supermultiplet

$$
\begin{aligned}
a & =\left(N^{2}-1\right)(3 \cdot 1+3 \cdot 1+2 \cdot 11+1 \cdot 62)=90\left(N^{2}-1\right), \\
b & =\left(N^{2}-1\right)(3 \cdot 1+3 \cdot 1+2 \cdot 6+1 \cdot 12)=30\left(N^{2}-1\right), \\
c & =\left(N^{2}-1\right)\left(3 \cdot 1+3 \cdot \frac{7}{9}+2 \cdot 5+1 \cdot 8\right)=\frac{70}{3}\left(N^{2}-1\right), \\
d & =\left(N^{2}-1\right)\left(3 \cdot 1-3 \cdot \frac{2}{3}+2 \cdot 1+1 \cdot 7\right)=10\left(N^{2}-1\right), \\
s_{\log }^{(S Y M)} & =\frac{N^{2}-1}{8 \pi}\left(\left[\int_{\Sigma} R_{\Sigma}+2 \int_{\mathcal{P}=\partial \Sigma} k_{p}\right]+\int_{\Sigma} \operatorname{Tr} \hat{k}_{i}^{2}-2 \int_{\mathcal{P}} \hat{k}_{\mu \nu} v^{\mu} v^{\nu}\right)
\end{aligned}
$$

Holographic EE

Ryu-Takayanagi's proposal (06)

$$
S_{\text {hol }}[\Sigma]=\frac{A[\mathcal{H}]}{4 G}
$$

Holographic EE for BCFT in $d=4$ [A.F.A, Berthiere, Fursaev,

 Solodukhin]We cast the AdS_{5} bulk metric in the form

$$
d s^{2}=\frac{d \rho^{2}}{4 \rho^{2}}+\frac{1}{\rho}\left(-d t^{2}+d r^{2}+\left(\gamma_{i j}-k_{i j} r\right)^{2} d x^{i} d x^{j}\right), i, j=1,2 .
$$

In four dimensions a suitable profile $x=x(r, \rho)$, subject to boundary condition $x(r, \rho=0)=0$, which minimizes the area functional above is

$$
x(r, \rho)=\rho^{2}\left(c_{1}+c_{2} r+c_{2}\left(k_{11}+\frac{k_{22}}{2}\right) r^{2}+\mathcal{O}\left(r^{3}\right)\right)+\cdots .
$$

The RT surface terminates at the hypersurface \mathcal{S} which was the extension of the boundary into the bulk

$$
r(\rho)=r_{1} \rho+r_{2} \rho^{2}+\cdots
$$

Holographic EE for BCFT in $d=4$

Putting things together one finds

$$
S_{l o g}^{(h o l)}[\Sigma, \mathcal{P}]=\frac{N^{2}}{8 \pi}\left(\left[\int_{\Sigma} R_{\Sigma}+2 \int_{\mathcal{P}=\partial \Sigma} k_{p}\right]+\int_{\Sigma} \operatorname{Tr} \hat{k}_{i}^{2}-2 \int_{\mathcal{P}} \hat{k}_{i j} v^{i} v^{j}\right) \log \epsilon,
$$

A perfect match again!

Summary

- We compute the boundary terms of the conformal anomaly in $d=3$ and $d=4$ by proposing the minimal surface prescription in the context of Holography. We observe a perfect agreement with the results in field theory side for the free super-multiplet, for 4 - $\operatorname{dim} \mathcal{N}=4$ SYM when SUSY is maximally preserved.
- Following our proposal we suggest how to perform the RT calculation to obtain the EE in presence of the boundaries. We confirm again a perfect match with the results in field theory side.

