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Turbulence

Turba is a Latin word for crowd. Turbulence originally refers to
the disorderly motion of a crowd. Scientifically it refers to a
complex and unpredictable motions of a fluid.



Turbulence Random Geometry Scaling Exponents Outlook

Turbulence

• Fluid turbulence is a major unsolved problem of physics.
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Turbulence

• Most fluid motions in nature at all scales are turbulent.
Aircraft motions, river flows, atmospheric phenomena,
astrophysical flows and even blood flows are some
examples of set-ups where turbulent flows occur.

• Despite centuries of research, we still lack an analytical
description and understanding of fluid flows in the
non-linear regime.

• Insights to turbulence hold a key to understanding the
principles and dynamics of non-linear systems with a large
number of strongly interacting degrees of freedom far from
equilibrium.
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Anomalous Scaling

• We propose an analytical formula for the anomalous
scaling exponents of inertial range structure functions in
incompressible fluid turbulence.

• The formula is a Knizhnik-Polyakov-Zamolodchikov
(KPZ)-type relation and is valid in any number of space
dimensions:

ξn −
n
3
= γ2(d)ξn(1− ξn) , (1)

where γ(d) is a numerical real parameter that depends on
the number of space dimensions d .
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Navier-Stokes Equations

• Consider incompressible fluid flows in d ≥ 2 space
dimensions. They are the relevant flows when the
velocities are much smaller than the speed of sound.

• The incompressible Navier-Stokes (NS) equations provide
a mathematical formulation of the fluid flow evolution. They
read

∂tv i +v j∂jv i = −∂ip+ν∂jjv i + f i , ∂iv i = 0, i = 1, ...,d ,
(2)

• v i is the fluid velocity and p is the fluid pressure. f i an
external random force. ν is the kinematic viscosity.
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Geometrization of the Fluid Variables
• The fluid pressure and velocity in the geometrical picture

Vi(x)

P(x)

Fluid pressure and velocity in the geometrical picture.  The pressure P(x) 

measures the deviation of the perturbed event horizon from the 

equilibrium  solution. The velocity vector field  Vi(x) is the normal vector.   
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Reynolds Number

• An important dimensionless parameter in the study of fluid
flows is the Reynolds number Re = lv

ν , where l is a
characteristic length scale, v is the velocity difference at
that scale, and ν is the kinematic viscosity.

• The Reynolds number quantifies the relative strength of
the non-linear interaction compared to the viscous term.

• When the Reynolds number is of order a thousand or
more, one observes numerically and experimentally a
turbulent structure of the flow.

• This phenomenological observation is general, and fluid
details are of no importance.
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Turbulence in Nature

• Most flows in nature are turbulent. This is simple to see by
noting that the viscosity of water is ν ' 10−6 m2

sec , while that
of air is ν ' 1.5× 10−5 m2

sec . Thus, a medium size river has
a Reynolds number Re ∼ 107.
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Turbulent Flows

• The turbulent velocity field exhibits highly complex spatial
and temporal structures and appears to be a random
process. Thus, even though the NS equations are
deterministic (in the absence of a random force), a single
realization of a solution to the NS equations is
unpredictable.

• Instead of studying individual solutions to the NS
equations, one is led to consider the statistics of the
solutions.

• The statistics can be defined in various ways. One can use
an ensemble average by averaging over initial conditions.
Turbulence that is reached in this way is a decaying one.
Alternatively, one can introduce a random force. This
allows reaching a sustained steady state turbulence with
an energy source and a viscous sink.
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Statistical Properties

• Numerical and experimental data show that the statistical
average properties exhibit a universal structure shared by
all turbulent flows, independently of the details of the flow
excitations.

• One defines the inertial range to be the range of distance
scales LV � r � LF , where the scales LV and LF are
determined by the viscosity and forcing, respectively.

• Turbulence at the inertial range of scales reaches a steady
state that exhibits statistical homogeneity and isotropy.



