Gravity waves from Kerr/CFT

Achilleas Porfyriadis

Harvard University
$8^{\text {th }}$ Crete Regional Meeting in String Theory, Nafplio, July 2015

based on...

1401.3746 with: A. Strominger
1403.2797 with: S. Hadar, A. Strominger
1504.07650 with: S. Hadar, A. Strominger
1506.08496 with: S. Gralla, N. Warburton

The extreme Kerr throat, NHEK, near-NHEK, etc

- The Kerr metric in Boyer-Lindquist coordinates $(G=c=\hbar=1)$:

$$
\begin{gathered}
d s^{2}=-\frac{\Delta}{\hat{\rho}^{2}}\left(d \hat{t}-a \sin ^{2} \theta d \hat{\phi}\right)^{2}+\frac{\sin ^{2} \theta}{\hat{\rho}^{2}}\left(\left(\hat{r}^{2}+a^{2}\right) d \hat{\phi}-a d \hat{t}\right)^{2} \\
+\frac{\hat{\rho}^{2}}{\Delta} d \hat{r}^{2}+\hat{\rho}^{2} d \theta^{2}, \\
\Delta=\hat{r}^{2}-2 M \hat{r}+a^{2}, \quad \hat{\rho}^{2}=\hat{r}^{2}+a^{2} \cos ^{2} \theta .
\end{gathered}
$$

- Mass M, angular momentum $J=a M \leq M^{2}$.
- Near extremality there is a very long throat
\rightarrow decoupling metrics: NHEK, near-NHEK

The extreme Kerr throat, NHEK, near-NHEK, etc

The extreme Kerr throat, NHEK, near-NHEK, etc

- NHEK:

$$
d s^{2}=2 M^{2} \Gamma(\theta)\left[-R^{2} d T^{2}+\frac{d R^{2}}{R^{2}}+d \theta^{2}+\Lambda(\theta)^{2}(d \Phi+R d T)^{2}\right]
$$

- near-NHEK:

$$
d s^{2}=2 M^{2} \Gamma(\theta)\left[-r(r+2 \kappa) d t^{2}+\frac{d r^{2}}{r(r+2 \kappa)}+d \theta^{2}+\Lambda(\theta)^{2}(d \phi+(r+\kappa) d t)^{2}\right]
$$

- Isometry group: $S L(2, \mathbb{R})_{R} \times U(1)_{L} \cdot \partial_{t}$ in $S L(2, \mathbb{R})_{R}, \partial_{\phi}$ is $U(1)$
- Asymptotic symmetry group: Virasoro (L or R), Virasoro-Kac-Moody,...

The extreme Kerr throat, NHEK, near-NHEK, etc

The Kerr/CFT correspondence

‘strong' Kerr/CFT
the conjecture that quantum gravity in the near horizon region of a near-extreme Kerr is dual to a (warped) 2D CFT

- Relevant for quantum black hole puzzles (e.g. $S_{B H}=S_{\text {Cardy }}$)
- Bottom-up: only some dictionary entries known (e.g. c, h)

'weak' Kerr/CFT

the fact that gravitational dynamics in the near horizon region of a near-extreme Kerr are constrained by an infinite-dimensional conformal symmetry

- Powerful CFT techniques for near-horizon gravitational physics.
- Suffices for interesting questions in observational astronomy.

Extreme-Mass-Ratio-Inspirals (EMRIs)

- A primary gravity waves source for eLISA mission
- Slow vs fast plunges
- So far people do PN approximation or numerics

The plan

- Gravity analysis: Solve linearized Einstein equation with source and compute particle number flux at the horizon

$$
\mathcal{F}^{\text {gravity }}=\frac{d N}{d t}
$$

- CFT analysis: Identify the source deformation of the CFT and compute the transition rate out of the vacuum state

$$
\mathcal{R}^{C F T}=\frac{d P}{d t}
$$

- Glue asymptotically flat region back and find the flux at future null infinity.

