Entanglement Entropy and Duality in AdS$_4$

Georgios Pastras
National Technical University of Athens

in collaboration with Ioannis Bakas
based on arXiv:1503.00627

July 07 2015
Section 1

Motivation
Black Hole Physics suggest Einstein equations could be effective thermodynamic relations for some underlying degrees of freedom.
Black Hole Physics suggest Einstein equations could be effective thermodynamic relations for some underlying degrees of freedom.

AdS/CFT correspondence could suggest that these underlying degrees of freedom are the boundary conformal field theory degrees of freedom.
Black Hole Physics suggest Einstein equations could be effective thermodynamic relations for some underlying degrees of freedom.

AdS/CFT correspondence could suggest that these underlying degrees of freedom are the boundary conformal field theory degrees of freedom.

More recently, it has been suggested that the relation between gravity and thermodynamics should not be attributed to thermal statistics, but rather to quantum statistics related to quantum entanglement physics.
Black Hole Physics suggest Einstein equations could be effective thermodynamic relations for some underlying degrees of freedom.

AdS/CFT correspondence could suggest that these underlying degrees of freedom are the boundary conformal field theory degrees of freedom.

More recently, it has been suggested that the relation between gravity and thermodynamics should not be attributed to thermal statistics, but rather to quantum statistics related to quantum entanglement physics.

Enforcement of entanglement thermodynamics first law at linear order is equivalent to the linearized Einstein’s equations (for Dirichlet boundary conditions).
AdS$_4$ space-time presents the gravitational analog of an electric-magnetic duality at linear level.
AdS$_4$ space-time presents the gravitational analog of an electric-magnetic duality at linear level.

We study the duality in the bulk from the point of view of entanglement physics, as it may provide new light to its understanding.
AdS$_4$ space-time presents the gravitational analog of an electric-magnetic duality at linear level

We study the duality in the bulk from the point of view of entanglement physics, as it may provide new light to its understanding

Such study can act as a consistency benchmark for the RT conjecture
Section 2

Entanglement Entropy and Holography
Consider a composite quantum system. A subsystem A is described by a density matrix equal to the partial trace of the degrees of freedom of the complementary subsystem A^C.

$$\rho_A = \text{Tr}_{A^C} \rho.$$
Consider a composite quantum system. A subsystem A is described by a density matrix equal to the partial trace of the degrees of freedom of the complementary subsystem A^C.

$$\rho_A = \text{Tr}_{AC} \rho.$$

Even if the overall system lies in a **pure** state, in the presence of entanglement between systems A and A^C, subsystem A is described by a **mixed** state. Entanglement is encoded to the spectrum of the reduced density matrix.
Consider a composite quantum system. A subsystem A is described by a density matrix equal to the partial trace of the degrees of freedom of the complementary subsystem A^C.

$$\rho_A = \text{Tr}_{A^C} \rho.$$

Even if the overall system lies in a **pure** state, in the presence of entanglement between systems A and A^C, subsystem A is described by a **mixed** state. Entanglement is encoded to the spectrum of the reduced density matrix. The most popular definition of an entanglement measure is the entanglement entropy, which is Shannon entropy defined on the spectrum of the reduced density matrix ρ_A,

$$S := -\text{Tr} \rho_A \ln \rho_A.$$
The density matrix ρ_A is hermitian and positive semidefinite, thus, one may define the modular Hamiltonian as

$$\rho_A := e^{-H_A}.$$
The density matrix ρ_A is hermitian and positive semidefinite, thus, one may define the modular Hamiltonian as

$$\rho_A := e^{-H_A}.$$

If we assume a variation in the pure state of the overall system, the variation of the entanglement entropy and the expectation value of the modular Hamiltonian are related as

$$\delta S_A = \delta \langle H_A \rangle.$$
The density matrix ρ_A is hermitian and positive semidefinite, thus, one may define the modular Hamiltonian as

$$\rho_A := e^{-H_A}.$$

If we assume a variation in the pure state of the overall system, the variation of the entanglement entropy and the expectation value of the modular Hamiltonian are related as

$$\delta S_A = \delta \langle H_A \rangle.$$

This is the direct analog of the first law of thermodynamics for entanglement physics.
Ryu-Takayanagi conjecture connects the entanglement entropy for a region A defined by the entangling surface ∂A in the boundary field theory to the area of an extremal co-dimension two open surface in the bulk gravitational dual theory with the same boundary ∂A.