Turbulence Random Geometry Scaling Exponents Outlook

The Statistical Approach
• Consider the statistics of velocity difference between points

separated by a fixed distance.

V(x)
V(y)
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Structure Functions

• Define the longitudinal velocity difference between points
separated by a fixed distance r = |~r |

δv(r) =
(
~v(~r , t)− ~v(0, t)

)
·
~r
r
. (3)

• The structure functions Sn(r) = 〈(δv(r))n〉 exhibit in the
inertial range a scaling Sn(r) ∼ r ξn .

• The exponents ξn are universal, and depend only on the
number of space dimensions.
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K41 Theory
• In 1941 Kolmogorov argued that in three space dimensions

the incompressible non-relativistic fluid dynamics in the
inertial range follows a cascade breaking of large eddies to
smaller eddies, called a direct cascade, where energy flux
is being transferred from large eddies to small eddies
without dissipation.
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Scale Invariance

• He further assumed scale invariant statistics, that is

P(δv(r))δv(r) = F
(
δv(r)

rh

)
, (4)

where P(δv(r)) is the probability density function, and h is
a real parameter.

• Treating the mean viscous energy dissipation rate ε as a
constant in the limit of infinite Reynolds number, he
deduced a linear scaling of the exponents ξn = n/3.
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Intermittency

• All direct cascades are known numerically and
experimentally to break scale invariance and do not simply
follow Kolomogorov scaling.

• Note, that in two space dimensions the energy cascade is
inverse, that is the energy flux is instead transferred to
large scales. Kolmogorov’s assumption that the random
velocity field is self-similar is incorrect in direct cascades,
but it seems to hold in the inverse cascade.

• The self-similarity assumption misses the intermittency of
the turbulent flows. Thus, in order to calculate the scaling
exponents one has quantify the inertial range intermittency
effects.
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Intermittency
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Anomalous Scaling

• The calculation of the anomalous exponents and their
deviation from the Kolmogorov scaling is a major open
problem.

n1 2 3

1

n/3

ξn

Anomalous Exponents

Figure 1: Anomalous exponents versus the linear Kolomogorov scaling in three space dimensions. 

The plot is a schematic draw of numerical  simulations and experimental  data.



Turbulence Random Geometry Scaling Exponents Outlook

Multifractal Structure

• Since 1941 many multifractal models of turbulence have
been proposed. These express multifractality directly in
terms of fluctuations of the velocity increments or of the
energy dissipation.

• For example, Kolmogorov and Obukhov proposed to
replace the constant global average ε with local averages
εr over a volume of dimension r . One then considers εr as
a lognormally distributed random variable with variance
σ2 ∼ −ln(r).
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Gaussian Multiplicative Cascade

• Mandelbrot argued that one should think about the energy
cascade as a random multiplicative process. In this case a
random measure can be formalised mathematically as a
limit of a “Gaussian multiplicative cascade".The lognormal
model assumes “refined self-similarity"

P(δv(r))δv(r) = F
(

δv(r)
(〈εr 〉r)1/3

)
, (5)

which leads to a formula for ξn producing physically
inconsistent supersonic velocities at large n and a violation
of the convexity inequality.
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Gravitational Dressing
• We propose that in intermittent turbulence, Kolmogorov

linear scaling itself is evaluated with respect to a lognormal
random measure.

• This is a “gravitational" dressing of Kolmogorov scaling
which is inspired by the relation of fluid dynamics and black
hole horizon dynamics in one higher space dimension.

• We propose the dressing of Kolmogorov scaling is via a
KPZ (Knizhnik-Polyakov-Zamolodchikov)-type relation.
This gives an analytical formula for the scaling exponents
of incompressible fluid turbulence in any number of space
dimensions d ≥ 2.

