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Introduction 

In this talk we will discuss the system of k NS5-branes in type II(B) 
string theory. The fivebranes will be taken to wrap 𝑅𝑅4 × 𝑆𝑆1. The 
theory on the fivebranes preserves 16 supercharges and lives in 
4+1 non-compact dimensions (later we will discuss the case where 
𝑅𝑅4 is replaced by 𝑇𝑇4).  
 
This theory is known as Little String Theory (LST). It can be studied 
using holography, by focusing on the near-horizon geometry of the 
fivebranes, which is an asymptotically linear dilaton spacetime. 
 



We will mostly focus on states in this theory that carry momentum 
𝑝𝑝 and winding 𝑤𝑤 around the circle, while preserving a quarter of 
the supersymmetry of the LST.  
 
These states can be thought of as the three charge black holes 
studied by Strominger, Vafa and many others in the context of 
providing a microscopic interpretation of black hole entropy.  
 
They also figure prominently in the fuzzball program, which 
attempts to describe these microstates by horizonless geometries. 
 
 



Our main interest will be in the dependence of the spectrum of 
these states on the positions of the fivebranes.  We will see that it 
is qualitatively different when the fivebranes are separated by any 
finite distance, and when they are coincident. The two cases are 
separated by a string-black hole transition.  
 
This is surprising, since separating the fivebranes corresponds in 
the low energy theory to Higgsing a non-abelian gauge group, and 
one would expect that if the W-boson mass scale is low, the physics 
of high mass states, such as the ones we will study, should not be 
affected. We will discuss why it nevertheless happens, and 
comment on some implications. 
 
 
 
 



Near-horizon geometry of NS5-branes 

Callan, Harvey and Strominger showed that the near-horizon 
geometry of k NS5-branes is described by an exactly solvable 
worldsheet CFT, 
 

𝑅𝑅𝜙𝜙 × 𝑆𝑆𝑆𝑆 2 𝑘𝑘 × 𝑅𝑅5,1 
 
where 𝑅𝑅ϕ represents the radial direction away from the 
fivebranes, and corresponds to a free scalar field with linear 
dilaton Φ = −𝑄𝑄𝑄𝑄/2, 𝑄𝑄2 = 𝛼𝛼′/𝑘𝑘 ; the three-sphere transverse to 
the fivebranes is described by a level k SU(2) WZW model.  
 



In this background, the string coupling varies with the distance 
from the fivebranes. In terms of the coordinate ϕ (which is 
proportional to log 𝑟𝑟 ), one has  
 

𝑔𝑔𝑠𝑠2 ≃ 𝑒𝑒−𝑄𝑄ϕ 
 
Thus, at large distance from the fivebranes, 𝑄𝑄 → ∞ , the string 
coupling goes to zero. This is the boundary of the near-horizon 
geometry, the analog of the boundary of AdS for gauge/gravity 
duality.  
 
 
 
 
 



At the same time, as one approaches the fivebranes, 𝑄𝑄 → −∞ , 
the string coupling diverges. Hence, the exact background above 
is not useful for calculations – to make it useful we need to do 
something about the strong coupling singularity.  
 
There are two ways of dealing with it, both of which will be 
useful for us. We next describe them.  

 



Double Scaled LST 

One way is to separate the fivebranes. It is clear from the results 
of CHS that a single fivebrane does not have a linear dilaton 
throat. Thus, in any configuration of the fivebranes in which no 
two coincide, the coupling is bounded.  
 
One can arrange the separations such that the coupling is 
everywhere small. This amounts to demanding that the masses 
of D-strings stretched between different NS5-branes, 𝑀𝑀𝑊𝑊 , 
satisfy the condition  
 

𝑀𝑀𝑊𝑊 ≫ 𝑚𝑚𝑠𝑠 
 
 



A particularly nice configuration of fivebranes that can be 
analyzed exactly is: 
 
 
 
 
 
 
 
Fivebranes spread equidistantly around a circle.  



The reason this configuration is nice is that it is described by an 
exactly solvable worldsheet CFT, 
 
 
 
 
 
By taking the radius of the circle to be sufficiently large, we can 
arrange for the string coupling to be everywhere small. In that 
case, the dynamics of the theory can be studied using 
perturbative string techniques.  
 
