Large N Graviton Scattering and Black Hole Formation

DIETER LÜST (LMU-München, MPI)

8th. Crete Regional Meeting in String Theory, Nafplion, 8th. July 2015
erc

Large N Graviton Scattering and Black Hole Formation

DIETER LÜST (LMU-München, MPI)

Work in collaboration with Gia Dvali, Cesar Gomez,
Reinke Isermann and Stephan Stieberger,

$$
\text { arXiv: } 1409.7405
$$

8th. Crete Regional Meeting in String Theory, Nafplion, 8th. July 2015

Outline:

I) Unitarity in graviton scattering and black hole production
II) Large N graviton scattering amplitudes at high energies in field and string theory
III) Summary
I) Introduction

Quantum mechanics:

- Complementary picture:

Wave $\quad \Leftrightarrow \quad N$ particles

I) Introduction

Quantum mechanics:

- Complementary picture:

Wave

- Heisenberg's uncertainty: phase space quantization:

$$
[x, p]=i \hbar \Rightarrow \Delta x \Delta p \geq \hbar
$$

I) Introduction

Quantum mechanics:

- Complementary picture:

Wave $\quad \Leftrightarrow \quad N$ particles

- Heisenberg's uncertainty: phase space quantization:

$$
[x, p]=i \hbar \Rightarrow \Delta x \Delta p \geq \hbar
$$

Semiclassical limit: $\hbar=$ const.,$\quad N \rightarrow \infty$
Distances can be still arbitrarily short.
I) Introduction

Quantum mechanics:

- Complementary picture:

$$
\text { Wave } \quad \Leftrightarrow \quad N \text { particles }
$$

- Heisenberg's uncertainty: phase space quantization:

$$
[x, p]=i \hbar \Rightarrow \Delta x \Delta p \geq \hbar
$$

Semiclassical limit: $\hbar=$ const.,$\quad N \rightarrow \infty$
Distances can be still arbitrarily short.
In quantum gravity and in string theory some of these statements have to be refined.

High energy string scattering:

[Amati, Ciafaloni,Veneziano (1987); Gross, Mende (1987)]

Refinement of Heisenberg relation:

$$
\Delta x \geq \frac{\hbar}{\Delta p}+\alpha^{\prime} \Delta p
$$

High energy string scattering:
[Amati, Ciafaloni,Veneziano (1987); Gross, Mande (1987)]
Refinement of Heisenberg relation:

$$
\Delta x \geq \frac{\hbar}{\Delta p}+\alpha^{\prime} \Delta p
$$

\Rightarrow Smallest possible distance:
$\Rightarrow \quad \Delta x \geq \sqrt{\hbar \alpha^{\prime}}=\Delta x_{\text {min }}$

In particular two questions and puzzles:

- What is the quantum nature of Black Holes ?
- What is the high energy behavior of graviton scattering amplitudes ?

Unitarity at tree level ?

In particular two questions and puzzles:

- What is the quantum nature of Black Holes ?

Two (interconnected ?) claims:
Solve these problems (partially) within Einstein gravity!

- What is the high energy behavior of graviton scattering amplitudes ?

Unitarity at tree level ?

In particular two questions and puzzles:

- What is the quantum nature of Black Holes ?

Two (interconnected ?) claims:
Solve these problems (partially) within Einstein gravity!
\Rightarrow Classicalization \& the black hole N -portrait

- What is the high energy behavior of graviton scattering amplitudes?

Unitarity at tree level ?

Classicalization \& the black hole N -portrait:

- Are described by IR physics,
.. where there is no need to modify gravity in the IR
Quantization of gravity in IR \leftrightarrow semiclassical regime.

Classicalization \& the black hole N -portrait:

- Are described by IR physics,
[G. Dvali, C. Gomez,]
.. where there is no need to modify gravity in the IR
Quantization of gravity in IR \leftrightarrow semiclassical regime.
However there remain still some UV problems:
- Precise coefficient coefficient in black hole entropy:

$$
\mathcal{S}=\frac{1}{4} \quad \frac{A}{L_{P}^{2}}
$$

- Renormalization, UV finiteness of loop amplitudes

New UV degrees of freedom \Rightarrow String theory !