• It reads
ξn −

n
3
= γ2(d)ξn(1− ξn) , (6)

where γ(d) is a numerical real parameter that depends on
the number of space dimensions d .
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Coupling to a Random Geometry

• This means changing the Euclidean measure dx on a Rd

to dµγ(x) = eγφ(x)−
γ2

2 dx , where the Gaussian random field
φ(x) has covariance φ(x)φ(y) ∼ − log |x − y | when |x − y |
is small (but still in the inertial range).

• Physically, the notion of distance r is modified in the new
measure. Consider a set of scaling exponents ξ0 with
respect to the Euclidean measure. Denote the same set of
exponents, but now with respect to the random measure,
by ξ.

• Then ξ and ξ0 are related by the KPZ relation

ξ − ξ0 = γ2(d)ξ(1− ξ). (7)
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Coupling to a Random Geometry

• Mathematically, this is a known method to obtain a
multifractal structure from a fractal one.

• Our proposal is that one can incorporate the effect of
intermittency at the inertial of range of scales by coupling
to a random geometry in this way and evaluating the
Kolmogorov linear scaling exponents ξ0 = n

3 with respect to
the random measure.

• Physically, it is highly nontrivial that the steady state
statistics of turbulence can be viewed as such a
combination of the scale invariant statistics and
intermittency.

• Note, that intermittent features appear at short length
scales, and this is when the effects of the random field φ
are prominent.
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Coupling to a Random Geometry
• We conjecture that the eγφ(x)−

γ2

2 is proportional to local
energy flux field ε(x) in the direct cascade of the turbulent
fluid.

• This has some similarities to the Kolmogorov-Obukhov
lognormal model. In that case, refined self-similarity
implies the following simple dressing of Kolmogorov scaling

〈(δv(r))n〉 ∼ r ξn ∼ 〈(εr )n/3〉rn/3. (8)

• Evaluating the expectation of the lognormal energy
dissipation, one finds

ξn −
n
3
= γ2 n

3

(
1− n

3

)
. (9)

• This formula fails as it implies ξn is a decreasing function
for large enough n, which violates basic physical
inequalities. Here we assume instead the fluctuating
dissipation field acts as a random measure.
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KPZ and Generalisations

• The KPZ relation was first derived by coupling a
two-dimensional conformal field theory (CFT) to gravity
and analyzing the effect of quantum gravity on the scaling
dimensions of the CFT. This has been dubbed
“gravitational dressing".

• The KPZ relation has been generalized in various
directions. First, to an arbitrary number of dimensions
without reference to a conformal field theory structure.
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KPZ and Generalisations

• Second, to a more general random field than the
lognormally distributed one (Schramm et. al.)

ξ0 = ξ − log2 E [W ξ] (10)

where E is the expectation and W is the random variable
associated with the measure (not necessarily a lognormal
one).

• We will not use the latter generalization here, but it may be
valuable in the study of steady state statistics of other
non-linear dynamical systems out of equilibrium.
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An Exact Formula

• We propose that the scaling exponents of incompressible
fluid turbulence ξn in any number of space dimensions d
satisfy the KPZ-type relation (6).

• Solving for ξn we get

ξn =

(
(1 + γ2)2 + 4γ2(n

3 − 1)
) 1

2 + γ2 − 1
2γ2 , (11)

where in choosing the branch we required finite exponents
ξn.

• γ(d) is a numerical real parameter that depends on the
number of space dimensions d . It can be determined from
any moment, for instance, from the energy spectrum.
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Properties

• There are several immediate properties of the formula (11)
that we can see. First, using n = 3 in (11) one gets the
exponent ξ3 = 1 in any dimension, an exact result derived
by Kolmogorov which agrees with numerical simulations
and experiments.

• Second, the scaling exponent ξ2 is a monotonically
increasing function of γ, while the exponents ξn,n > 3 are
monotonically decreasing functions of γ.