$$S_A = \frac{\text{Area}(A^{\text{extr}})}{4G_N}.$$
Ryu-Takayanagi conjecture connects the entanglement entropy for a region A defined by the entangling surface ∂A in the boundary field theory to the area of an extremal co-dimension two open surface in the bulk gravitational dual theory with the same boundary ∂A.

$$S_A = \frac{\text{Area} \left(A^{\text{extr}} \right)}{4G_N}.$$
If region A is defined as the polar cap

$$t = t_0, \; \theta \leq \theta_0,$$
If region A is defined as the polar cap

$$t = t_0, \, \theta \leq \theta_0,$$

region A

∂A

θ_0

region A^C
then the extremal surface is given by (unperturbed AdS$_4$)

$$t = t_0, \ \theta (r) = \arccos \left(\cos \theta_0 \sqrt{1 + \frac{1}{r^2}} \right),$$

$$\rho \in [\cot \theta_0, \infty), \ \varphi \in [0, 2\pi),$$
then the extremal surface is given by (unperturbed AdS_4)

$$t = t_0, \quad \theta (r) = \arccos \left(\cos \theta_0 \sqrt{1 + \frac{1}{r^2}} \right),$$

$$\rho \in [\cot \theta_0, \infty), \quad \varphi \in [0, 2\pi),$$
RT conjecture yields

\[A = 2\pi \lim_{r \to \infty} (r \sin \theta_0 - 1). \]
RT conjecture yields

$$A = 2\pi \lim_{r \to \infty} (r \sin \theta_0 - 1).$$

- The first term is the so called Area Law and it is divergent,
RT conjecture yields

\[A = 2\pi \lim_{r \to \infty} (r \sin \theta_0 - 1). \]

- The first term is the so-called *Area Law* and it is divergent,
- The second term is *universal* and finite.
In the following we would like to calculate the variations of the entanglement entropy and the expectation value of the modular Hamiltonian corresponding to linear metric perturbations obeying arbitrary boundary conditions.
In the following we would like to calculate the variations of the entanglement entropy and the expectation value of the modular Hamiltonian corresponding to linear metric perturbations obeying arbitrary boundary conditions. Since variation of the boundary metric is allowed, it looks reasonable that the entangling loop may get disturbed, thus, this has to be taken into account in the variational problem determining the extremal surface.
The area of the extremal surface is a function of the background metric and the equations specifying the extremal surface the latter depending on background metric and entangling curve

\[A = A(g, X(g, b)) \].

The area of the extremal surface is a function of the background metric and the equations specifying the extremal surface the latter depending on background metric and entangling curve

\[A = A(g, X(g, b)). \]

Varying the metric one finds

\[\delta A = \frac{\delta A(g, X)}{\delta g} \bigg|_{g=g_0, X=X_0} \delta g + \frac{\partial A(g, b)}{\partial b} \bigg|_{g=g_0, b=b_0} \delta b := \delta A_g + \delta A_b. \]
The area of the extremal surface is a function of the background metric and the equations specifying the extremal surface the latter depending on background metric and entangling curve

\[A = A (g, X (g, b)) . \]

Varying the metric one finds

\[\delta A = \left. \frac{\delta A(g, X)}{\delta g} \right|_{g=g_0, X=X_0} \delta g + \left. \frac{\partial A(g, b)}{\partial b} \right|_{g=g_0, b=b_0} \delta b := \delta A_g + \delta A_b. \]

The term occurring from the variation of the surface equations is vanishing as a consequence of the extremality of the unperturbed surface.
The first term can be calculated as

\[\delta A_g = \frac{1}{2} \int d^2 \sigma \sqrt{\gamma_0} (\gamma_0)^{ab} \delta \gamma_{ab}, \]

where \(\gamma_{ab} \) is the induced metric on the unperturbed extremal surface.
The first term can be calculated as

$$
\delta A_g = \frac{1}{2} \int d^2 \sigma \sqrt{\gamma_0} (\gamma_0)^{ab} \delta \gamma_{ab},
$$

where γ_{ab} is the induced metric on the unperturbed extremal surface.

The second term can be calculated by varying the unperturbed result with respect to θ_0.