Graviton scattering:

It is known that tree level graviton scattering amplitudes grow like s (center of mass energy).
\Rightarrow Violation of unitarity at $s=M_{P}^{2}$
One possible solution: Wilsonian approach:
Amplitude is unitarized by integrating in new weakly coupled degrees of freedom of shorter and shorter wave lengths (at higher and higher energies).

However it is expected that black holes will be produced in particle scattering processes with high energies of the order

$$
\sqrt{s}>R_{s}^{-1} \equiv\left(\sqrt{s} L_{P}^{2}\right)^{-1}
$$

['t Hooft (1987);Antoniadis, Arakani-Hamed,Dimopoulos, Dvali (1998); Banks, Fischler (1999);
Dimopoulos, Landsberg (2001);Yoshino, Nambu (2002); Giddings, Thomas (2002);
Eardley, Giddings (2002); Giddings, Rychkov (2004); ...]
Classicalization: Amplitudes get unitarized by classical black hole formation.
[G. Dvali, C. Gomez (20I0); G. Dvali, G. Giudice, C. Gomez, A. Kehagias (20I0)]
(Gravity protects itself at high energies by black hole formation.)

So we need a better understanding of how black holes are formed in graviton scattering amplitudes.

Black hole corpuscular N -portrait:

Quantum black hole $=$ Bound state of N gravitons

(Bose-Einstein condensate)

[G. Dvali, C. Gomez (20II-20I4); G. Dvali, C. Gomez, D.L. (20I2)]

Black hole corpuscular N -portrait:

Quantum black hole $=$ Bound state of N gravitons

(Bose-Einstein condensate)

Relevant properties:
[G. Dvali, C. Gomez (20।I-20।4); G. Dvali, C. Gomez, D.L. (20।2)]

- N is large and the gravitons are soft.
- Interaction strength among individual gravitons is small:

$$
\alpha=\frac{L_{P}^{2}}{R^{2}} \ll 1 \quad\left(\begin{array}{ll}
R & \ldots \\
\text { graviton wave length })
\end{array}\right.
$$

- Collective ('t Hooft like) coupling: $\lambda=\alpha N$
- Black holes are formed at the quantum critical point:

$$
\lambda=1 \quad\left(R=\sqrt{N} L_{P}\right)
$$

Flassig, Pritzel,Wintergerst, arXiv:I2I2.3344]

Black hole bound state (at $\lambda=1$):

- Mass and size: $M_{B H}=\sqrt{N} M_{P}, \quad R_{B H}=\sqrt{N} L_{P}$
- Exponential degeneracy, entropy: $\mathcal{S} \sim N$
- Semiclassical behavior: $N \rightarrow \infty$

Black hole bound state (at $\lambda=1$):

- Mass and size: $M_{B H}=\sqrt{N} M_{P}, \quad R_{B H}=\sqrt{N} L_{P}$
- Exponential degeneracy, entropy: $\mathcal{S} \sim N$
- Semiclassical behavior:

Bose-Einstein condensate

Can we reconcile this picture in graviton scattering processes (expressed in terms of N and λ)?

Is there a signal of non-perturbative black hole physics in perturbative graviton amplitudes?

So far: computation of graviton N -point amplitudes with small $N(N=4)$.

So far: computation of graviton N -point amplitudes with small $N(N=4)$.

Our paper: new look at graviton scattering at transPlanckian energy

- Explicit calculation of field theory and string amplitudes in a new kinematical large N regime, relevant for black hole production:

$$
2 \longrightarrow N \quad \text { with } \quad N \rightarrow \infty
$$

- We will argue that the perturbative $2 \longrightarrow N$ amplitude indeed contains relevant non-perturbative information supporting the picture of black hole production and classicalization.

Crossing the UV barrier:

The $2 \rightarrow \mathrm{~N}$ string amplitude exhibits an interesting transition property:

- Soft final gravitons: Unitarization by black holes.
- Hard final gravitons: Unitarization by string Regge states.