NHEK + circle gravity analysis

NHEK + circle: gravity analysis

- In NHEK, circular orbits at any radius R_{0} are marginally stable:

$$
\begin{aligned}
& R(T)=R_{0} \\
& \Phi(T)=-\frac{3}{4} R_{0} T+\Phi_{0}
\end{aligned}
$$

- Consider coupling to a scalar field:

$$
\square \psi=g R_{0} \delta\left(R-R_{0}\right) \delta(\theta-\pi / 2) \delta\left(\Phi+\frac{3}{4} R_{0} T\right)
$$

- Killing flow along $\chi=\partial_{T}-\frac{3}{4} R_{0} \partial_{\Phi}$, so expand accordingly:

$$
\Psi=\sum_{\ell, m} e^{i m\left(\phi+\frac{3}{4} R_{0} T\right)} S_{\ell}(\theta) R_{\ell m}(R)
$$

where the S_{ℓ} 's are spheroidal harmonics obeying $\mathcal{L}_{\theta}^{(2)} S_{\ell}^{m}=-K_{\ell}^{m} S_{\ell}^{m}$

NHEK + circle: gravity analysis

- Radial equation:

$$
\partial_{R}\left(R^{2} \partial_{R} R_{\ell m}\right)+\left(2 m^{2}-K_{\ell}+\frac{2 \Omega m}{R}+\frac{\Omega^{2}}{R^{2}}\right) R_{\ell m}=\frac{M^{2}}{2 \pi} g S_{\ell}(\pi / 2) R_{0} \delta\left(R-R_{0}\right)
$$

where $\Omega=-\frac{3}{4} m R_{0}$.

- Homogeneous solutions are confluent hypergeometrics, e.g. Whittakers

$$
W_{i m, h-1 / 2}(-2 i \Omega / R), \quad M_{i m, h-1 / 2}(-2 i \Omega / R)
$$

where

$$
h \equiv \frac{1}{2}+\sqrt{\frac{1}{4}+K_{\ell}-2 m^{2}}
$$

- Boundary conditions:
@ $R=0: R^{-i m} e^{i \Omega / R}$ (ingoing), $R^{i m} e^{-i \Omega / R}$ (outgoing)
$@ R=\infty: R^{h-1}$ (Dirichlet), R^{-h} (Neumann), $P R^{h-1}+Q R^{-h}$ ("leaky").

NHEK + circle: gravity analysis

With ingoing boundary conditions at the horizon and Neumann or "leaky" at the boundary, we find that, for real h, to leading order, the Klein-Gordon particle number flux down the horizon is given by:

$$
\begin{aligned}
\mathcal{F}_{\ell m}^{\text {gravity }} & =-\int \sqrt{-g} J_{K G}^{R} d \theta d \Phi \\
& =\frac{g^{2} M^{6}}{12 \pi^{2}} S_{\ell}(\pi / 2) R_{0} m^{-1} e^{-\pi m} \frac{|\Gamma(h+i m)|^{2}}{|\Gamma(2 h)|^{2}}\left|M_{i m, h-1 / 2}(3 i m / 2)\right|^{2}
\end{aligned}
$$

- In NHEK there are marginally stable circular orbits at every radius R_{0}.
- The wave equation may be solved analytically in terms of Whittakers.
- With ingoing b.c. at the horizon, we calculate the particle number flux.

NHEK + circle: gravity analysis

With ingoing boundary conditions at the horizon and Neumann or "leaky" at the boundary, we find that, for real h, to leading order, the Klein-Gordon particle number flux down the horizon is given by:

$$
\begin{aligned}
\mathcal{F}_{\ell m}^{\text {gravity }} & =-\int \sqrt{-g} J_{K G}^{R} d \theta d \Phi \\
& =\frac{g^{2} M^{6}}{12 \pi^{2}} S_{\ell}(\pi / 2) R_{0} m^{-1} e^{-\pi m} \frac{|\Gamma(h+i m)|^{2}}{|\Gamma(2 h)|^{2}}\left|M_{i m, h-1 / 2}(3 i m / 2)\right|^{2}
\end{aligned}
$$

Summary

- In NHEK there are marginally stable circular orbits at every radius R_{0}.
- The wave equation may be solved analytically in terms of Whittakers.
- With ingoing b.c. at the horizon, we calculate the particle number flux.

