Can AdS backgrounds be classified?

George Papadopoulos

King's College London

8th Regional Meeting on String Theory

Nafplion 5-11 July 2015

Based on J. B. Gutowski, GP arXiv:1407.5652; S. Beck, J. B. Gutowski, GP, arXiv:1410.3431, 1501.07620, 1505.01693

AdS	Paradigm	Summary
•00000000	000	0

The classification of AdS supergravity backgrounds [Freund-Rubin] is a longstanding problem

- Applications include AdS/CFT, string, M-theory, and supergravity compactifications
- Warped, flux compactification to Minkowski space also arise in the limit of infinite AdS radius.
- Aim 1: Count the number of superymmetries preserved by M-theory, IIA and IIB AdS backgrounds
- Aim 2: Present a paradigm which answers the question posed

AdS	Paradigm	Summary
00000000	000	0

- The classification of AdS supergravity backgrounds [Freund-Rubin] is a longstanding problem
- Applications include AdS/CFT, string, M-theory, and supergravity compactifications
- Warped, flux compactification to Minkowski space also arise in the limit of infinite AdS radius.
- Aim 1: Count the number of superymmetries preserved by M-theory, IIA and IIB AdS backgrounds
- Aim 2: Present a paradigm which answers the question posed

AdS	Paradigm	Summary
•000000000	000	O

- The classification of AdS supergravity backgrounds [Freund-Rubin] is a longstanding problem
- Applications include AdS/CFT, string, M-theory, and supergravity compactifications
- Warped, flux compactification to Minkowski space also arise in the limit of infinite AdS radius.
- Aim 1: Count the number of superymmetries preserved by M-theory, IIA and IIB AdS backgrounds
- Aim 2: Present a paradigm which answers the question posed

AdS	Paradigm	Summary
•00000000	000	O

- The classification of AdS supergravity backgrounds [Freund-Rubin] is a longstanding problem
- Applications include AdS/CFT, string, M-theory, and supergravity compactifications
- Warped, flux compactification to Minkowski space also arise in the limit of infinite AdS radius.
- ► Aim 1: Count the number of superymmetries preserved by M-theory, IIA and IIB AdS backgrounds
- Aim 2: Present a paradigm which answers the question posed

AdS	Paradigm	Summary
00000000	000	0

- The classification of AdS supergravity backgrounds [Freund-Rubin] is a longstanding problem
- Applications include AdS/CFT, string, M-theory, and supergravity compactifications
- Warped, flux compactification to Minkowski space also arise in the limit of infinite AdS radius.
- ► Aim 1: Count the number of superymmetries preserved by M-theory, IIA and IIB AdS backgrounds
- Aim 2: Present a paradigm which answers the question posed

AdS	Paradigm	Summary
000000000	000	O
Assumptions and applications		

- ► For AdS_n, n > 2, no assumptions are made on the form of the fields apart from imposing on them the symmetries of AdS
- ▶ No assumptions are made on the form of Killing spinors
- ► For AdS₂ in addition it is assumed that the data are such that the maximum principle applies

- Lichnerowicz type of theorems for non-metric connections
- The novelty of the approach is that it is completely general

AdS	Paradigm	Summary
000000000	000	O
Assumptions and applications		

- ► For AdS_n, *n* > 2, no assumptions are made on the form of the fields apart from imposing on them the symmetries of AdS
- ► No assumptions are made on the form of Killing spinors
- ► For AdS₂ in addition it is assumed that the data are such that the maximum principle applies

- ► Lichnerowicz type of theorems for non-metric connections
- The novelty of the approach is that it is completely general

AdS	Paradigm	Summary
000000000	000	O
Assumptions and applications		

- ► For AdS_n, *n* > 2, no assumptions are made on the form of the fields apart from imposing on them the symmetries of AdS
- ► No assumptions are made on the form of Killing spinors
- ► For AdS₂ in addition it is assumed that the data are such that the maximum principle applies

- ► Lichnerowicz type of theorems for non-metric connections
- The novelty of the approach is that it is completely general

AdS	Paradigm	Summary
000000000	000	O
Assumptions and applications		

- ► For AdS_n, n > 2, no assumptions are made on the form of the fields apart from imposing on them the symmetries of AdS
- ► No assumptions are made on the form of Killing spinors
- ► For AdS₂ in addition it is assumed that the data are such that the maximum principle applies

- Lichnerowicz type of theorems for non-metric connections
- The novelty of the approach is that it is completely general

AdS	Paradigm	Summary
000000000	000	O
Assumptions and applications		

- ► For AdS_n, n > 2, no assumptions are made on the form of the fields apart from imposing on them the symmetries of AdS
- ► No assumptions are made on the form of Killing spinors
- ► For AdS₂ in addition it is assumed that the data are such that the maximum principle applies