New trans-Planckian cross-over energy scale:

$$
E_{\mathrm{IR} / \mathrm{UV}}=N M_{\text {string }}
$$

II) Large N Graviton Scattering Amplitudes

$2 \longrightarrow N$ graviton amplitude with high center of mass s:

$$
\begin{aligned}
& s_{i j}=\left(k_{i}+k_{j}\right)^{2} \sim \begin{cases}s, & i, j \in\{1, N\}, \\
-\frac{s}{N-2}, & i \in\{1, N\}, j \notin\{1, N\}, \\
\frac{s}{(N-2)^{2}}, & i, j \notin\{1, N\} .\end{cases} \\
& p_{\text {in }} \sim \sqrt{s} \text { and } \quad p_{\text {out }} \sim \frac{\sqrt{s}}{N-2}
\end{aligned}
$$

Classicalization limit: soft gravitons in the final state.

$$
s \rightarrow \infty, \quad \epsilon=\frac{1}{N-2} \rightarrow 0 \quad \Longrightarrow \quad p_{\text {out }}<M_{P}
$$

II) Large N Graviton Scattering Amplitudes
$2 \longrightarrow N$ graviton amplitude with high center of mass s:

II) Large N Graviton Scattering Amplitudes

$2 \longrightarrow N$ graviton amplitude with high center of mass s:

Double scaling limit:
(\Rightarrow small impact parameter)

$$
N \rightarrow \infty, \quad s \rightarrow \infty\left(\sqrt{s} \gg M_{P}\right) \quad \text { with } \quad \lambda=\frac{s}{M_{P}^{2} N} \neq 0
$$

(i) Field theory

To compute the graviton scattering amplitudes one can try on-shell methods and KLT techniques. [Kawail Lemelen, TVe (1986)].

Problem: KLT uses a double sum over (N-3)! squares of Yang-Mills amplitudes $=>$ in practice very hard to perform $N \rightarrow \infty$ limit

(i) Field theory

To compute the graviton scattering amplitudes one can try on-shell methods and KLT techniques. [Kamai, Lemelen, Tie (1986)],

Problem: KLT uses a double sum over (N-3)! squares of Yang-Mills amplitudes $=>$ in practice very hard to perform $N \rightarrow \infty$ limit

Instead we use the CHY formula for the N -graviton amplitude:
[Cachazo, He, Yuan (20|3, 20I4)]

$$
\begin{aligned}
& \begin{array}{c}
M_{N}=\int \frac{d^{N} \sigma}{\operatorname{Vol} S L(2, \mathrm{C})} \prod_{a=1}^{N} \delta\left(\sum_{b \neq a}^{\prime} \frac{s_{a b}}{\sigma_{a}-\sigma_{b}}\right) E_{N}^{2}(\{k, \xi, \sigma\}) \\
\hdashline-\frac{1}{}
\end{array} \\
& \text { integral over } \\
& \mathrm{N} \text {-punctered sphere } \\
& \text { delta-function support } \\
& \text { on solutions of } \\
& \text { scattering equations } \\
& \text { certain determinant (Pfaffian) } \\
& \text { encoding external momenta } k \\
& \text { and polarizations } \xi
\end{aligned}
$$

Scattering equations:

$$
\sum_{b \neq a} \frac{s_{a b}}{\sigma_{a}-\sigma_{b}}=0
$$

$(N-3)$! solutions
relate space of kinematic invariants of N gravitons to that of the positions of N points on a sphere
[cfr. with twistor approach by E.Witten (2003)]
Problem: for $\mathrm{N}>5$ the scattering equations are very hard to solve for generic momenta.
C. Baadsgaard, N. Bjerrum-Bohr, J. Bourjaily, P. Damgaard, arXiv: I 506.06I37]

Scattering equations:

$$
\sum_{b \neq a} \frac{s_{a b}}{\sigma_{a}-\sigma_{b}}=0
$$ solutions

relate space of kinematic invariants of N gravitons to that of the positions of N points on a sphere
[cfr. with twistor approach by E.Witten (2003)]
Problem: for $\mathrm{N}>5$ the scattering equations are very hard to solve for generic momenta.
[See L. Dolan and P. Goddard (2013/20।4),
C. Baadsgaard, N. Bjerrum-Bohr, J. Bourjaily, P. Damgaard, arXiv: I 506.06I37]

Fortunately in the classicalization limit, i.e. the limit we are interested in scattering equations can be solved explicitly
classicalization limit can be parameterized as:
(in units of $s /(N-2) \wedge 2$)

$$
\begin{aligned}
s_{1, N} & =\frac{1}{2}(N-3)(N-a-b), \\
s_{N-1, N} & =-\frac{1}{2}(N-3)(2-b), \quad s_{1, N-1}=-\frac{1}{2}(N-3)(2-a), \\
s_{1, i} & =-\frac{1}{2}(N-2-b), \quad s_{i, N}=-\frac{1}{2}(N-2-a), \\
s_{N-1, i} & =\frac{1}{2}(4-a-b), \quad s_{i j}=1 \quad, \quad i, j \in\{2, \ldots, N-2\},
\end{aligned}
$$

this gives rise to a two-parameter a,b solution, which is ($\mathrm{N}-3$)!-fold degenerate