NHEK + circle: CFT analysis

- Q: What is the dual of this gravity situation?
- A: Holographically driven CFT by external source at frequency Ω :

$$
S=S_{C F T}+\sum_{\ell} \int d \Phi d T J_{\ell}(\Phi, T) \mathcal{O}_{\ell}(\Phi, T)
$$

with

$$
J_{\ell}(\Phi, T)=\sum_{m} J_{\ell m} e^{i m\left(\Phi+\frac{3}{4} R_{0} T\right)}
$$

- Kerr/CFT dictionary: operator \mathcal{O} dual to bulk field ψ, with weight h
- What is $J_{\ell m}$? Bulk solution

$$
R_{\ell m}=X \Theta\left(R_{0}-R\right) R^{\text {in }}(R)+Z \Theta\left(R-R_{0}\right) R^{\text {out }}(R)
$$

- Extend inner solution:

$$
R_{\ell m}^{e x t}=X R^{i n}(R)
$$

\checkmark Read off $J_{\ell m}$ from leading term:

NHEK + circle: CFT analysis

- Q: What is the dual of this gravity situation?
- A: Holographically driven CFT by external source at frequency Ω :

$$
S=S_{C F T}+\sum_{\ell} \int d \Phi d T J_{\ell}(\Phi, T) \mathcal{O}_{\ell}(\Phi, T)
$$

with

$$
J_{\ell}(\Phi, T)=\sum_{m} J_{\ell m} e^{i m\left(\Phi+\frac{3}{4} R_{0} T\right)}
$$

- Kerr/CFT dictionary: operator \mathcal{O} dual to bulk field Ψ, with weight h
- What is $J_{\ell m}$? Bulk solution

$$
R_{\ell m}=X \Theta\left(R_{0}-R\right) R^{\text {in }}(R)+Z \Theta\left(R-R_{0}\right) R^{o u t}(R)
$$

- Extend inner solution:

$$
R_{\ell m}^{\text {ext }}=X R^{i n}(R)
$$

- Read off $J_{\ell m}$ from leading term:

NHEK + circle: CFT analysis

- Q: What is the dual of this gravity situation?
- A: Holographically driven CFT by external source at frequency Ω :

$$
S=S_{C F T}+\sum_{\ell} \int d \Phi d T J_{\ell}(\Phi, T) \mathcal{O}_{\ell}(\Phi, T)
$$

with

$$
J_{\ell}(\Phi, T)=\sum_{m} J_{\ell m} e^{i m\left(\Phi+\frac{3}{4} R_{0} T\right)}
$$

- Kerr/CFT dictionary: operator \mathcal{O} dual to bulk field Ψ, with weight h
- What is $J_{\ell m}$? Bulk solution

$$
R_{\ell m}=X \Theta\left(R_{0}-R\right) R^{\text {in }}(R)+Z \Theta\left(R-R_{0}\right) R^{\text {out }}(R)
$$

- Extend inner solution:

$$
R_{\ell m}^{e x t}=X R^{i n}(R)
$$

- Read off $J_{\ell m}$ from leading term:

$$
R_{\ell m}^{\text {ext }} \rightarrow J_{\ell m} R^{h-1}+\ldots \quad R \rightarrow \infty
$$

NHEK + circle: CFT analysis

Applying Fermi's Golden Rule, the transition rate out of the initial state $|i\rangle$ to any final state $|f\rangle$ is given by the Fourier transform of the two-point function:

$$
\begin{aligned}
\mathcal{R}_{\ell m}^{C F T} & =2 \pi\left|J_{\ell m}\right|^{2} \int d \Phi d T e^{-i m\left(\Phi+\frac{3}{4} R_{0} T\right)}\left\langle\mathcal{O}^{\dagger}(\Phi, T) \mathcal{O}(0,0)\right\rangle \\
& =\mathcal{C}_{\mathcal{O}}^{2} \frac{(2 \pi)^{2}\left(3 R_{0} / 4\right)^{2 h-1}}{\Gamma(2 h)^{2}}\left|J_{\ell m}\right|^{2} m^{2 h-1} e^{-\pi m}|\Gamma(h+i m)|^{2}
\end{aligned}
$$