- Lichnerowicz type of theorems for non-metric connections
- The novelty of the approach is that it is completely general

AdS	Paradigm	Summary
00000000	000	0

M-AdS

The a priori number of supersymmetries preserved by AdS backgrounds in M-theory are

$AdS_n \times_w M^{11-n}$	N
n = 2	2k, k < 15
<i>n</i> = 3	2k, k < 15
n = 4	$4k, k \leq 8$
n = 5	8, 16, <mark>24</mark>
n = 6	16
n = 7	16 , 32
n > 7	_

Table: The proof for $AdS_2 \times_w M^9$ requires the maximum principle. For the rest, no such assumption is necessary. The bounds on *k* arise from the non-existence of supersymmetric solutions with near maximal supersymmetry [Gran, Gutowski, GP] and the classification results of [Figueroa-O'Farril, GP].

AdS	Paradigm	Summary
000000000	000	O
IIB-AdS		

The a priori number of supersymmetries preserved by IIB AdS backgrounds are

$AdS_n \times_w M^{10-n}$	N
n = 2	2k, k < 14
<i>n</i> = 3	2k, k < 14
<i>n</i> = 4	4k, k < 7
n = 5	$8k, k \leq 4$
n = 6	16
n > 7	—

Table: IIB backgrounds with more than 28 supersymmetries are maximally supersymmetric and there is a unique plane-wave background, up to a local isometry, with 28 supersymmetries.

AdS	Paradigm	Summary
000000000	000	O
IIA-AdS		

The a priori number of supersymmetries preserved by (massive) IIA AdS backgrounds are

$AdS_n \times_w M^{10-n}$	Ν
n = 2	2k, k < 16
<i>n</i> = 3	2k, k < 16
n = 4	$4k, k \leq 7$
n = 5	8, 16, 24
n = 6, 7	16
n > 7	—

Table: There are less strict results on the existence of IIA backgrounds with near maximal supersymmetries than those for IIB backgrounds.

AdS	Paradigm	Summary
000000000	000	0

Sketching the proof

The warp, flux, AdS_n , n > 2, backgrounds can be written as

$$ds^{2} = 2du(dr + rh) + A^{2}(dz^{2} + e^{2z/\ell} \sum_{a=1}^{n-3} (dx^{a})^{2}) + ds^{2}(M^{11-n}),$$

with

$$e^+ = du$$
, $e^- = dr + rh$, $h = -\frac{2}{\ell}dz - 2A^{-1}dA$,

A is the warp factor and ℓ the AdS radius.

- Solve the KSEs along the lightcone directions r, u
- solve the KSEs along z and then the remaining x^a coordinates
- count the multiplicity of Killing spinors

AdS	Paradigm	Summary
000000000	000	0

The solution of the KSEs along the AdS_n directions gives

$$\epsilon = \sigma_{+} + \sigma_{-} + e^{-\frac{z}{\ell}}\tau_{+} + e^{\frac{z}{\ell}}\tau_{-}$$

$$-\frac{1}{\ell}\left(uA^{-1}\Gamma_{+z}\sigma_{-} + rA^{-1}e^{-\frac{z}{\ell}}\Gamma_{-z}\tau_{+}\right)$$

$$+\sum_{a}x^{a}\Gamma_{az}(\tau_{+} + e^{\frac{z}{\ell}}\sigma_{-})\right)$$

where $\Gamma_{\pm}\sigma_{\pm} = \Gamma_{\pm}\tau_{\pm} = 0$. The remaining independent KSEs on M^{11-n} are

$$D_i^{(\pm)}\sigma_{\pm} = 0, \quad D_i^{(\pm)}\tau_{\pm} = 0,$$

and

$$\mathcal{A}^{(\pm)}\sigma_{\pm} = 0 , \quad \mathcal{B}^{(\pm)}\tau_{\pm} = 0 ,$$

► The integration over *z* introduces the new algebraic KSEs above

AdS	Paradigm	Summary
0000000000	000	0

The counting

To count the multiplicity, it turns out that if σ_{\pm} is a solution, so is

 $\tau_{\pm} = \Gamma_{za} \sigma_{\pm}$

and vice-versa

Similarly, if σ_+, τ_+ is a solution, so is

 $\sigma_{-} = A\Gamma_{-}\Gamma_{z}\sigma_{+} , \quad \tau_{-} = A\Gamma_{-}\Gamma_{z}\tau_{+}$

and vice-versa.

Furthermore, if σ_{-} is Killing spinor, then

$$\sigma'_{-} = \Gamma_{ab}\sigma_{-} , \quad a < b ,$$

is also a Killing spinor.