There is no general method to express the modular Hamiltonian for a general state and region A. The modular Hamiltonian is in general a non-local operator.
There is no general method to express the modular Hamiltonian for a general state and region A. The modular Hamiltonian is in general a non-local operator. In some cases, the modular Hamiltonian generates a geometric flow and then it can admit a local expression. A known example is that of the region A being a disk of radius R in a Minkowski boundary.
There is no general method to express the modular Hamiltonian for a general state and region A. The modular Hamiltonian is in general a non-local operator. In some cases, the modular Hamiltonian generates a geometric flow and then it can admit a local expression. A known example is that of the region A being a disk of radius R in a Minkowski boundary. In such cases, the modular Hamiltonian can be expressed in terms of the holographic energy-momentum tensor and a conformal Killing vector that leaves invariant the entangling surface ∂A and its causal development,

$$
\delta E = \int_C d\Sigma^\mu T_{\mu\nu} \zeta^\nu,
$$

where C is any spacelike surface with boundary ∂A.

Georgios Pastras

Entanglement Entropy and Duality in AdS$_4$
Our case can be connected with that of a disk in Minkowski space through a coordinate transformation. Then one yields

$$\zeta = \frac{2}{\sin \theta_0} \left[(\cos (t - t_0) \cos \theta - \cos \theta_0) \partial_t - \sin (t - t_0) \sin \theta \partial_\theta \right].$$
Our case can be connected with that of a disk in Minkowski space through a coordinate transformation. Then one yields

$$\zeta = \frac{2}{\sin \theta_0} \left[(\cos (t - t_0) \cos \theta - \cos \theta_0) \partial_t - \sin (t - t_0) \sin \theta \partial_\theta \right].$$

Selecting C to coincide with A,

$$\delta E = \frac{\pi}{\sin \theta_0} \int_0^{\theta_0} d\theta \sin \theta (\cos \theta - \cos \theta_0) T_{tt}. $$
Section 3

Linearized Gravity in AdS$_4$
We consider linear metric perturbations around AdS$_4$ background

$$ds^2 = -f(r) \, dt^2 + \frac{dr^2}{f(r)} + r^2 \left(d\theta^2 + \sin^2 \theta \, d\phi^2 \right),$$

$$f(r) = 1 - \frac{\Lambda}{3} r^2.$$
We consider linear metric perturbations around AdS$_4$ background

\[ds^2 = -f(r) \, dt^2 + \frac{dr^2}{f(r)} + r^2 \left(d\theta^2 + \sin^2 \theta \, d\phi^2 \right), \]

\[f(r) = 1 - \frac{\Lambda}{3} r^2. \]

There are two classes of perturbations
Axial perturbations

\[ds^2 = -f(r) dt^2 + \frac{dr^2}{f(r)} + r^2 \left(d\theta^2 + \sin^2 \theta d\phi^2 \right) + 2e^{-i\omega t} \sin \theta \frac{dP_l(\cos \theta)}{d\theta} \left(h_0(r) dt + h_1(r) dr \right) d\phi. \]
Axial perturbations

\[
ds^2 = -f(r) \, dt^2 + \frac{dr^2}{f(r)} + r^2 \left(d\theta^2 + \sin^2 \theta \, d\varphi^2 \right) + 2e^{-i\omega t} \sin \theta \frac{dP_l(\cos \theta)}{d\theta} (h_0(r) \, dt + h_1(r) \, dr) \, d\varphi.
\]

Polar perturbations

\[
ds^2 = -f(r) \, dt^2 + \frac{dr^2}{f(r)} + r^2 \left(d\theta^2 + \sin^2 \theta \, d\varphi^2 \right) + e^{-i\omega t} P_l(\cos \theta) \left[H_0(r) \left(f(r) \, dt^2 + \frac{dr^2}{f(r)} \right) + 2H_1(r) \, dt dr + K(r) \, r^2 \left(d\theta^2 + \sin^2 \theta \, d\varphi^2 \right) \right].
\]
For both classes Einstein’s equations become equivalent to the same effective Schrödinger problem with respect to the tortoise coordinate x ($dx = \frac{dr}{f(r)}$),

$$- \frac{d^2 \psi (x)}{dx^2} + \frac{l(l+1)}{\sin^2 x} \psi (x) = \omega^2 \psi (x).$$

All functions of r in the metric can be expressed in terms of the solutions of the effective Schrödinger problem.
An asymptotic expansion of ψ yields

$$\psi = l_0 + \frac{l_1}{r} + \frac{l_2}{r^2} + \frac{l_3}{r^3} + \ldots$$
An asymptotic expansion of ψ yields

$$\psi = I_0 + \frac{l_1}{r} + \frac{l_2}{r^2} + \frac{l_3}{r^3} + \ldots$$

Only two parameters are independent.

