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Outline of the Talk

N Introductory remarks

N Rational points on Elliptic curves
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N F-GUTs with discrete symmetries

N Mordell-Weil U(1) and GUTs

N Concluding Remarks
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A

Properties of Ordinary GUTs
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⋆ interesting features

N Gauge coupling unification

N Assembling of SM fermions in a few irreps.

N Charge Quantisation

⋆ deficiencies

N fermion mass hierarchy and mixing not predicted

N Yukawa Lagrangian poorly constrained

N Baryon number non-conservation

... Solution requires new insights ...

Discrete and U(1) symmetry extensions

N These appear naturally in F − T HEORY constructions N
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New Ingredients from F-theory

⋆ Discrete and U(1) symmetries:

• necessary tools to suppress or eliminate undesired superpotential terms

⋆ Fluxes :

• ... truncate GUT irreps, eliminate coloured Higgs triplets, induce chirality...

⋆ “Internal” Geometry :

• ... determines SM arbitrary parameters from a handful of topological properties
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B

Rational Points on Elliptic Curves
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Rational Points (R.P.) on Conics

(-1,0) (0,0)

(x,y)

t

• Choose one R.P. on conic - taken here to be (−1, 0).

• Project all others on a line (here axis y):

x =
1− t2

1 + t2
y =

2t

1 + t2

⇓
R.P. on line 1-1 with R.P. on circle
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⋆ Real Rational Elliptic Curves

N General cubic equation with rational coefficients f(x, y) = 0:

f = a1x
3 + a2x

2y + a3xy
2 + a4y

3 + a5x
2 + a6xy + a7y

2 + a8x+ a9y + a10

N rational points on elliptic curve? Non-trivial to find but:

They obey a group law!
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The Group Law on Elliptic Curves

P

C

P

P +Q

Q

O

Q* P

S

C

P

O

_

The addition law: P +Q (left).

(P,Q = rational → P +Q rational.)

The opposite element P + (−P ) = O (right)
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Mordell Theorem

⇓
The Rational Points on Elliptic Curve constitute a finitely generated Abelian Group

⇓
Mordell - Weil Group
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Any cubic equation with a rational point can be written in:

⋆ Weierstrass form:

y2 = x3 + fx+ g

N Two important quantities characterising elliptic curves:

1. The Discriminant:

∆ = 4f3 + 27g2

... classifies the curves with respect to its singularities

2. The j-invariant function:

j = 4
(24f)3

4f3 + 27g2

... takes the same value for equivalent elliptic curves
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The role of the Discriminant

N A: Non-singular curves: ∆ 6= 0.

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0
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-1

0

1

2

3

examples of non-singular curves (∆ 6= 0) :

1 real root (left), 3 real roots (right).
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N B: Singular cases: Discriminant: ∆ = 0

y2 = (x− a)2(x+ b)

y2 = x3

-1.0 -0.5 0.0 0.5 1.0
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1
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Singular curves (∆ = 0) :

double root (left), cusp (right)
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⋆ Weierstrass form ... x- symmetric curve :

P

P+

P *

Q

Q

Q

O8

C

Addition on Weierstrass form: The zero element O is at infinity.

14



⋆ Weierstrass equation with complex coefficients

Real Complex

Complex coefficients:→ topology of torus.

Non-singular curve (∆ 6= 0) “upgrades” to normal torus

Singular curve (∆ = 0) corresponds to torus with a pinched radius.
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C

F-theory and Elliptic Fibration
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⋆ F-theory ⋆

( Vafa 1996)

⇓

Geometrisation of Type II-B superstring

II-B: closed string spectrum obtained by combining left and right moving open strings with NS and

R-boundary conditions:

(NS+, NS+), (R−, R−), (NS+, R−), (R−, NS+)

Bosonic spectrum:

(NS+, NS+): graviton, dilaton and 2-form KB-field:

gµν , φ, Bµν → B2

(R−, R−): scalar, 2- and 4-index fields (p-form potentials)

C0, Cµν , Cκλµν → Cp, p = 0, 2, 4
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Definitions (F -theory bosonic part)