• Third, in the limit n→ 0 we get that ξn → 0, as expected.
• Fourth, in the limit γ → 0 we have ξn → n

3 , that is scale
invariant statistics with no intermittency.
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Properties

• Fifth, in the limit γ →∞, we have ξn → 1, as in Burgers
turbulence. The scaling exponents take values in the range
2
3 ≤ ξ2 ≤ 1, and 1 ≤ ξn ≤ n

3 for n ≥ 3. We will propose that
the limit γ →∞, is the limit of infinite number of space
dimensions d . The subleading correction, relevant for
developing a systematic 1

d expansion reads

ξn = 1 +
1
γ2

(n
3
− 1

)
+ O

(
1
γ4

)
. (12)

• Sixth, in the limit n→∞ for fixed γ, we have ξn → 1
γ

(n
3

) 1
2 ,

thus growing as
√

n.

• Seventh, at the "critical" value γ = 1 we get ξn =
(n

3

) 1
2 .
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Analytical Constraints on the Scaling Exponents

• If there exist two consecutive even numbers 2n and 2n + 2
such that ξ2n > ξ2n+2, then the velocity of the flow cannot
be bounded. Using (11) it is straightforward to show that
ξ2n ≤ ξ2n+2 for any γ, thus (11) satisfies the absence of
supersonic velocity requirement.

• The second condition is that of convexity. For any three
positive integers n1 ≤ n2 ≤ n3, the scaling exponents
satisfy the convexity inequality that follows from Hölder
inequality (n3 − n1)ξ2n2 ≥ (n3 − n2)ξ2n1 + (n2 − n1)ξ2n3 .
Using (11) it is straightforward to show that the Hölder
inequality holds. Equality is achieved when γ = 0, when
γ →∞ and when ni = nj for some i 6= j and arbitrary γ.
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The Energy Spectrum

• The structure function S2(r) ∼ r ξ2 gives the energy
spectrum of the fluid.

• Using (11) we see that ξ2 is a monotonic function of γ that
takes values in the range 2

3 ≤ ξ2 ≤ 1 when γ goes from
zero to infinity.

• In momentum space a deviation from the Kolmogorov
spectrum for small γ (small d) reads

E(k) ∼ k− 5
3−

2γ2

9 . (13)

• For large γ (large d) we have

E(k) ∼ k
−2+ 1

3γ2 . (14)
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Experimental and Numerical Data

• The anomalous scaling exponents (11) depend on the
parameter γ, which is a function of d . We do not know the
exact expression of γ, but it can be calculated knowing one
of the structure functions, such as the energy spectrum

γ =

(
ξ2− 2

3
ξ2(ξ2−1)

) 1
2

.

• With this knowledge we can then make an infinite number
of predictions. In the following we will compare the
analytical expression (11) to the available numerical and
experimental data in various dimensions.
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Two Space Dimensions

• In two space dimensions the energy cascade is an inverse
cascade, where the energy flux flows to scales larger than
the injection scale.

• In this case, one has the energy spectrum agreeing with
the Kolmogorov scaling ξ2 = 2

3 .
• Using (11), this implies that γ(2) = 0, and that all the other

scaling exponents follow the Kolmogorov scaling ξn = n
3 .
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Three Space Dimensions

• In three space dimensions we first use the data for the
anomalous scaling exponents (Benzi) from wind tunnel
experiments at Reynolds number ∼ 104.

• This experimental data is consistent with numerical data
from simulations of the Navier-Stokes equations, see
e.g.(Gotoh).

• We fit (6) to this data using a least squares fit.
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Three Space Dimensions

2 4 6 8

n

0.5
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x

Figure : Fit of (6) (blue) to experimental data. The dashed line
represents Kolmogorov scaling. The best fit value of the free
parameter γ2 is about 0.161. The error on the data is about ±1
percent.
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Three Space Dimensions
• Consider the numerical results for low order structure

function exponents and non-integer n. The numerical data
is consistent with experiment at Reynolds number 104. For
this data, the fitted value of γ2 is about 0.159.