Plugging in $J_{\ell m}$ and normalizing the operators with $\mathcal{C}_{\mathcal{O}}=2^{2 h-1}(2 h-1) M / 2 \pi$ we find:
$\mathcal{R}_{\ell m}^{C F T}=\frac{g^{2} M^{6}}{12 \pi^{2}} S_{\ell}(\pi / 2) R_{0} m^{-1} e^{-\pi m} \frac{|\Gamma(h+i m)|^{2}}{|\Gamma(2 h)|^{2}}\left|M_{i m, h-1 / 2}(3 i m / 2)\right|^{2}=\mathcal{F}_{\ell m}^{\text {gravity }}$
Summary

NHEK + circle: CFT analysis

Applying Fermi's Golden Rule, the transition rate out of the initial state $|i\rangle$ to any final state $|f\rangle$ is given by the Fourier transform of the two-point function:

$$
\begin{aligned}
\mathcal{R}_{\ell m}^{C F T} & =2 \pi\left|J_{\ell m}\right|^{2} \int d \Phi d T e^{-i m\left(\Phi+\frac{3}{4} R_{0} T\right)}\left\langle\mathcal{O}^{\dagger}(\Phi, T) \mathcal{O}(0,0)\right\rangle \\
& =\mathcal{C}_{\mathcal{O}}^{2} \frac{(2 \pi)^{2}\left(3 R_{0} / 4\right)^{2 h-1}}{\Gamma(2 h)^{2}}\left|J_{\ell m}\right|^{2} m^{2 h-1} e^{-\pi m}|\Gamma(h+i m)|^{2}
\end{aligned}
$$

Plugging in $J_{\ell m}$ and normalizing the operators with $\mathcal{C}_{\mathcal{O}}=2^{2 h-1}(2 h-1) M / 2 \pi$ we find:

$$
\mathcal{R}_{\ell m}^{C F T}=\frac{g^{2} M^{6}}{12 \pi^{2}} S_{\ell}(\pi / 2) R_{0} m^{-1} e^{-\pi m} \frac{|\Gamma(h+i m)|^{2}}{|\Gamma(2 h)|^{2}}\left|M_{i m, h-1 / 2}(3 i m / 2)\right|^{2}=\mathcal{F}_{\ell m}^{\text {gravity }}
$$

Summary

- Dual calculation: holographically driven CFT with source read off from extension of inner solution.
- CFT transition rate matches perfectly gravity particle number flux.

Gluing back asymptotically flat region

e.g.

Gluing back asymptotically flat region

e.g.

Gluing back asymptotically flat region

Matched Asymptotic Expansions
How it's done: for a suitable parameter $k \ll 1$, near solution for $x \ll 1$, far solution for $x \gg k$, match solutions in $k \ll x \ll 1$.

$$
x \gg k
$$

$x \ll 1$

Gluing back asymptotically flat region

For NHEK + circle problem:

- $k=4 M\left(\hat{\omega}-\frac{m}{2 M}\right)=-\frac{3}{2} m R_{0}$
- near solution is the NHEK solution
- leaky boundary conditions

In this way we get a full solution everywhere which may be used to calculate explicitly desired observables, e.g. the outgoing radiation flux at future null infinity:

$$
\begin{gathered}
\dot{\mathcal{E}}_{\infty}=\frac{g^{2} M^{4}}{72 \pi^{2}} S_{\ell}^{2}(\pi / 2)\left|W_{i m, h-\frac{1}{2}}(3 i m / 2)\right|^{2}\left(3 m^{2} R_{0} / 2\right)^{2 \operatorname{Re}[h]} m^{-2} e^{\pi|m|} \times \\
\times \frac{|2 h-1|^{2}|\Gamma(h-i m)|^{4} /|\Gamma(2 h)|^{4}}{\left|1-\left(3 m^{2} R_{0} / 2\right)^{2 h-1} \frac{\Gamma(1-2 h)^{2}}{\Gamma(2 h-1)^{2}} \frac{\Gamma(h-i m)^{2}}{\Gamma(1-h-i m)^{2}}\right|^{2}}
\end{gathered}
$$

NOW THE MAGIC STARTS!

