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Killing Vectors

Killing vector K m:

LK gmn = 0 ⇔ ∇(mKn) = 0

gmn = e a
m ena ⇒ ∇(aKb) = 0

⇒ ∇aKb = Lab = −Lba

Conformal Killing vector:

∇(mKn) = Sgmn ⇒ ∇(aKb) = Sηab

⇒ ∇aKb = Lab + Sηab =: L̃ab
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Killing Tensors

This generalizes to n th rank Killing tensors (KTs):

∇aK b1...bn = L (b1...bn)
a

∇aK b1...bn = L̃ {b1...bn}
a

where, in the conformal case, a trace is included on the first
index pair and curly brackets denote traceless symmetrization.
L is skew on the first index pair (plus trace for L̃) as above
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Massless pointparticle xm(t):

L = 1
2λẋme a

m enaẋn

⇒ pa = λẋmema , ∇tpa = 0 , papa = 0 .

KTs provide integrals of the motion:

K = K a1...anpa1 ...pan ⇒

dK
dt

= ∇tK b1...bnpb1 ...pbn = ẋme a
m∇aK b1...bnpb1 ...pbn

∝ L{a b1...bn}pb1 ...pbnpa = 0 .
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A trivial (reducible) second rank KT is formed from the metric
and Killing vectors:

K red
mn = k0gmn +

∑
kijK

(i)
m K (j)

n

Aside: Nontrivial second rank KTs are useful in separating
variables in Hamilton-Jacobi systems:

gmn∂mS∂nS + a2 = 0

Ex:
Kerr, (Dolan and Swaminarayan ’84),
...
Myers-Perry black hole, (Chervonyi and Lunin ’15)
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Schouten-Nijenhuis

The phase space of the massless particle carries a symplectic
form:

σ = ea(dpa − ω b
a pb)

The Poisson bracket of two functions on phase space is:

(f ,g) = −ıXg ıXfσ

A CKT is a function K on phase space weakly (Poisson)
commuting with the Hamiltonian.
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The Poisson bracket of two such functions

K = K a1...anpa1 ....pan , L = La1...ampa1 ....pam ,

yields a new CKT,

(K ,L) = [K ,L]a1...an+m−1pa1 ...pan+m−1

where the Schouten-Nijenhuis bracket [K ,L] is defined to be

[K ,L]a1...aq := mL{a1...am−1|b|∇bK am...aq}

−nK {a1...an−1|b|∇bLan...aq}

This equips the space of CKTs with a Lie algebra structure.
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Superspace

Z M = (xm, θµ)

(Ea,Eα) = EA = dzME A
M

T A = DEA := dEA + EBΩ A
B

R B
A = dΩ B

A + Ω C
A Ω B

C

T a
αβ = −i(Γa)αβ ,

Tα[bc] = 0 , (Γa)αβT a
αb = 0

T c
ab = 0

(The last two lines are conventional constraints.)
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SuperKilling

SKV:

∇AK B + K CT B
CA = L B

A

where L B
A is an element of the structure group Lie algebra.

L→ L̃ , (....)→ {....} , for some suitably defined {....},
.

and where the scale comes with a non-zero L̃ β
a
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SCKT:
K a1...an

With our torsion constraints, the component relation

∇αK b1...bn − inK {b1...bn−1γ(Γbn})γα = 0

generates the full SCKT, (all the superfield components) using
Ricci and Bianchi identities.

This relation is a direct generalisation of an alternative
definition of a SCKV K as preserving the odd tangent bundle

< [Eα,K ],Eb >= 0

using the canonical pairing.
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Superparticle:

zM(t) = (xm(t), θµ(t))

L = 1
2λżaża := 1

2λżME a
M żNENa

⇒ pa = λża , p2 = 0

∇tpa = 0 , żβ(Γ · p)βα = 0

The action is invariant under the fermionic Siegel symmetry
(κ symmetry).
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The SCKTs provide integrals of the superparticle motion.

K = K a1...anpa1 ...pan ⇒

dK
dt

=
(

ża∇aK b1...bn + żα∇αK b1...bn
)

pb1 ...pbn

If K a1...an is symmetric and traceless, the right hand side will
vanish (on shell) precisely when

∇αK b1...bn − inK {b1...bn−1γ(Γbn})γα = 0 ,

i.e., when K a1...an is a SCKT.