This parametrization can be mapped to a problem Kalousios (2013) has already studied:
Solutions of scattering equations are identified with the zeros of Jacobi polynomials.

$$
\begin{aligned}
M_{N}(1, \ldots, N) & =-\kappa^{N-2} 2^{8-N} \frac{s}{(N-2)^{2}}[(N-3)!!]^{2} \frac{\Gamma\left(\frac{a}{2}\right) \Gamma\left(\frac{3}{2}+\frac{b-N}{2}\right) \Gamma\left(\frac{1-N+a+b}{2}\right)}{\Gamma\left(1+\frac{a-N}{2}\right) \Gamma\left(\frac{b-1}{2}\right) \Gamma\left(\frac{a+b-3}{2}\right)} \\
& \times \frac{\Gamma\left(\frac{3}{2}+\frac{a-N}{2}\right) \Gamma\left(\frac{b}{2}\right) \Gamma\left(\frac{a+b-2}{2}\right)}{\Gamma\left(1+\frac{b-N}{2}\right) \Gamma\left(\frac{a-1}{2}\right) \Gamma\left(\frac{a+b-N}{2}\right)} H_{N}(a, b)^{2}
\end{aligned}
$$

Exact in any real a, b and N

$$
\xrightarrow{N \rightarrow \infty} \kappa^{N} \frac{s}{N^{2}} N!
$$

This parametrization can be mapped to a problem Kalousios (2013) has already studied:
Solutions of scattering equations are identified with the zeros of Jacobi polynomials.
$M_{N}(1, \ldots, N)=-\kappa^{N-2} 2^{8-N} \frac{s}{(N-2)^{2}}[(N-3)!!]^{2} \frac{\Gamma\left(\frac{a}{2}\right) \Gamma\left(\frac{3}{2}+\frac{b-N}{2}\right) \Gamma\left(\frac{1-N+a+b}{2}\right)}{\Gamma\left(1+\frac{a-N}{2}\right) \Gamma\left(\frac{b-1}{2}\right) \Gamma\left(\frac{a+b-3}{2}\right)}$

$$
\times \frac{\Gamma\left(\frac{3}{2}+\frac{a-N}{2}\right) \Gamma\left(\frac{b}{2}\right) \Gamma\left(\frac{a+b-2}{2}\right)}{\Gamma\left(1+\frac{b-N}{2}\right) \Gamma\left(\frac{a-1}{2}\right) \Gamma\left(\frac{a+b-N}{2}\right)} H_{N}(a, b)^{2}
$$

Field theory amplitude!

Exact in any real a, b and N

Note: Incidentally the solutions to the scattering equations describe the saddle point contributions in the high-energy limit of open and closed string amplitudes
(Gross, Mende) $\quad \rightarrow \quad$ see next part of the talk.

To obtain the physical probability, ie. the S-matrix element, we have to consider phase space integral:

$$
\begin{aligned}
d|\langle 2| S| N-2\rangle\left.\right|^{2}=\frac{1}{(N-2)!} & \prod_{i=2}^{N-1} d p_{i}^{4}\left|M_{N}\right|^{2} \delta^{4}\left(P_{\text {total }}\right) \\
& \quad\left(\quad p_{\text {in }} \sim \sqrt{s}, p_{\text {out }} \sim \frac{\sqrt{s}}{N-2}\right)
\end{aligned}
$$

Physical $2 \rightarrow N-2$ perturbative, scattering probability in classicalization regime:

$$
|\langle 2| S| N-2\rangle\left.\right|^{2}=\left(\frac{L_{P}^{2} s}{N^{2}}\right)^{N} N!=\left(\frac{\lambda}{N}\right)^{N} N!\sim e^{-N} \lambda^{N}
$$

Collective coupling $\lambda \equiv \alpha N=s / M_{P}^{2} N$

This perturbative scattering probability possesses a maximum at the following critical value for N :

$$
N_{\text {crit }}=s L_{P}^{2} \quad \Leftrightarrow \quad \lambda_{\text {crit }}=1
$$