 
 



In particular, the states we are interested in, that carry 
momentum and winding on the 𝑆𝑆1 and preserve ¼ of the 
supersymmetry, are standard perturbative BPS states, for which 
the right-movers on the worldsheet are in the ground state, 
while the left-movers are in a general excited state.  Thus, they  
satisfy: 
 

𝑁𝑁𝑅𝑅 = 0;   𝑁𝑁𝐿𝐿= 𝑁𝑁 = 𝑝𝑝𝑤𝑤 
 

                                           M= 𝑝𝑝
𝑅𝑅

+ 𝑤𝑤𝑅𝑅
𝛼𝛼′

 

 
 
 



The spectrum of  these states is encoded in the elliptic genus of the 
worldsheet CFT. In our case, the non-trivial part of the background is 
 
 
 
 
Its elliptic genus, defined as 
 
 
 
  
 
 
 
 
 
 
 



can be calculated using standard worldsheet techniques. One gets 
 
 
 
 
 
where 
 
 
 
  is the Appell-Lerch sum.    



Actually, the expression on the previous slide is not the full story. 
It only includes the contributions of states in the above CFT that 
are normalizable.  Since the target space is non-compact, there 
are also delta-function normalizable states, and it turns out that 
they too contribute to the elliptic genus.  
 
Unlike the contribution of the normalizable states, that of the 
continuum is not holomorphic (in q).  This takes one in the 
direction of Mock-modular forms – the contribution of the 
normalizable modes is holomorphic but not modular, while the 
full thing is modular but not holomorphic. We will not pursue it 
here.  



Our interest is in the entropy of ¼ BPS states that the elliptic genus 
gives rise to. The number of states with given 𝑝𝑝,𝑤𝑤 can be read off 
the coefficient of 𝑞𝑞𝑁𝑁 in the elliptic genus, where 𝑁𝑁 = 𝑝𝑝𝑤𝑤. This can 
be obtained by standard manipulations and gives rise for 𝑁𝑁 ≫ 1 to 
the entropy 
 

𝑆𝑆 = 2𝜋𝜋 2 −
1
𝑘𝑘

𝑝𝑝𝑤𝑤 

 
 
While this result was obtained for fivebranes placed equidistantly 
around a circle, it is actually independent of the positions of the 
fivebranes. This is a general property of the elliptic genus. 



Thus, one might be tempted to conclude that it is also valid in the 
limit where the fivebranes coincide. Indeed, from the point of view 
of the theory on the fivebranes, separating them corresponds to 
Higgsing an 𝑆𝑆𝑆𝑆 𝑘𝑘  gauge theory to 𝑆𝑆 1 𝑘𝑘−1.  
 
When the mass of the W-bosons, 𝑀𝑀𝑊𝑊, is small, one might expect it 
to not influence the physics of massive states such as the ¼ BPS 
states we are studying.  
 
We will next show that this expectation is not realized.  
 



Black holes versus Strings 

When the fivebranes are all coincident (i.e. at the origin of 
moduli space), the DSLST analysis breaks down due to strong 
coupling and we need to use other tools.  
 
(in fact, it breaks down before that point, when the coupling 
becomes of order one, but we believe that as long as the 
fivebranes are not coincident, this is a technicality) 
 
 



Exactly at the origin, there is another candidate for a state that has 
the same quantum numbers as the fundamental string states 
discussed above. This state is the (extremal) two dimensional black 
hole (the two dimensions being 𝑡𝑡,𝑄𝑄), charged under the 𝑆𝑆 1  gauge 
fields obtained from reduction from three dimensions on the 𝑆𝑆1. 
 
This black hole has an exact worldsheet CFT description as a coset  
 

𝑆𝑆𝑆𝑆 2 × 𝑆𝑆 1
𝑆𝑆 1

× 𝑆𝑆𝑆𝑆 2 × 𝑅𝑅4  

 
• The 𝑆𝑆 1  that is being gauged is a combination of the CSA of 
𝑆𝑆𝑆𝑆 2  and the extra 𝑆𝑆 1 . This combination depends on the 
charges 𝑝𝑝,𝑤𝑤 and non-extremality parameter (which we will set to 
zero). 