1. String coupling: g
IIB

= e−φ

2. Combining the two scalars C0, φ to one modulus:

τ = C0 + i e−φ → C0 +
i

g
IIB

IIB - action (see e.g. Denef, 0803:1194):

SIIB ∝
∫

d10x
√−g R− 1

2

∫
1

(Imτ)2
dτ ∧ ∗dτ̄

+
1

Imτ
G3 ∧ ∗G3 +

1

2
F̃5 ∧ ∗F̃5 + C4 ∧H3 ∧ F3

Property:

Invariant under SL(2, Z) S-duality:

τ → aτ+b
cτ+d
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FIBRAT ION
F-theory R3,1 ×X

⇒ X , elliptically fibered CY 4-fold over B3 ⇔

⇓
N a torus τ = C0 + ı/gs at each point of B3 N

.
.

B

T

T

T

3

2

2

2

CY 4-fold : Red points: pinched torus ⇒ 7-branes ⊥B3
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Elliptic Fibration

described by Weierstraß Equation

y2 = x3 + f(z)xw4 + g(z)w6

For each point of B3, the above equation describes a torus

1. x, y, z homogeneous coordinates

2. f(z), g(z) → 8th and 12th degree polynomials.

3. Discriminant

∆(z) = 4 f3 + 27 g2

Fiber singularities at

∆(z) = 0 → 24 roots zi

⇓
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j-invariant function can be written in terms of modulus τ

j(τ) = 4
(24f)3

∆
(1)

∝ e−2πiτ + 744 +O(e2πiτ ) (2)

∆ =

24∏

i=1

(z − zi) (3)

Solving

τ ≈ 1

2πi
log(z − zi)

Circling around zi:

τ → τ + 1 ⇒ C0 → C0 + 1

→ τ , C0 undergo Monodromy.
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At z = zi ∃ source of RR-flux which is interpreted as a:

D7-brane at z = zi

Figure 1: Moving around zi, log(z) → log |z|+ i(2π + θ) and τ → τ + 1
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Kodaira classification:

• Type of Manifold singularity is specified by the vanishing order of f(w), g(w) polynomials

• Singularities are classified in terms of AD E Lie groups.

Interpretation of geometric singularities

⇓
CY4-Singularities ⇄ gauge symmetries

Groups →







SU(n)

SO(m)

En
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Tate’s Algorithm

y2 + a1x y z + a3y z
3 = x3 + a2 x

2z2 + a4x z
4 + a6z

6

Table: Classification of Elliptic Singularities w.r.t. vanishing order of Tate’s form coefficients ai:

Group a1 a2 a3 a4 a6 ∆

SU(2n) 0 1 n n 2n 2n

SU(2n+ 1) 0 1 n n+ 1 2n+ 1 2n+ 1

SU(5) 0 1 2 3 5 5

SO(10) 1 1 2 3 5 7

E6 1 2 3 3 5 8

E7 1 2 3 3 5 9

E8 1 2 3 4 5 10
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D

F-theory Model Building
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Basic ingredient in F-theory:

D7 - brane

GUTs are associated to 7-branes wrapping certain classes of ‘internal’ 2-complex dim. surface S ⊂ B3

N Gauge symmetry:

E8 → GGUT × C

N GGUT = SU(5), SO(10), . . .

convenient description in the context of spectral cover

⋆ C Commutant ... ⇒ monodromies:

U(1)n, or discrete symmetry Sn, An, Dn, Zn

... acting as family or discrete symmetries (for interesting low energy implications see:)

Karozas, King, GKL, Meadowcroft 1505.000937
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Example: SU(5) : Matter along intersections with other 7-branes

λt,b-Yukawas at intersections and gauge symmetry enhancements

( Heckman et al 0811.2417; Font et al 0907.4895; GG Ross, GKL, 1009.6000);

( Cecotti et al 0910.0477; Camara et al, 1110,2206; Aparicio et al, 1104.2609,. . . )
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Fluxes

SU(5)-Chirality

#5−#5̄ =







n(3, 1)− 1
3
− n(3̄, 1)+ 1

3
= M5

n(1, 2)+ 1
2
− n(1, 2)− 1

2
= M5

(4)

#10−#10 =







n(3, 2)+1/6 − n(3̄, 2)−1/6 = M10

n(3̄, 1)−2/3 − n(3, 1)+2/3 = M10

n(1, 1)+1 − n(1, 1)−1 = M10.