$l_0 = 0$ corresponds to Dirichlet boundary conditions.

$l_1 = 0$ corresponds to Neumann boundary conditions.

If both l_0 and l_1 are non-vanishing the solution obeys more general mixed boundary conditions.
An asymptotic expansion of ψ yields

$$\psi = l_0 + \frac{l_1}{r} + \frac{l_2}{r^2} + \frac{l_3}{r^3} + \ldots$$

Only two parameters are independent.

$l_0 = 0$ corresponds to Dirichlet boundary conditions.

$l_1 = 0$ corresponds to Neumann boundary conditions.

If both l_0 and l_1 are non-vanishing the solution obeys more general mixed boundary conditions.

- Axial perturbations

 Dirichlet conditions for ψ correspond to **Dirichlet** conditions for the metric

- Polar perturbations

 Neumann conditions for ψ correspond to **Dirichlet** conditions for the metric
Section 4

Entanglement Entropy for Metric Perturbations in AdS_4
Calculation of δA_g

Notice that the result is divergent for non-Dirichlet boundary conditions for the metric.
Calculation of δA_g

- Axial perturbations

$$\delta A_g = 0.$$
Calculation of δA_g

- Axial perturbations

 \[\delta A_g = 0. \]

- Polar perturbations

 \[
 \delta A_g = -2\pi e^{-i\omega t_0} \left[\lim_{r \to \infty} \left[r J_1 + J_0 \left(l(l+1) - \omega^2 \right) \right] \sin \theta_0 P_l \left(\cos \theta_0 \right)
 + \cot \theta_0 \frac{l(l+1)}{2l+1} J_0 \left(P_{l+1} \left(\cos \theta_0 \right) - P_{l-1} \left(\cos \theta_0 \right) \right) \right].
 \]
Calculation of δA_g

- **Axial perturbations**

\[
\delta A_g = 0.
\]

- **Polar perturbations**

\[
\delta A_g = -2\pi e^{-i\omega t_0} \left[\lim_{r \to \infty} \left[r J_1 + J_0 \left(l(l+1) - \omega^2 \right) \right] \sin \theta_0 P_l (\cos \theta_0) \\
+ \cot \theta_0 \frac{l(l+1)}{2l+1} J_0 \left(P_{l+1} (\cos \theta_0) - P_{l-1} (\cos \theta_0) \right) \right].
\]

Notice that the result is divergent for non-Dirichlet boundary conditions for the metric.
The axial symmetry of the gravitational perturbations under consideration constrains the possible deformations of the entangling surface to variations of θ_0 independent of ϕ.
The axial symmetry of the gravitational perturbations under consideration constrains the possible deformations of the entangling surface to variations of θ_0 independent of ϕ. It is easy to calculate the δA_b, varying the unperturbed result with respect to θ_0.
The axial symmetry of the gravitational perturbations under consideration constrains the possible deformations of the entangling surface to variations of θ_0 independent of ϕ. It is easy to calculate the δA_b, varying the unperturbed result with respect to θ_0.

For both kinds of perturbations the result is

$$\delta A_b = 2\pi \lim_{r \to \infty} r \cos \theta_0 \delta \theta (t_0).$$
The axial symmetry of the gravitational perturbations under consideration constrains the possible deformations of the entangling surface to variations of θ_0 independent of ϕ. It is easy to calculate the δA_b, varying the unperturbed result with respect to θ_0.