 
 



• For large 𝑘𝑘 one can describe it as a solution of Einstein-Maxwell 
gravity.  
 

• In fact, this black hole is nothing but the three charge black hole 
of Strominger and Vafa, except we are viewing it as a state in the 
LST and not in the full string theory. 
 

• The entropy of this black hole can be computed exactly. In the 
extremal (1/4 BPS case) it is given by the familiar 
 

𝑆𝑆 = 2𝜋𝜋 𝑘𝑘𝑝𝑝𝑤𝑤 
 
This looks qualitatively similar, but is different (larger) than the result 
for separated fivebranes we got before.  
 
                                             What is going on? 



Before answering this, we need to revisit a point that we were a 
little careless about so far. So far we took the fivebrane 
worldvolume to be 𝑅𝑅4 × 𝑆𝑆1. In that case the two dimensional 
string coupling, which is related to the mass of the black hole,  
𝑀𝑀, is finite, but the six dimensional string coupling is infinite. 
Thus, to control the theory we need to replace the 𝑅𝑅4 by a 
compact space, say 𝑇𝑇4. 
 
But now, the theory on the fivebranes lives in 0+1 dimensions, 
i.e. it is quantum mechanics. The positions of the fivebranes can 
no longer be fixed; instead, the vacuum is characterized by a 
wavefunction on the moduli space.  
 
 



Superficially, the ground state wavefunction would be expected 
to spread over the whole moduli space, with points where 
fivebranes coincide being special points in the middle of moduli 
space.  
 
What we have effectively discovered is that this is not the case. 
The QM one gets by compactifying LST on 𝑆𝑆1 × 𝑇𝑇4 has non-
trivial vacuum structure.  
 



One vacuum corresponds to the quantization of the moduli 
space of distinct fivebranes. That branch has the high energy 
entropy of strings,  
 

𝑆𝑆 = 2𝜋𝜋 2 −
1
𝑘𝑘

𝑝𝑝𝑤𝑤 

 
Another vacuum corresponds to the quantization of the system 
of coincident fivebranes. This branch has the high energy 
entropy of black holes  
 

𝑆𝑆 = 2𝜋𝜋 𝑘𝑘𝑝𝑝𝑤𝑤 
 
And there are other vacua, characterized by numbers of 
coincident fivebranes 𝑘𝑘1,𝑘𝑘2,⋯ ,𝑘𝑘𝑛𝑛 . 



Comments 

• Note that the picture proposed above couldn’t possibly be 
correct if instead of LST we had a local QFT. However, LST is 
not a local QFT, and the vacuum structure we found is directly 
related to this fact. In particular, it is a manifestation of UV-IR 
mixing in this theory. Classically, the different vacua  are 
related by sending an IR scale (the mass of W-bosons) to zero, 
and yet they differ in their high energy behavior.  



• It is instructive to generalize the discussion above to the non-
extremal case. The entropy formulae we wrote down before 
have a simple generalization to that case. For strings one finds 
 
 
 
 

 
      For black holes 
 
 

 
 



But now, the story is more interesting. The positions of the 
fivebranes are no longer moduli in this non-extremal case. A 
configuration of separated fivebranes is time dependent – the 
fivebranes attract each other and eventually collide.  
 
If the non-extremality parameter is small, the timescale of this 
process is long, and we have the following picture. For a long 
period, we can use the non-extremal string entropy. However, 
for late times the string coupling grows, this description breaks 
down and the thermodynamics becomes that of black holes.  
 
The sharp string-black hole transition observed in the BPS case 
can be understood by taking the late time and BPS limits in 
different orders.  



• Relation to other work: 
 

 String-black hole transition of  A. Giveon, DK, E. Rabinovici, A 
Sever (2005). 
 

 Witten’s Coulomb and Higgs branch CFT. 
 

 Fuzzballs. 
 

 Horowitz-Polchinski string-black hole correspondence. 
 

 Critical string thermodynamics (Atick-Witten). 
 

 The previous talks in this session. 
 
 

 

http://arxiv.org/find/hep-th/1/au:+Giveon_A/0/1/0/all/0/1
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