This perturbative scattering probability possesses a maximum at the following critical value for N :

$$
N_{\text {crit }}=s L_{P}^{2} \quad \Leftrightarrow \quad \lambda_{\text {crit }}=1
$$

Remark: similar calculations can be done for scalar field theories, like $\lambda \phi^{4}$.
In this case the amplitudes show a different large N behavior:

$$
A_{N}^{2} \simeq \lambda^{N} N!
$$

Connection of the perturbative amplitude to the non-perturbative black hole bound state:

Connection of the perturbative amplitude to the non-perturbative black hole bound state:
The perturbative amplitude is suppressed by e^{-N}.
This is just the inverse of the degeneracy of states of a black hole with entropy $\mathcal{S} \sim N$.

Therefore this suppression factor is compensated at the critical point $\lambda=1$ by $e^{N} \quad$ from the degeneracy of black hole states:

$$
\left.A_{B H} \sim \sum_{j}|\langle 2| S| N\right\rangle\left.\left.\right|_{p} ^{2}\left|\langle N \mid B H\rangle_{j}\right|_{n p}^{2} \sim \lambda^{N} e^{-N}\right|_{p} \times\left. e^{N}\right|_{n p}
$$

Connection of the perturbative amplitude to the non-perturbative black hole bound state:
The perturbative amplitude is suppressed by e^{-N}.
This is just the inverse of the degeneracy of states of a black hole with entropy $\mathcal{S} \sim N$.

Therefore this suppression factor is compensated at the critical point $\lambda=1$ by $e^{N} \quad$ from the degeneracy of black hole states:

20

Connection of the perturbative amplitude to the non-perturbative black hole bound state:
The perturbative amplitude is suppressed by e^{-N}.
This is just the inverse of the degeneracy of states of a black hole with entropy $\mathcal{S} \sim N$.

Therefore this suppression factor is compensated at the critical point $\lambda=1$ by $e^{N} \quad$ from the degeneracy of black hole states:

$$
\left.A_{B H} \sim \sum_{j}|\langle 2| S| N\right\rangle\left.\left.\right|_{p} ^{2}\left|\langle N \mid B H\rangle_{j}\right|_{n p}^{2} \sim \lambda^{N} e^{-N}\right|_{p} \times\left. e^{N}\right|_{n p}
$$

So, black hole is exactly dominating at $\lambda=1$.

In summary:

- Perturbative $2 \longrightarrow N$ graviton amplitude:

$$
\left|M_{N}^{p e r t} \cdot\right|^{2} \simeq \lambda^{N} e^{-N}, \quad \lambda=s /\left(M_{P}^{2} N\right)
$$

In summary:

- Perturbative $2 \longrightarrow N$ graviton amplitude:

$$
\left|M_{N}^{\text {pert. }}\right|^{2} \simeq \lambda^{N} e^{-N}, \quad \lambda=s /\left(M_{P}^{2} N\right)
$$

- Non-perturbative enhancement at $\lambda=1$ due to black hole entropy factor :

$$
\left|M_{N}^{n \cdot p \cdot}\right|^{2} \simeq \lambda^{N}
$$

(fully saturated at $\lambda=1$)

black holes

For large s unitarization occurs if N increases appropriately:
This bound implies that $\quad N \gtrsim N_{\text {crit }}=s L_{P}^{2}$
This is the core of the idea of classicalization!
N should be larger than the corresponding entropy of a black hole with mass equal to the center of mass energy.

However there remain still some UV problems:

What is happening in the regime where $\lambda>1$?

$$
N<N_{c r i t}=s L_{P}^{2}
$$

(ii) Closed string theory

干. T. :

ST.

High energy behavior of open/closed string amplitudes shows exponential fall off due to Regge modes.