(5)
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Hypercharge flux

SU(5) breaking and Splitting of representations

#5−#5̄ =







n(3, 1)− 1
3
− n(3̄, 1)+ 1

3
= M5

n(1, 2)+ 1
2
− n(1, 2)− 1

2
= M5 +N

(6)

#10−#10 =







n(3, 2)+1/6 − n(3̄, 2)−1/6 = M10

n(3̄, 1)−2/3 − n(3, 1)+2/3 = M10 −N

n(1, 1)+1 − n(1, 1)−1 = M10 +N.

(7)
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/R-parity:a specific example 1505.000937

10 → (�
�✒

eliminated by Y-flux

Q, uc, ec) → (−, uc, ec)

parity violating term 105̄5̄ → λdbuu
c dc dc only! → Neutron-antineutron oscillations

d

W W

b

b

d

~

~

~

Figure 2: Feynman box graph for n− n̄ oscillations (Goity&Sher PLB 346(1995)69)
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Figure 3: λdbu bounds for: Blue: Mũ =Mc̃ = 0.8TeV , Dashed: Mũ =Mc̃ = 1TeV ,

Dotted: Mũ =Mc̃ = 1.2TeV . (Mb̃L
=Mb̃R

= 500GeV , τ = 108sec.).
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E

Mordell-Weil U(1) and E6 GUT

Antoniadis & GKL 1404.6720
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⋆ A new class of Abelian Symmetries associated to Rational Sections of elliptic curves

Mordell-Weil group ... finitely generated:

Z⊕ Z⊕ · · · ⊕ Z
︸ ︷︷ ︸

r

⊕G

Abelian group: Rank - r (unknown)

Torsion part: G → :

G =







Zn n = 1, 2, . . . , 10, 12

Zk × Z2 k = 2, 4, 6, 8

→ ... models with new U(1)’s and Discrete Symmetries from Mordell-Weil

(Cvetic et al 1210.6094,1307.6425; Mayhofer et al, 1211.6742; Borchmann et al 1307.2902; Krippendorf et

al, 1401.7844)
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Simplest (and perhaps most viable) Case:

Rank-1 Mordell-Weil

To construct a model with Mordell-Weil U(1)’s, one starts with a line bundle.

• Let point P associated to holomorphic section

• point Q associated to rational section

⋆M = O(P +Q) deg-2 line bundle.

Riemann-Roch theorem for genus-1 curves:

# of global sections = to its degree h0(M) = d→

Sections required: [u : v : w] = [1 : 1 : 2] →

P(1,1,2)-weighted projective space

... described by the equation: (see Morrison & Park 1208.2695)

w2 + a2v
2w = u(b0u

3 + b1u
2v + b2uv

2 + b3v
3)
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Need to obtain Standard form of Weierstrass model... to read off the non-Abelian singularity part

Birational Map

v =
a2y

b23u
2 − a22 (b2u

2 + x)
(8)

w =
b3uy

b23u
2 − a22 (b2u

2 + x)
− x

a2
(9)

u = z (10)
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These lead to the Weierstraß equation in Tate’s form

y2 + 2
b3
a2
xyz ± b1a2yz

3 = x3 ±
(

b2 −
b23
a22

)

x2z2

−b0a22xz4 − b0a
2
2

(

b2 −
b23
a22

)

z6
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but now Tate’s coefficients are not all independent !

y2 + 2
b3
a2
xyz ± b1a2yz

3 = x3 ±
(

b2 −
b23
a22

)

x2z2

−b0a22xz4 − b0a
2
2

(

b2 −
b23
a22

)

z6

... comparing with standard general Tate’s form:

y2 + α1xyz + α3yz
3 = x3 + α2x

2z2 − α4xz
4 − α6z

6

Observation:

