Generalized entanglement entropy

Marika Taylor

Mathematical Sciences and STAG research centre, Southampton

July 7, 2015

Marika Taylor Generalized entanglement entropy

< 🗇 >

Introduction

• There has been considerable interest recently in entanglement entropy.

(Takayanagi)

- $S_A = -\operatorname{Tr}(\rho_A \log \rho_A).$
- Holographic Ryu-Takayanagi (RT) prescription: area of co-dimension two minimal surface homologous to A

$$S_A = rac{\mathcal{A}}{4G_N}$$

< 🗇 🕨

 Leading UV divergence: area of separating surface.
 STAG 2018 A useful computable, particularly in applied holography, but also

- Does entanglement entropy capture global structure in the dual spacetime?
- ER = EPR? (Maldacena and Susskind)

Many other measures of entanglement: holographic realisations?

- Consider density matrix ρ for theory with $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$.
- Define entanglement negativity $\mathcal{E} = \log \operatorname{Tr}(\rho^{T_2})$, with T_2 being a partial transpose over \mathcal{H}_2 .
- Well studied in CFT (Calabrese et al) but replica trick requires a non-integral number of copies of the bulk!

• Generalized holographic entanglement entropy, 1507.xxxxx

and ongoing work with Peter Jones, Da-Wei Pang and William Woodhead.

프 🖌 🛪 프 🛌

Entanglement in field theory

Generalized holographic entanglement entropy

◆□ > ◆□ > ◆豆 > ◆豆 > →

Marika Taylor Generalized entanglement entropy

Field space entanglement entropy

- Consider a quantum field theory with fields $\{\phi_i, \psi_a\}$.
- Given the density matrix of the theory ρ one can define a reduced density matrix ρ_{φ_i}

$$ho_{\phi_i} = \int {\cal D} \psi_{a} \,
ho$$

- We will denote the associated von Neumann entropy S_{φ_i} as the field space entanglement entropy.
- Operationally we usually compute this using the replica trick.

ヘロト 人間 ト ヘヨト ヘヨト

• Massive scalar fields:

$$S = \int d^d x \left((\partial \phi)^2 + (\partial \psi)^2 + m^2 (\phi \cos \alpha - \psi \sin \alpha)^2 \right)$$

• Off-diagonal kinetic term:

$$S = \int d^d x \left((\partial \phi)^2 + (\partial \psi)^2 + \mu (\partial \phi) (\partial \psi) \right)$$

Note that these are conformal when $m^2 = 0$ and $\mu = 0$.

Field space entanglement entropy

 For off-diagonal kinetic term, ground state entropy is (Mollabashi, Shiba and Takayanagi)

$$\mathcal{S}_{\phi} = \mathcal{S}(\mu) \left(rac{\mathcal{V}_{\mathcal{D}}}{\epsilon^{\mathcal{D}}} + \dots + \mathcal{c}_0
ight)$$

with V_D spatial volume, d = D + 1, ϵ UV cutoff and $(s(\mu), c_0)$ computable constants. Note that s(0) = 0.

For the massive model, ground state entropy is

$$S_{\phi} \sim m^4 \sin^2(2lpha) V_D\left(\epsilon^{5-d}\log\epsilon
ight)$$

i.e. UV finite for d < 5. It vanishes for diagonal mass terms. STAG

Entanglement occurs throughout all of the spatial volume, hence the scaling of UV divergences with volume.

Theories with global symmetry

• Next consider a scalar field theory with SO(n) R symmetry acting on *n* real scalar fields ϕ_i .

Given ρ we define a reduced density matrix ρ_Ω as

$$\rho_{\Omega} = \int_{\Omega} D\phi_i \ \rho,$$

where Ω is any subregion of the field space R^n .

• Denote the associated entropy as the R symmetry entanglement entropy, S_{Ω} . Toy model:

- Two equal mass real scalars in *d* = 1 (quantum mechanics).
- Field space is R^2 , R symmetry is SO(2).
- Suppose Ω is a wedge of angle ω in R²: then in the ground state

$$S_{\Omega}=-rac{\omega}{2\pi}\log(\omega(2\pi-\omega)/4\pi^2).$$

• Vanishes for $\omega \to 0$ and gives log(2) for equal partition of R^2 .

General theories

- In interacting theories S_{Ω} has a volume divergence.
- Bosonic part of SYM: gauge fields and (10 d) adjoint scalars

$$S = \int d^d x \operatorname{Tr} \left(rac{1}{4g_d^2} F^2 + rac{1}{2} (D\phi^i)^2 + rac{g_d^2}{4} \sum [\phi^i, \phi^j]^2
ight)$$

with R symmetry group SO(10 - d).

Extrapolating from toy models,

$$S_{\Omega} \sim s(\Omega) rac{V_D}{\epsilon^D} + \cdots$$

in ground state, with Ω defining partition of R^{10-d} . STAG

ヘロト ヘ戸ト ヘヨト ヘヨト

- Gauge fields and fermions are problematic.
- Lack of factorisation of Hilbert space.
- (As for usual entanglement entropy.)
 - Global symmetry entanglement entropy can be reformulated in terms of operators, see also (Karch and Uhlemann).

- Entanglement in field theory
- Generalized holographic entanglement entropy

・ロト ・四ト ・ヨト ・ヨト

Marika Taylor Generalized entanglement entropy

Entanglement and geometry

- In the RT prescription, the bulk geometry is separated into two regions by the minimal surface.
- The degrees of freedom traced out are geometrically separated in the bulk.
- Prescription justified by Lewkowcyz and Maldacena.