For both kinds of perturbations the result is

$$\delta A_b = 2\pi \lim_{r \to \infty} r \cos \theta_0 \delta \theta (t_0).$$

Notice that the result is in general divergent.
Summing up δA_g and δA_b
Summing up δA_g and δA_b

- Axial perturbations

$$\delta S = \frac{\pi}{2} \lim_{r \to \infty} \frac{1}{r} \cos \theta_0 \delta \theta (t_0)$$
Summing up δA_g and δA_b

► Axial perturbations

$$\delta S = \frac{\pi}{2} \lim_{r \to \infty} r \cos \theta_0 \delta \theta (t_0)$$

► Polar perturbations

$$\delta S = -\frac{\pi}{4} e^{-i\omega t_0} \left[\lim_{r \to \infty} \left(r J_1 + J_0 \left(l(l+1) - \omega^2 \right) \right) \sin \theta_0 P_l (\cos \theta_0) \\
+ \cot \theta_0 \frac{l(l+1)}{2l+1} J_0 (P_{l+1} (\cos \theta_0) - P_{l-1} (\cos \theta_0)) \right] + \frac{\pi}{2} \lim_{r \to \infty} r \cos \theta_0 \delta \theta (t_0).$$
Calculation of δE

- Axial perturbations

\[\delta E = 0, \]

as a consequence of the fact that $T_{tt} = 0$ for the axial perturbations.
Calculation of δE

- **Axial perturbations**
 \[\delta E = 0, \]
 as a consequence of the fact that $T_{tt} = 0$ for the axial perturbations.

- **Polar perturbations**
 \[\delta E = -2\pi \frac{l(l+1)}{2l+1} J_0 e^{-i\omega t_0} \cot \theta_0 (P_{l+1}(\cos \theta) - P_{l-1}(\cos \theta)) \]
 \[- \pi l(l+1) J_0 e^{-i\omega t_0} \sin \theta_0 P_l(\cos \theta_0). \]

Notice that both results are finite.
Calculation of δE

- **Axial perturbations**
 \[
 \delta E = 0,
 \]
as a consequence of the fact that $T_{tt} = 0$ for the axial perturbations.

- **Polar perturbations**
 \[
 \delta E = -2\pi \frac{l(l+1)}{2l+1} J_0 e^{-i\omega t_0} \cot \theta_0 (P_{l+1}(\cos \theta_0) - P_{l-1}(\cos \theta_0)) \\
 - \pi l(l+1) J_0 e^{-i\omega t_0} \sin \theta_0 P_l(\cos \theta_0).
 \]

Notice that both results are finite.
From the CFT point of view, the first law for entanglement thermodynamics is a triviality. Demanding $\delta S = \delta E$ yields

- Axial perturbations

$$\delta \theta (t_0) = 0,$$
From the CFT point of view, the first law for entanglement thermodynamics is a triviality. Demanding $\delta S = \delta E$ yields

- **Axial perturbations**
 $$\delta \theta (t_0) = 0,$$

- **Polar perturbations**
 $$\delta \theta (t_0) = \frac{1}{2} e^{-i\omega t_0} \left(J_1 + \frac{J_0}{r} \left(\frac{1}{2} l (l + 1) - \omega^2 \right) \right) \tan \theta_0 P_l (\cos \theta_0).$$

These expressions take care of divergence issues. Is there any geometric picture of these results?
From the CFT point of view, the first law for entanglement thermodynamics is a triviality. Demanding $\delta S = \delta E$ yields

- **Axial perturbations**
 \[
 \delta \theta (t_0) = 0,
 \]

- **Polar perturbations**
 \[
 \delta \theta (t_0) = \frac{1}{2} e^{-i \omega t_0} \left[J_1 + \frac{J_0}{r} \left(\frac{1}{2} l (l + 1) - \omega^2 \right) \right] \tan \theta_0 P_l (\cos \theta_0).
 \]

These expressions take care of divergence issues.
From the CFT point of view, the first law for entanglement thermodynamics is a triviality. Demanding $\delta S = \delta E$ yields

- Axial perturbations

$$\delta \theta (t_0) = 0,$$

- Polar perturbations

$$\delta \theta (t_0) = \frac{1}{2} e^{-i\omega t_0} \left[J_1 + \frac{J_0}{r} \left(\frac{1}{2} l(l + 1) - \omega^2 \right) \right] \tan \theta_0 P_l (\cos \theta_0).$$

These expressions take care of divergence issues. Is there any geometric picture of these results?
For polar perturbations, the induced metric on the spherical slices is

\[ds^2 = r^2 \left(1 + K(r) e^{-i\omega t} P_l(\cos \theta) \right) \left(d\theta^2 + \sin^2 \theta d\varphi^2 \right). \]
For polar perturbations, the induced metric on the spherical slices is

\[ds^2 = r^2 \left(1 + K(r) e^{-i\omega t} P_l(\cos \theta) \right) \left(d\theta^2 + \sin^2 \theta d\phi^2 \right). \]