[Veneziano (I968);Amati, Ciafaloni,Veneziano (1987); Gross, Mende (1987), Gross, Manes (I989]
Example: 4-point graviton amplitude

$$
\begin{aligned}
& \mathcal{M}_{4} \sim K \frac{\Gamma\left(-\frac{\alpha^{\prime}}{4} s\right) \Gamma\left(-\frac{\alpha^{\prime}}{4} t\right) \Gamma\left(-\frac{\alpha^{\prime}}{4} u\right)}{\Gamma\left(\frac{\alpha^{\prime}}{4} s\right) \Gamma\left(\frac{\alpha^{\prime}}{4} t\right) \Gamma\left(\frac{\alpha^{\prime}}{4} u\right)} \\
& \longrightarrow_{\alpha^{\prime} \rightarrow \infty} \kappa^{2}\left|A_{4}\right|^{2} \times 4 \pi \alpha^{\prime} \frac{s t}{u} \exp \left\{\frac{\alpha^{\prime}}{2}(s \ln |s|+t \ln |t|+u \ln |u|)\right\}
\end{aligned}
$$

High energy behavior of open/closed string amplitudes shows exponential fall off due to Regge modes.
[Veneziano (I968);Amati, Ciafaloni,Veneziano (I987); Gross, Mende (I987), Gross, Manes (1989]
Example: 4-point graviton amplitude

$$
\begin{aligned}
& \mathcal{M}_{4} \sim K \frac{\Gamma\left(-\frac{\alpha^{\prime}}{4} s\right) \Gamma\left(-\frac{\alpha^{\prime}}{4} t\right) \Gamma\left(-\frac{\alpha^{\prime}}{4} u\right)}{\Gamma\left(\frac{\alpha^{\prime}}{4} s\right) \Gamma\left(\frac{\alpha^{\prime}}{4} t\right) \Gamma\left(\frac{\alpha^{\prime}}{4} u\right)} \\
& \longrightarrow_{\alpha^{\prime} \rightarrow \infty} \kappa^{2}\left|A_{4}\right|^{2} \times 4 \pi \alpha^{\prime} \frac{s t}{u} \exp \left\{\frac{\alpha^{\prime}}{2}(s \ln |s|+t \ln |t|+u \ln |u|)\right\} \\
& \text { Square of } \\
& \text { YM-amplitude }
\end{aligned}
$$

High energy behavior of open/closed string amplitudes shows exponential fall off due to Regge modes.
[Veneziano (I968);Amati, Ciafaloni,Veneziano (I987); Gross, Mende (I987), Gross, Manes (1989]
Example: 4-point graviton amplitude

$$
\mathcal{M}_{4} \sim K \frac{\Gamma\left(-\frac{\alpha^{\prime}}{4} s\right) \Gamma\left(-\frac{\alpha^{\prime}}{4} t\right) \Gamma\left(-\frac{\alpha^{\prime}}{4} u\right)}{\Gamma\left(\frac{\alpha^{\prime}}{4} s\right) \Gamma\left(\frac{\alpha^{\prime}}{4} t\right) \Gamma\left(\frac{\alpha^{\prime}}{4} u\right)}
$$

$$
\longrightarrow \alpha_{\alpha^{\prime} \rightarrow \infty} \kappa^{2}\left|A_{4}\right|^{2} \times 4 \pi \alpha^{\prime} \frac{s t}{u} \exp \left\{\frac{\alpha^{\prime}}{2}(s \ln |s|+t \ln |t|+u \ln |u|)\right\}
$$

Square of YM-amplitude

High energy behavior of open/closed string amplitudes shows exponential fall off due to Regge modes.
[Veneziano (I968);Amati, Ciafaloni,Veneziano (I987); Gross, Mende (I987), Gross, Manes (1989]
Example: 4-point graviton amplitude

$$
\mathcal{M}_{4} \sim K \frac{\Gamma\left(-\frac{\alpha^{\prime}}{4} s\right) \Gamma\left(-\frac{\alpha^{\prime}}{4} t\right) \Gamma\left(-\frac{\alpha^{\prime}}{4} u\right)}{\Gamma\left(\frac{\alpha^{\prime}}{4} s\right) \Gamma\left(\frac{\alpha^{\prime}}{4} t\right) \Gamma\left(\frac{\alpha^{\prime}}{4} u\right)}
$$

$$
\longrightarrow \alpha_{\alpha^{\prime} \rightarrow \infty} \kappa^{2}\left|A_{4}\right|^{2} \times 4 \pi \alpha^{\prime} \frac{s t}{u} \exp \left\{\frac{\alpha^{\prime}}{2}(s \ln |s|+t \ln |t|+u \ln |u|)\right\}
$$