The number of supersymmetries are derived by counting the linearly independent solutions

AdS	Paradigm	Summary
0000000000	000	0

New Lichnerowicz theorems

One can establish new Lichnerowicz type theorems as

$$\mathscr{D}^{(\pm)}\sigma_{\pm} = 0 \Longleftrightarrow D_i^{(\pm)}\sigma_{\pm} = 0 , \quad \mathcal{A}^{(\pm)}\sigma_{\pm} = 0 ,$$

These are based on maximum principle formulae

 $D^{2} || A^{-1}\sigma_{-} ||^{2} + nA^{-1}\partial^{i}A\partial_{i} || A^{-1}\sigma_{-} ||^{2} = 2A^{-2} \langle \mathbb{D}_{i}^{(-)}\sigma_{-}, \mathbb{D}^{(-)i}\sigma_{-} \rangle$ $+ 2\frac{9n - 18}{11 - n}A^{-2} || \mathcal{A}^{(-)}\sigma_{-} ||^{2},$

where $\mathbb{D}_i^{(-)} = D_i^{(-)} + \frac{2-n}{11-n}\Gamma_i\mathcal{A}^{(-)}$ and $\mathscr{D}^{(\pm)} = \Gamma^i \mathbb{D}_i^{(\pm)}$.

▶ If the solution is smooth, the warp factor *A* is nowhere zero.

AdS	Paradigm	Summary
000000000	000	0

New Lichnerowicz theorems

One can establish new Lichnerowicz type theorems as

$$\mathscr{D}^{(\pm)}\sigma_{\pm} = 0 \Longleftrightarrow D^{(\pm)}_i \sigma_{\pm} = 0 \ , \ \ \mathcal{A}^{(\pm)}\sigma_{\pm} = 0 \ ,$$

These are based on maximum principle formulae

$$D^{2} || A^{-1}\sigma_{-} ||^{2} + nA^{-1}\partial^{i}A\partial_{i} || A^{-1}\sigma_{-} ||^{2} = 2A^{-2} \langle \mathbb{D}_{i}^{(-)}\sigma_{-}, \mathbb{D}^{(-)i}\sigma_{-} \rangle + 2\frac{9n - 18}{11 - n}A^{-2} || \mathcal{A}^{(-)}\sigma_{-} ||^{2} ,$$

where $\mathbb{D}_{i}^{(-)} = D_{i}^{(-)} + \frac{2 - n}{11 - n}\Gamma_{i}\mathcal{A}^{(-)}$ and $\mathscr{D}^{(\pm)} = \Gamma^{i}\mathbb{D}_{i}^{(\pm)}.$

▶ If the solution is smooth, the warp factor *A* is nowhere zero.

AdS	Paradigm	Summary
000000000	000	0

New Lichnerowicz theorems

One can establish new Lichnerowicz type theorems as

$$\mathscr{D}^{(\pm)}\sigma_{\pm}=0 \Longleftrightarrow D^{(\pm)}_i\sigma_{\pm}=0 \ , \ \ \mathcal{A}^{(\pm)}\sigma_{\pm}=0 \ ,$$

These are based on maximum principle formulae

$$\begin{split} D^2 &\| A^{-1}\sigma_- \|^2 + nA^{-1}\partial^i A \partial_i \| A^{-1}\sigma_- \|^2 = 2A^{-2} \langle \mathbb{D}_i^{(-)}\sigma_-, \mathbb{D}^{(-)i}\sigma_- \rangle \\ &+ 2\frac{9n - 18}{11 - n}A^{-2} \| \mathcal{A}^{(-)}\sigma_- \|^2 , \\ \end{split}$$

where $\mathbb{D}_i^{(-)} = D_i^{(-)} + \frac{2 - n}{11 - n}\Gamma_i \mathcal{A}^{(-)}$ and $\mathscr{D}^{(\pm)} = \Gamma^i \mathbb{D}_i^{(\pm)}. \end{split}$

▶ If the solution is smooth, the warp factor *A* is nowhere zero.

AdS 000000000	Paradigm 000	Summary O

- ▶ The Killing spinors of AdS backgrounds do not factorize into Killing spinors on AdS and Killing spinors on *M*^{11−n}
- ► D_i^(±) do not preserve a metric. Nevertheless the length of Killing spinors, appropriately scaled with A, is constant
- ► The extension of the proof to AdS₂ backgrounds follows from a similar statement for near horizon geometries

AdS	Paradigm	Summary
000000000	000	O

- ► The Killing spinors of AdS backgrounds do not factorize into Killing spinors on AdS and Killing spinors on M¹¹⁻ⁿ
- $D_i^{(\pm)}$ do not preserve a metric. Nevertheless the length of Killing spinors, appropriately scaled with *A*, is constant
- ► The extension of the proof to AdS₂ backgrounds follows from a similar statement for near horizon geometries