The asymptotic expansion for \(K(r) \) is

\[K(r) = -J_1 - \frac{J_0}{r} \left(\frac{1}{2} l(l + 1) - \omega^2 \right) + \mathcal{O} \left(\frac{1}{r^2} \right), \]

which implies that the deformation of the entangling curve can be written as

\[\delta \theta \left(t_0 \right) = -\frac{1}{2} e^{-i\omega t_0} K(r) \tan \theta_0 P_l(\cos \theta_0). \]
Let’s find the line element along the deformed entangling curve.
Let's find the line element along the deformed entangling curve.

\[dl = \lim_{r \to \infty} \sqrt{g_{\varphi \varphi}} \, d\varphi = \lim_{r \to \infty} \left(1 + \frac{1}{2} K(r) e^{-i\omega t} P_l (\cos \theta) \right) r \sin \theta \, d\varphi. \]
Let’s find the line element along the deformed entangling curve.

\[
dl = \lim_{r \to \infty} \sqrt{g_{\varphi \varphi}} \, d\varphi = \lim_{r \to \infty} \left(1 + \frac{1}{2} K(r) e^{-i\omega t} P_l(\cos \theta) \right) r \sin \theta \, d\varphi.
\]

but

\[
(1 + \frac{1}{2} K(r) e^{-i\omega t_0} P_l(\cos(\theta_0 + \delta\theta(t_0)))) \, r \sin (\theta_0 + \delta\theta(t_0)) = (1 + \frac{1}{2} K(r) e^{-i\omega t_0} P_l(\cos \theta_0)) \, r \sin (\theta_0 + \delta\theta(t_0)) = r \sin \theta_0 + \mathcal{O}\left(\frac{1}{r}\right).
\]
Let’s find the line element along the deformed entangling curve.

\[dl = \lim_{r \to \infty} \sqrt{g_{\varphi \varphi}} \, d\varphi = \lim_{r \to \infty} \left(1 + \frac{1}{2} K(r) e^{-i\omega t} P_l(\cos \theta) \right) r \sin \theta \, d\varphi. \]

but

\[(1 + \frac{1}{2} K(r) e^{-i\omega t_0} P_l(\cos(\theta_0 + \delta \theta(t_0)))) \, r \sin (\theta_0 + \delta \theta (t_0)) = (1 + \frac{1}{2} K(r) e^{-i\omega t_0} P_l(\cos \theta_0)) \, r \sin (\theta_0 + \delta \theta (t_0)) = r \sin \theta_0 + \mathcal{O} \left(\frac{1}{r} \right). \]

which means that although the polar cap region and its boundary undergo perturbations, the line element of the entangling curve remains constant!
The same trivially holds for axial perturbations, where the induced metric on the spherical slices of the boundary is not perturbed and the entangling curve is not deformed.
Summarizing, we see that for all kind of gravitational perturbations of AdS_4 space-time (axial or polar) and for all kind of boundary conditions, the holographic realization of the first law of thermodynamics requires that the entangling curve undergoes an isoperimetric deformation.
Summarizing, we see that for all kind of gravitational perturbations of AdS_4 space-time (axial or polar) and for all kind of boundary conditions, the holographic realization of the first law of thermodynamics requires that the entangling curve undergoes an isoperimetric deformation. As the first law of thermodynamics is a triviality from the CFT point of view, the above statement should not be perceived as a condition for classification of the entangling curves according to the validity of the first law.
Summarizing, we see that for all kind of gravitational perturbations of AdS_4 space-time (axial or polar) and for all kind of boundary conditions, the holographic realization of the first law of thermodynamics requires that the entangling curve undergoes an isoperimetric deformation. As the first law of thermodynamics is a triviality from the CFT point of view, the above statement should not be perceived as a condition for classification of the entangling curves according to the validity of the first law. On the contrary it should be understood as an additional prescription to the RT conjecture. Namely the region A, for whom the entanglement entropy has a holographic manifestation through formula $S_A = \frac{\text{Area}(A^{\text{extr}})}{4G_N}$ is the one whose entangling surface deforms with time in such a way that its line element remains constant.
Section 5