Square of YM-amplitude

High energy behavior of open/closed string amplitudes shows exponential fall off due to Regge modes.
[Veneziano (I968);Amati, Ciafaloni,Veneziano (I987); Gross, Mende (I987), Gross, Manes (1989]
Example: 4-point graviton amplitude

$$
\mathcal{M}_{4} \sim K \frac{\Gamma\left(-\frac{\alpha^{\prime}}{4} s\right) \Gamma\left(-\frac{\alpha^{\prime}}{4} t\right) \Gamma\left(-\frac{\alpha^{\prime}}{4} u\right)}{\Gamma\left(\frac{\alpha^{\prime}}{4} s\right) \Gamma\left(\frac{\alpha^{\prime}}{4} t\right) \Gamma\left(\frac{\alpha^{\prime}}{4} u\right)}
$$

$\longrightarrow \alpha_{\alpha^{\prime} \rightarrow \infty} \kappa^{2}\left|A_{4}\right|^{2} \times 4 \pi \alpha^{\prime} \frac{s t}{u} \exp \left\{\frac{\alpha^{\prime}}{2}(s \ln |s|+t \ln |t|+u \ln |u|)\right\}$
 YM-amplitude

(Note: this was basically the state of the art before our paper.)

Generalization to arbitrary (large) N :

High energy limit: use of scattering equations:

Again in the classicalization limit we obtain the explicit result for arbitrary N :

$$
\begin{aligned}
\mathcal{M}_{N} & =\left(4 \pi \alpha^{\prime}\right)^{N-3} \prod_{\nu=1}^{N-3}\left(\frac{\nu^{\nu}(\alpha+\nu)^{\alpha+\nu}(\beta+\nu)^{\beta+\nu}}{(\alpha+\beta+N-3+\nu)^{\alpha+\beta+N-3+\nu}}\right)^{\frac{\alpha^{\prime} s}{4} s} \\
& \times M_{N}^{F T}+\mathcal{O}\left(\left(\alpha^{\prime} s\right)^{-1}\right)
\end{aligned}
$$

Generalization to arbitrary (large) N :

High energy limit: use of scattering equations:

Again in the classicalization limit we obtain the explicit result for arbitrary N :

$$
\begin{aligned}
\mathcal{M}_{N} & =\left(4 \pi \alpha^{\prime}\right)^{N-3} \prod_{\nu=1}^{N-3}\left(\frac{\nu^{\nu}(\alpha+\nu)^{\alpha+\nu}(\beta+\nu)^{\beta+\nu}}{(\alpha+\beta+N-3+\nu)^{\alpha+\beta+N-3+\nu}}\right)^{\frac{\alpha^{\prime} s}{4}} \\
& \times M_{N}^{F T}+\mathcal{O}\left(\left(\alpha^{\prime} s\right)^{-1}\right) \quad \sum_{27}^{\text {String form }} \begin{array}{l}
\text { factor }
\end{array}
\end{aligned}
$$

Two different energy regimes:
(i) $\frac{\sqrt{s}}{N}<M_{s}: \Longleftrightarrow \lambda<N g_{s}^{2}$
,,infrared", field theory regime
Field and ST theory amplitudes agree.
This was already conjectured for the MHV case up to 5 points by [Cheung, O'Connell, Wecht (2010)]

$$
F_{N}=1 \quad \Rightarrow \quad \mathcal{M}_{N}=M_{N}^{F T}
$$

(ii) $\frac{\sqrt{s}}{N}>M_{s}: \Longleftrightarrow \lambda>N g_{s}^{2}$
,,ultraviolet", string theory regime

$$
\mathcal{M}_{N} \sim \kappa^{N-2} \alpha^{\prime N-3} s e^{-\frac{\alpha^{\prime}}{2}(N-3) s \ln \left(\alpha^{\prime} s\right)}
$$

String states dominate.
Amplitude gets tamed by string states (Regge modes).

Transition occurs at $E_{\text {IR/UV }}=N M_{\text {string }}$
Gravitons in final state become hard: $E_{\text {final }}>M_{s}$

black holes

field theory
string theory

black holes

field theory
string theory

\uparrow

Consistency for all λ

What is happening at the point $\lambda=N g_{s}^{2}=1$?
Here the F.T. amplitude agrees with the string amplitude at the critical point $\lambda=1$.