AdS 000000000	Paradigm 000	Summary O

- ► The Killing spinors of AdS backgrounds do not factorize into Killing spinors on AdS and Killing spinors on M¹¹⁻ⁿ
- $D_i^{(\pm)}$ do not preserve a metric. Nevertheless the length of Killing spinors, appropriately scaled with *A*, is constant
- ► The extension of the proof to AdS₂ backgrounds follows from a similar statement for near horizon geometries

AdS 000000000	Paradigm 000	Summary O

- ► The Killing spinors of AdS backgrounds do not factorize into Killing spinors on AdS and Killing spinors on M¹¹⁻ⁿ
- $D_i^{(\pm)}$ do not preserve a metric. Nevertheless the length of Killing spinors, appropriately scaled with *A*, is constant
- ► The extension of the proof to AdS₂ backgrounds follows from a similar statement for near horizon geometries

AdS	Paradigm	Summary
000000000	●○○	O
Heterotic AdS backgrounds		

Consider the heterotic theory up and including two loops in the sigma model perturbation theory.

THEOREM:

- There are no AdS_n supersymmetric backgrounds for n > 3
- ► There are no AdS₂ supersymmetric backgrounds provided that the maximum principle applies
- ► The warp factor of all AdS₃ backgrounds is constant and preserve 2, 4, 6 and 8 supersymmetries
- Smooth backgrounds that preserve 8 supersymmetries and M^7 is closed are locally isometric to $AdS_3 \times S^3 \times K_3$ or $AdS_3 \times S^3 \times T^4$

AdS	Paradigm	Summary
000000000	●○○	O
Heterotic AdS backgrounds		

Consider the heterotic theory up and including two loops in the sigma model perturbation theory.

THEOREM:

- There are no AdS_n supersymmetric backgrounds for n > 3
- ► There are no AdS₂ supersymmetric backgrounds provided that the maximum principle applies
- ► The warp factor of all AdS₃ backgrounds is constant and preserve 2, 4, 6 and 8 supersymmetries
- ► Smooth backgrounds that preserve 8 supersymmetries and M^7 is closed are locally isometric to $AdS_3 \times S^3 \times K_3$ or $AdS_3 \times S^3 \times T^4$

AdS	Paradigm	Summary
000000000	O●O	O
Geometry		

The geometry of AdS₃ backgrounds is as follows:

N	M^7	B^k	
2	G_2		
4	<i>SU</i> (3)	U(3)	S^1
6	SU(2)	self – dual – Weyl	S^3
8	SU(2)	hyper – Kahler	S^3

Table: The G-structure of M^7 is compatible with a connection with skew-symmetric torsion. For $N = 4, 6, 8, M^7$ is a local (twisted) fibration over a base space B^k with fibre either S^1 or S^3 .

AdS	Paradigm	Summary
000000000	⊙●⊙	O
Geometry		

The geometry of AdS₃ backgrounds is as follows:

N	M^7	B^k	fibre
2	G_2	_	—
4	<i>SU</i> (3)	<i>U</i> (3)	S^1
6	SU(2)	self – dual – Weyl	S^3
8	SU(2)	hyper – Kahler	S^3

Table: The G-structure of M^7 is compatible with a connection with skew-symmetric torsion. For $N = 4, 6, 8, M^7$ is a local (twisted) fibration over a base space B^k with fibre either S^1 or S^3 .

AdS	Paradigm	Summary
000000000	00●	O
Applications		

- ► There are new AdS₃ backgrounds preserving 8 supersymmetries with B⁴ = ℝ⁴
- ► There are new AdS₃ backgrounds preserving 4 supersymmetries
- There are new Lichnerowicz type of theorems allowing for curvature square terms
- Although there is no classification of all possible backgrounds, there is a clear overview of all possibilities and what equations should be solved to achieve the task.

AdS 000000000	Paradigm 000	Summary
Summary		

- ► The fractions of supersymmetry preserved by the most general warped flux AdS backgrounds in M-theory, IIA and IIB supergravities have been determined
- ► In heterotic theory, there are only AdS₃ solutions, the fractions of supersymmetry preserved have been determined as well as the geometry of the backgrounds
- A new class of Lichnerowicz type of theorems for GL connections has been found
- Can M-AdS and type II AdS backgrounds be classified?

AdS 000000000	Paradigm 000	Summary
Summary		

- ► The fractions of supersymmetry preserved by the most general warped flux AdS backgrounds in M-theory, IIA and IIB supergravities have been determined
- ► In heterotic theory, there are only AdS₃ solutions, the fractions of supersymmetry preserved have been determined as well as the geometry of the backgrounds
- A new class of Lichnerowicz type of theorems for GL connections has been found
- Can M-AdS and type II AdS backgrounds be classified?