Electric-Magnetic Duality in AdS_4 and Entanglement
One can calculate the holographic energy-momentum and Cotton tensors for both kinds of perturbations to discover that

\[T_{ab}^{\text{polar}} = C_{ab}^{\text{axial}}, \]
\[T_{ab}^{\text{axial}} = C_{ab}^{\text{polar}}, \]

if \(\Psi_{\text{polar}} = -\frac{2i}{\omega} \Psi_{\text{axial}} \),
One can calculate the holographic energy-momentum and Cotton tensors for both kinds of perturbations to discover that

\[T_{ab}^{\text{polar}} = C_{ab}^{\text{axial}}, \]
\[T_{ab}^{\text{axial}} = C_{ab}^{\text{polar}}, \]

if \(\Psi_{\text{polar}} = -\frac{2i}{\omega} \Psi_{\text{axial}}, \)

or in other words, if the axial and polar perturbations are characterized by **same frequency, same boundary conditions for** \(\Psi \), meaning opposing boundary conditions for the metric.
The above duality can be better understood in terms of the Weyl tensor. If one defines the dual Weyl tensor like

$$\tilde{C}_{\mu\nu\rho\sigma} = \frac{1}{2} \varepsilon_{\mu\nu}^{\kappa\lambda} C_{\kappa\lambda\rho\sigma},$$

then a dual metric can be defined as,

$$\tilde{C}_{\mu\nu\rho\sigma} (g) = C_{\mu\nu\rho\sigma} (\tilde{g}).$$
At linear level, the classification of the perturbations to axial and polar modes resolves the highly non-trivial, non-local duality relations,

\[\tilde{g}^{\text{polar}} = g^{\text{axial}}, \quad \tilde{\psi}^{\text{polar}} = -\frac{2i}{\omega} \psi^{\text{axial}}, \]
\[\tilde{g}^{\text{axial}} = g^{\text{polar}}, \quad \tilde{\psi}^{\text{axial}} = \frac{i\omega}{2} \psi^{\text{polar}}. \]
At linear level, the classification of the perturbations to axial and polar modes resolves the highly non-trivial, non-local duality relations,

\[\tilde{g}^{\text{polar}} = g^{\text{axial}}, \quad \tilde{\Psi}^{\text{polar}} = -\frac{2i}{\omega} \Psi^{\text{axial}}, \]

\[\tilde{g}^{\text{axial}} = g^{\text{polar}}, \quad \tilde{\Psi}^{\text{axial}} = \frac{i\omega}{2} \Psi^{\text{polar}}. \]

In both cases the relation between \(\tilde{\Psi} \) and \(\Psi \) enforces that dual perturbations are corresponding to the same solution of the identical effective Schrödinger problems and thus, they are characterised by identical frequency and boundary conditions for \(\Psi(x) \).
In four dimensions, the energy-momentum and Cotton tensors are given by appropriate elements of the Weyl tensor like

\[T_{ab} = - \lim_{r \to \infty} r^3 C_{arbr}, \]
\[C_{ab} = \lim_{r \to \infty} r^3 \tilde{C}_{arbr}, \]

giving the interpretation of the relation between the holographic energy-momentum and Cotton tensor as an electric-magnetic duality with respect to the radial ADM decomposition of the Weyl tensor.
We define the dual entanglement entropy as

$$\tilde{S}_A = \frac{\text{Area}\left(\tilde{A}^\text{extr}\right)}{4G_N},$$

where \tilde{A}^extr is the extremal surface with respect to the dual metric \tilde{g} ($\tilde{\mathcal{C}}_{\mu\nu\rho\sigma}(g) = C_{\mu\nu\rho\sigma}(\tilde{g})$)

$$\tilde{A}^\text{extr}(g) = A^\text{extr}(\tilde{g}).$$
We define the dual entanglement entropy as

$$\tilde{S}_A = \frac{\text{Area}(\tilde{A}^{\text{extr}})}{4G_N},$$

where \tilde{A}^{extr} is the extremal surface with respect to the dual metric \tilde{g} ($\tilde{C}_{\mu\nu\rho\sigma}(g) = C_{\mu\nu\rho\sigma}(\tilde{g})$)

$$\tilde{A}^{\text{extr}}(g) = A^{\text{extr}}(\tilde{g}).$$

Since the unperturbed AdS$_4$ space is self dual $\tilde{g}^{AdS} = g^{AdS}$, the unperturbed dual extremal surface is identical to the unperturbed extremal surface. Thus, the variation of the dual entanglement entropy for axial and polar perturbations can be calculated in the same way as the variation of entanglement entropy.
A direct consequence of