This the point where the string effects match the amplitude from the F.T. black hole formation.
$g_{s}=\frac{1}{\sqrt{N}} \Rightarrow$ String - black hole correspondence:
black hole can be described by a state of strings.
[Horowitz, Polchinski (1996); Dvali, D.L. (2009); Dvali, Gomez (2010)]
Here the IR is meeting the UV.

What about loop corrections or higher order gravity (UV) corrections?
They should correspond to I/N corrections to what we computed:

$$
A_{\mathrm{g}-\text { loop }} \sim\left(\frac{1}{N}\right)^{g} \quad, \quad A_{\mathcal{R}^{g}} \sim\left(\frac{1}{N}\right)^{g}
$$

What about loop corrections or higher or corrections?
They should correspond to I/N correctioy computed:

$$
\begin{aligned}
& \text { should correspond to } \mathrm{I} / \mathrm{N} \text { correctio string amplitude } \\
& \text { uted: }
\end{aligned}
$$

$$
A_{\mathrm{g}-\text { loop }} \sim\left(\frac{1}{N}\right)^{g} \quad, \quad A_{\mathcal{R}^{g}} \sim\left(\frac{1}{N}\right)^{g}
$$

What about lo These might higher or These are be relevant in hs? captured in the captured in the
string amplitude They should d string theory computed:
$A_{\text {g-loop }} \sim\left(\frac{1}{N}\right)^{9}$
correctio They should string theory

What about lo These might higher or These are
They should dtring theory hs?
computed:
$A_{\text {g-loop }} \sim\left(\frac{1}{N}\right)^{g}, \quad A_{\mathcal{R}^{g}} \sim($
They should dtring theory hs?
computed:
$A_{\text {g-loop }} \sim\left(\frac{1}{N}\right)^{g}, \quad A_{\mathcal{R}^{g}} \sim($ captured in the
string amplitude captured in the
string amplitude
They should $\begin{aligned} & \text { string theory } \\ & \text { computed: } \\ & \qquad A_{\text {g-loop }} \sim\left(\frac{1}{N}\right)^{g},\end{aligned} A_{\mathcal{R}^{g}} \sim($

$$
A_{\mathrm{g}-\text { loop }} \sim\left(\frac{1}{N}\right)^{g} \quad, \quad A_{\mathcal{R}^{g}} \sim\left(\frac{1}{N}\right)
$$

There is some recent interest in higher order \mathcal{R}^{g} gravity:
Scale invariant gravity: $\quad S \sim \int d x^{4} \sqrt{-g} R^{2}$
[Alvarez-Gaume, Kehagias, Kounnas, D.L., Riotto, Toumbas]

- propagating, ghostfree spin-2 only on curved backgrounds (de Sitter or anti-De Sitter).
- flat backgrounds: only scalar mode, no gravitational interaction. Non-trivial interplay between UV/IR!

> Is there possibly any relation between the limit of large number N of gravitons and the large Nc limit in Yang-Mills gauge theories?

Is there possibly any relation between the limit of large number N of gravitons and the large Nc limit in Yang-Mills gauge theories?

- Relation between open and closed string coupling:

$$
g_{s}=g_{o p e n}^{2}
$$

- At point of string-bh correspondence: $g_{s}=1 / \sqrt{N}$
- Planar limit of gauge theory: $\quad g_{o p e n}^{2}=1 / N_{c}$

Is there possibly any relation between the limit of large number N of gravitons and the large Nc limit in Yang-Mills gauge theories?

- Relation between open and closed string coupling:

$$
g_{s}=g_{o p e n}^{2}
$$

- At point of string-bh correspondence: $g_{s}=1 / \sqrt{N}$
- Planar limit of gauge theory: $g_{o p e n}^{2}=1 / N_{c}$

So naively we get: $\quad N=N_{c}^{2}$
What is the interpretation of this relation?

Summary:

- New computation of N -point gravity (string) amplitudes in trans-planckian large N region in closed form
- We found evidence for classicalization and black hole production (black hole N -portrait) in field theory.
- We found an interesting trans-Planckian transition between field theory and string theory: string black hole correspondence.

Next steps: [Stieberger (2009); Stieberger, Tayor (2014); Cachazo, He, Yuan (2014)]

- Mixed gauge boson (open)/gravity (closed) amplitudes: Bh N -portrait with matter
[Dvali, Gomez, D.L. (2013)]
- Bh N-portrait beyond tree level First steps in [Kuhnel, Sundborg (2014)]