On shell K is also κ-invariant.
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Super Schouten-Nijenhuis

The phase space of the massless superparticle carries a
“symplectic” form (Howe and Townsend ’91).

Σ = EaDpa + T apa

The corresponding Poisson bracket reads

(f ,g) =
(

Ẽaf∂ag − f ↔ g
)

+ iηẼαf
(Γ · p)αβ

p2 Ẽβg

with

ẼA := E M
A (∂M + Ω c

Mbpc(∂/∂pb))

Not invertible on shell, but nonsingular for bracket between
SCKTs saturated with momenta.

U. Lindström SCKT



A function K weakly commuting with the Hamiltonian is not
automatically a SCKT in this case. We have to impose the
condition

∇αK b1...bn − inK {b1...bn−1γ(Γbn})γα = 0 ,

as an additional constraint. The Poisson bracket of two such
functions will then yield a new SCKT, whose components are
given by a super Schouten-Nijenhuis bracket:

[K ,L]a1...aq := mL{a1...am−1|b|∇bK am...aq} − nK {a1...an−1|b|∇bLan...aq}

−imnK {a1...an−1γ(Γan )γδLan+1...aq}δ

This equips the space of SCKTs with a Lie algebra structure.
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Components in Flat Superspace

3D Killing vector:

DαK a − iK β (γa)βα = 0

⇒ Kα =
i
3

(γa)αβDβK a

( Kij := DαiDβjKαβ N > 1).

corresponding to the various transformation parameters. Here
K a ∼ Kαβ.
Conformal Killing equations:

∂{aKb} = 0 ,

D(αK βγ) = 0 ,

(γ{a∂b}K )α = 0 .
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For higher rank SCKTs it is advantageous to use Young
tableaux in analyzing the component content.

K ∼
2n︷ ︸︸ ︷

The constraint on DK is

DK ∼ · ×
2n︷ ︸︸ ︷

∼

2n︷ ︸︸ ︷
·

,
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After m steps, m 6 2n and m 6 N ;

DmK ∼

2n︷ ︸︸ ︷
· · · · m

,

or, in indices,

DmK ∼ (DmK )
α1...α2n−m
i1...im

.

Killing equations:

∂(α1α2Kα3...α2n+2) = 0

∂(α1α2Kα3...α2n−m+2)
i1...im

= 0
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A similar analysis of the components is done in D = 4,5,6
and D = 10 ordinary flat superspace, for arbitrary N.
For even N and D = 3,4 and D = 6 we also introduce
SCKTs in Analytic Superspace, which resembles the two
component spinor description of 4D Minkowski space.
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Algebra

CKTs are related to higher spin algebras, e.g., in the AdS/CFT
correspondence. This is explicit in the Eastwood algebras
describing the symmetries of the Laplacian: (Eastwood ’05)

∆D = O∆

⇒ D = K b1...bn∇b1 . . .∇bn + lower

∇{aK b1...bn} = 0

Using an explicit representation of the conformal Lie algebra on
Rn+2, one finds the Ds as differential operators. This results in
the rank s CKTs forming an irrep of so(n + 1,1):
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s︷ ︸︸ ︷
o

where o denotes the tracefree part.
The algebra An is then shown to be isomorphic to
U(so(n + 1,1)), modulo certain relations, or to

⊗
so(n + 1,1)/I,

where I is the Joseph ideal.

The generalization to SCKTs is not immediate, since there is no
similar conformal embedding available.
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However, we can give the components of SCKTs using Young
Tableaux, as shown for 3D previously. There the starting point
was

K ∼
2n︷ ︸︸ ︷

a 2n symmetric tensor of sl(2) satisfying a constraint, and the
superfield components were derived by repeatedly applying
spinorial derivatives. We may reinterpret the same Young
Tableau as a Super Young Tableau encoding representation of
the super-conformal algebra spo(2|N). Similarily the SCKT
components in D = 4,6 may be represented as Super Young
Tableaux. This will be the starting point for the construction of
Super Eastwood Algebras.
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Further work

SCKTs components in curved superspace.
Explicit Higher Spin super Eastwood algebras.
Generalizing the work of Mikhailov to the supercase, again
using Analytic Superspace.
.....
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