-1.0 -0.5 0.5 1.0 1.5 2.0
n

-0.2

0.2

0.4

0.6

Ξ

Figure : Fit of (6) (blue) to numerical data of numerical low
moments (red). The dashed line represents Kolmogorov scaling.
The best fit value of the free parameter γ2 is about 0.159.
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Three Space Dimensions

• Note that if our conjectured relation between the random
measure and the local energy dissipation field is correct,
one can determine γ2 independently by measuring the
scaling exponent of the two point function,
〈ε(x)ε(0)〉 ∼ x−γ2

.
• This value has been found to be ≈ 0.2, which in our

formula is still consistent with the data.
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Four Space Dimensions

• In four space dimensions, numerical simulations of the
Navier-Stokes equations were performed in (Gotoh2007).
The authors found an increase in intermittency, i.e.
ξ
(4)
n > ξ

(3)
n for n < 3, while ξ(4)n < ξ

(3)
n for n > 3.

• We took the data for the structure function exponents in 4d
given in (Gotoh) and performed a fit to (6). This is shown in
Figure 3. Although taken at a relatively low Reynolds
number, the results are in agreement with a simple
increase in the γ2 parameter in our formula (6). The value
of γ2 in four space dimensions is fitted to about 0.278.

• Note that their numerical data for same simulation in three
space dimensions predicts γ2 about 0.188, which is higher
than the experimental data above. This could be related to
the relatively low Reynolds numbers involved.
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Four Space Dimensions
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Figure : Fit of (6) to the 4d exponents given in (Gotoh2007). The solid
line is the 4d fit with γ2 about 0.278.
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Intermittency

• In order to observe intermittency one has to study the
short distance statistical properties of the fluid flow. There
are various measures for intermittency, such as
Fn(r) =

Sn(r)

S2(r)
n
2
, n ≥ 3. Fn(r) are expected to grow as a

power-law in the limit r → 0, while staying in the inertial
range of scales.

• We can analyze the properties of Fn(r) using (11). They
scale as ∼ rα, where α is a decreasing function of γ.

• In the limit γ → 0 one has α→ 0 and no intermittency,
while as γ →∞ we get the maximal intermittency α = 2−n

2 .
• Numerically, one sees a clear growth of Fn(r),n ≥ 4 in the

limit r → 0, when as we increase the number of space
dimensions in the simulation. The data is not accurate
enough to observe the growth when n = 3.
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Large d Limit

• It was conjectured that in the limit of infinite d all the
exponents ξn approach the same value, one, as in Burgers
turbulence.

• With our formula (6) this means that γ goes to infinity in the
limit of infinite d , and therefore ξn = 1 for any n.

• This suggests the interesting possibility of having a
systematic 1

d expansion (12).
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Summary

• It incorporates intermittency in a novel way by dressing the
Kolmogorov linear scaling via a coupling to a lognormal
random geometry.

• The formula has one real parameter γ that depends on the
number of space dimensions.

• The scaling exponents satisfy the convexity inequality, and
the supersonic bound constraint.

• They agree with the experimental and numerical data in
two and three space dimensions, and with numerical data
in four space dimensions.

• Intermittency increases with γ, and in the infinite γ limit the
scaling exponents approach the value one, as in Burgers
turbulence.

• At large n the nth order exponent scales as
√

n.
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Outlook

• Our proposal to incorporate the intermittency at the inertial
range of scales by a gravitational dressing using a random
geometry was inspired by the mapping between
(Navier-Stokes) fluid flows and black hole horizon
geometry.

• The main challenge is to determine analytically the
function γ(d).

• While equilibrium statistics is characterized by the Gibbs
measure, there is yet no analog of this for non-equilibrium
steady state statistics. We speculate that there is a general
principle that allows us to consider the steady state
statistics of out of equilibrium systems as a gravitationally
dressed scale invariant one.
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