Field space entanglement entropy should only be computable holographically if the fields integrated out are geometrically separated in some way.

Consistent with ER=EPR slogan.

Bifurcate throats

- Consider an asymptotically AdS geometry with two internal throats.
- Deep inside each throat, suppose the holographic dual can be described by a given QFT.
- The degrees of freedom of this QFT are entangled with other QFT fields, including those associated with other throat.

STA

Bifurcate throats

 Integrating out heavy modes, the low energy QFT description has a Lagrangian

 $L = L_{QFT_1} + L_{QFT_2} + L_{int}$

 Integrating out all degrees of freedom except those in QFT₁, we can compute a field space entanglement entropy.

Geometric formula for the entanglement entropy

Is there a geometric description for the field space entanglement entropy?

Marika Taylor Generalized entanglement entropy

Generic description of inner throat region

The bulk action contains

$$S = \frac{1}{16\pi G_N} \int d^{d+1} x \sqrt{-g} \left(R + 2\Lambda + L_{\rm irr} \right)$$

Here

$$L_{\rm irr} = -rac{1}{2}\left((\partial\Phi)^2 + m^2\Phi^2
ight)$$

with m^2 corresponding to an irrelevant operator. STAG \mathfrak{G}

We can derive such a description explicitly:

- Coulomb branch of $\mathcal{N} = 4$ with separated stacks of branes.
- Coulomb branch of M2-branes, M5-branes and D1-D5 system.
- Decoupling region of near extremal *AdS* Reissner-Nordstrom black holes.

In all cases, the operator is of dimension 2d.

Bifurcate throats

• Coming out of the throat, the bulk geometry is AdS_{d+1} plus irrelevant corrections:

$$ds^{2} = \frac{dr^{2}}{r^{2}} + \frac{1}{r^{2}} \left(1 + \frac{\mu^{2}}{r^{2(d-\Delta)}} + \cdots\right) dx \cdot dx$$

Here μ characterises the irrelevant deformation; μ/r^{d-Δ} < 1.

Geometric description of entanglement entropy

- Geometric dual of the field space entanglement entropy must have the following properties:
 - Leading UV divergence behaves as V_D/e^D;
 - 2 It should vanish as $\mu \rightarrow 0$ (i.e. for a non-interacting CFT).

Geometric description of entanglement entropy

 Simplest possibility is the renormalised spatial volume of the throat:

$$S = \frac{\mathcal{V}_{\mathcal{R}}}{4G_N} = \frac{1}{4G_N} \int_{\Sigma} d^d x \sqrt{\gamma} - \frac{1}{4(d-1)G_N} \int_{\partial \Sigma} d^{d-1} \sqrt{h} + \cdots$$

 The counterterms ensure that the answer is zero for AdS_{d+1}.
 STA • For our deformed throat geometry:

$$S \sim \mu^2 rac{V_D}{\epsilon^D} + \cdots$$

where ϵ is the UV cutoff and D = d - 1.

- This is indeed of the same form as the field space entanglement entropy.
- However, S does not vanish for all asymptotically AdS_{d+1} throats i.e. for all backgrounds with μ = 0.

Why renormalized volume?

Heuristic argument:

(Takayanagi)

- In RT, degrees of freedom are only entangled at the boundary between A and B; extension of this surface into the bulk gives a codimension two surface.
- Here degrees of freedom are entangled through spatial volume; extension into bulk gives a codimension one surface.

• The other possibility is the area of the separating surface:

$$S = rac{\mathcal{A}}{4G_{d+1}} \sim rac{V_D}{\epsilon^D} \left(1-\mu^2
ight)$$

• This doesn't vanish for $\mu = 0$, i.e. AdS_{d+1} , but again it has the same structure as the field space entanglement entropy.

This area is in fact the differential entropy:

• Differential entropy ${\mathcal E}$ is defined as

$$\mathcal{E} = L_{x} \frac{\partial S_{RT}}{\partial x}$$

with S_{RT} the entanglement entropy of a strip of width x, L_x the length of the x direction.

• *E* computes the area of a surface whose radius is the turning point of the RT surface.

Geometric decoupling is incomplete

 Both geometric candidates for the field space entanglement entropy give non-zero answers for asymptotically AdS throats, i.e. for states/deformations of conformal field theories.

The geometric cutoff removes high energy modes in the low energy conformal field theory, hence associated entanglement entropy.

• Should differential entropy be interpreted as field space entanglement entropy?

- In holography, R symmetry is realised as isometries of the compact space (usually a sphere).
- Global symmetry entanglement entropy was defined by partitioning the field space on which the symmetry acts.
- Natural to propose that the holographic dual quantity partitions the compact space.

Generalized holographic entanglement entropy

 Mollabashi, Shiba and Takyanagi: static codimension two minimal hypersurface in ten dimensions, filling the spatial section of (asymptotically) AdS but divides the compact space.

• Define the generalised holographic entanglement entropy as

STA

Non-zero for AdS × S; divergence scales as spatial volume
 → matches global symmetry entanglement entropy.

We have discussed two measures of entanglement in QFTs:

- Integrating out fields field space entanglement entropy
- Integrating out part of the field space in an R symmetric theory global symmetry entanglement entropy

The latter can be described holographically by a codimension two hypersurface partitioning the compact space.

- The holographic description of a system with non-zero field space entanglement entropy is a throat, deformed by massive scalar fields.
- The renormalized volume of the throat, or the area of its cutoff, capture features of field space entanglement entropy.
- Any geometric cutoff also removes high energy modes of the CFT, so geometric entropies are non-zero even for asymptotically AdS throats.