\[\tilde{g}^{\text{polar}} = g^{\text{axial}}, \]

\[\tilde{g}^{\text{axial}} = g^{\text{polar}}, \]
A direct consequence of

\[\tilde{g}^{\text{polar}} = g^{\text{axial}}, \]
\[\tilde{g}^{\text{axial}} = g^{\text{polar}}, \]

is

\[\delta \tilde{S}^{\text{axial}} = \delta S^{\text{polar}}, \]
\[\delta \tilde{S}^{\text{polar}} = \delta S^{\text{axial}}. \]
Similarly one can define the variation of the dual modular Hamiltonian as

$$\delta \tilde{E} = \int_A d\Sigma^\mu C_{\mu\nu} \zeta^\nu.$$
Similarly one can define the variation of the dual modular Hamiltonian as
\[
\delta \tilde{E} = \int_A d\Sigma^\mu C_{\mu \nu} \zeta^\nu.
\]

A direct consequence of
\[
T_{ab}^{\text{polar}} = C_{ab}^{\text{axial}},
\]
\[
T_{ab}^{\text{axial}} = C_{ab}^{\text{polar}},
\]
Similarly one can define the variation of the dual modular Hamiltonian as

\[\delta \tilde{E} = \int_A d\Sigma^\mu C_{\mu \nu} \zeta^\nu. \]

A direct consequence of

\[T^\text{polar}_{ab} = C_{axial}^{ab}, \]
\[T^{axial}_{ab} = C_{\text{polar}}^{ab}, \]

is

\[\delta \tilde{E}^{\text{axial}} = \delta E^{\text{polar}}, \]
\[\delta \tilde{E}^{\text{polar}} = \delta E^{\text{axial}}. \]
Since it is true that $\delta S = \delta E$ for each kind of perturbations, it is also true that

$$\delta \tilde{S} = \delta \tilde{E}$$

for each kind of perturbations.
Section 6

Discussion
We calculated the variations of the entanglement entropy and the expectation value of the modular Hamiltonian for linear metric perturbations in AdS_4 background and general boundary conditions.
We calculated the variations of the entanglement entropy and the expectation value of the modular Hamiltonian for linear metric perturbations in AdS$_4$ background and general boundary conditions.

We show that validity of the entanglement thermodynamics first law demands an isoperimetric time evolution for the entangling curve.
We calculated the variations of the entanglement entropy and the expectation value of the modular Hamiltonian for linear metric perturbations in AdS4 background and general boundary conditions.

We show that validity of the entanglement thermodynamics first law demands an isoperimetric time evolution for the entangling curve.

It would be interesting to study this kind of isoperimetric deformations of the entangling curve in the presence of metric perturbations which do not preserve the entangling curve symmetry, the axial symmetry in our case.
The electric-magnetic duality can be implemented introducing a dual entanglement entropy and a dual modular Hamiltonian, such that a dual Ruy-Takayanagi conjuncture and a dual entanglement thermodynamics first law holds.
The electric-magnetic duality can be implemented introducing a dual entanglement entropy and a dual modular Hamiltonian, such that a dual Ryu-Takayanagi conjecture and a dual entanglement thermodynamics first law holds.

This is a positive consistency check for the validity of RT conjecture.
The electric-magnetic duality can be implemented introducing a dual entanglement entropy and a dual modular Hamiltonian, such that a dual Ruy-Takayanagi conjecture and a dual entanglement thermodynamics first law holds.

This is a positive consistency check for the validity of RT conjecture.

It would be interesting to check whether such constructions can be achieved in other backgrounds, for example in asymptotically AdS$_4$ black holes.
As a final comment, it would be very interesting to better understand the connection between the dual entanglement entropy and modular Hamiltonian and the reduced density matrix of the boundary conformal field theory.
As a final comment, it would be very interesting to better understand the connection between the dual entanglement entropy and modular Hamiltonian and the reduced density matrix of the boundary conformal field theory.

Notice that the electric magnetic duality interchanges boundary conditions for the metric, thus, the time evolution of the entangling curve and thus the region A is in general different for the initial and dual CFTs. This is expected because of the non-local realization of electric-magnetic-duality.
Thank you very much