Magic \#1: Near extremal ISCO

- Near extremal ISCO is at:

$$
\frac{\hat{r}-r_{+}}{r_{+}}=2^{1 / 3} \kappa^{2 / 3}+\mathcal{O}(\kappa)
$$

- Q: How to get the leading order fluxes in this case?
\Rightarrow A: Just put $R_{0}=2^{1 / 3} \kappa^{2 / 3}$ into the extremal formulae!
- E.g. plug in:

Magic \#1: Near extremal ISCO

- Near extremal ISCO is at:

$$
\frac{\hat{r}-r_{+}}{r_{+}}=2^{1 / 3} \kappa^{2 / 3}+\mathcal{O}(\kappa)
$$

- Q: How to get the leading order fluxes in this case?
- A: Just put $R_{0}=2^{1 / 3} \kappa^{2 / 3}$ into the extremal formulae!
- E.g. plug in:

$$
\begin{gathered}
\dot{\mathcal{E}}_{\infty}=\frac{g^{2} M^{4}}{72 \pi^{2}} S_{\ell}^{2}(\pi / 2)\left|W_{i m, h-\frac{1}{2}}(3 i m / 2)\right|^{2}\left(3 m^{2} R_{0} / 2\right)^{2 \operatorname{Re}[h]} m^{-2} e^{\pi|m|} \times \\
\times \frac{|2 h-1|^{2}|\Gamma(h-i m)|^{4} /|\Gamma(2 h)|^{4}}{\left|1-\left(3 m^{2} R_{0} / 2\right)^{2 h-1} \frac{\Gamma(1-2 h)^{2}}{\Gamma(2 h-1)^{2}} \frac{\Gamma(h-i m)^{2}}{\Gamma(1-h-i m)^{2}}\right|^{2}}
\end{gathered}
$$

Magic \#1: Near extremal ISCO

E.g. this uncovers that what used to look like numerical noise is actually oscillatory behavior in the $\kappa \rightarrow 0$ limit

Magic \#2: Plunges

Slow plunge in near-NHEK

- Slow plunge orbit that spirals off ISCO

$$
\begin{aligned}
t(r) & =\frac{1}{2 \kappa} \ln \frac{1}{r(r+2 \kappa)}+t_{0} \\
\phi(r) & =\frac{3 r}{4 \kappa}+\frac{1}{2} \ln \frac{r}{r+2 \kappa}+\phi_{0}
\end{aligned}
$$

falls into the future horizon in the near-NHEK metric

$$
d s^{2}=2 M^{2} \Gamma(\theta)\left[-r(r+2 \kappa) d t^{2}+\frac{d r^{2}}{r(r+2 \kappa)}+d \theta^{2}+\Lambda(\theta)^{2}(d \phi+(r+\kappa) d t)^{2}\right]
$$

- Q: How to get the solutions in this case?
- A: Do a conformal transformation to map to the NHEK + circle problem!

Magic \#2: Plunges

Slow plunge in near-NHEK

- Slow plunge orbit that spirals off ISCO

$$
\begin{aligned}
t(r) & =\frac{1}{2 \kappa} \ln \frac{1}{r(r+2 \kappa)}+t_{0} \\
\phi(r) & =\frac{3 r}{4 \kappa}+\frac{1}{2} \ln \frac{r}{r+2 \kappa}+\phi_{0}
\end{aligned}
$$

falls into the future horizon in the near-NHEK metric

$$
d s^{2}=2 M^{2} \Gamma(\theta)\left[-r(r+2 \kappa) d t^{2}+\frac{d r^{2}}{r(r+2 \kappa)}+d \theta^{2}+\Lambda(\theta)^{2}(d \phi+(r+\kappa) d t)^{2}\right]
$$

- Q: How to get the solutions in this case?
- A: Do a conformal transformation to map to the NHEK + circle problem!

Magic \#2: Plunges

Slow plunge in near-NHEK

- Bulk diffeomorphism:

$$
\begin{aligned}
T & =-e^{-\kappa t} \frac{r+\kappa}{\sqrt{r(r+2 \kappa)}} \\
R & =\frac{1}{\kappa} e^{\kappa t} \sqrt{r(r+2 \kappa)} \\
\Phi & =\phi-\frac{1}{2} \ln \frac{r}{r+2 \kappa}
\end{aligned}
$$

- Boundary conformal transformation:

$$
\begin{aligned}
T & =-e^{-\kappa t} \\
\Phi & =\phi
\end{aligned}
$$

Magic \#2: Plunges
Slow plunge in near-NHEK

Magic \#2: Plunges

Fast plunge that spirals off an eccentric last stable orbit