α6 = α2α4
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Implications on the non-abelian structure

Assume local expansion of Tate’s coefficients

αk = ak,0 + αk,1ξ + · · ·

Vanishing orders for SU(2n):

α2 = a2,1 ξ + · · ·

α4 = α4,nξ
n + · · ·

α6 = α6,2nξ
2n + · · ·

α6 = α2α4 → α2,1α4,nξ
n+1 = α6,2nξ

2n ⇒ n = 1

...from SU(n) series, compatible are Only for:

SU(2), and SU(3)
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... extending the analysis to exceptional groups...

Viable non-Abelian GUTs with U(1)MW

and the vanishing order of the coefficients a2 ∼ a2,mξ
m, bk ∼ bk,nξ

n

Group a2 b0 b1 b2 b3

E6 1 1 1 2 2

0 3 1 2 1

E7 1 1 2 2 2

0 3 3 2 1
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E6 model: Symmetry Explorations

If:

b0 = 0 ; b2 =
b23
a22

... Tate’s form exhibits a Z3 symmetry:

y2 + α1xyz + α3yz
3 = x3

Final Model

E6 × U(1)MW /Z3
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Remarks

Spectral Cover:

• Models with gauge symmetry

GGUT ×Gfamily ∈ E8

• Non-abelian discrete symmetries naturally incorporated

Gfamily → Sn, An, U(1) · · ·

Mordell-Weil:

• ... gauge symmetries with one abelian Mordell-Weil:

E6 × U(1)MW , E7 × U(1)MW

• ... extra U(1)MW might have interesting implications to Model building ...

• Torsion group: possible explanation of discrete symmetries...
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Additional Material
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IIB - action leading to equs of motion:

(see for example Denef 0803.1194)

SIIB ∝
∫

d10x
√−g R− 1

2

∫
1

(Imτ)2
dτ ∧ ∗dτ̄

+
1

Imτ
G3 ∧ ∗G3 +

1

2
F̃5 ∧ ∗F̃5 + C4 ∧H3 ∧ F3

Properties:

1. Invariant under SL(2, Z) S-duality:

τ → aτ+b
cτ+d and




H

F



 →




d c

b a








H

F





2. This is the analogue of a 12-d. theory compactified on torus with modulus τ with F3, H3

components of some 12-d. F̂4 reduced along the 1-cycles of torus τ .
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Topological Properties of Weierstraß Equation

N Scalings :

x→ λ2 x, y → λ3 y, f(z) → λ4f(z), g(z) → λ6g(z)

⇒WE : λ6 y2 = λ6(x3 + f(z)x+ g(z) )

Chern classes associated to bundle structure

N c1 → 1st Chern class of the Tangent Bundle to SGUT

N −t→ 1st Chern class of the Normal Bundle to SGUT

Then:

z → [z] = −t

If :[x] = 2(c1 − t); [y] = 3(c1 − t); [bk] = η − kc1 = (6− k)c1 − t

WE transforms as: 6 (c1 − t) . For example:

[b2xz
3] = {(6− 2)c1 − t}+ {2(c1 − t)} − 3t = 6 (c1 − t)
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Kodaira classification:

• Type of Manifold singularity is specified by the vanishing order of f(z), g(z) polynomials

• Singularities are classified in terms of AD E Lie groups.

Interpretation of geometric singularities

⇓

CY4-Singularities ⇄ gauge symmetries

gauge symmetries →







SU(n)

SO(m)

En
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ord(f(z)) ordg(z)) ord(∆(z)) fiber type Singularity

0 0 n In An−1

≥ 1 1 2 II none

1 ≥ 2 3 III A1

≥ 2 2 4 IV A2

2 ≥ 3 n+ 6 I∗n Dn+4

≥ 2 3 n+ 6 I∗n Dn+4

≥ 3 4 8 IV ∗ E6
3 ≥ 5 9 III∗ E7
≥ 4 5 10 II∗ E8

Table 1: Kodaira’s classification of Elliptic Singularities with respect to the vanishing order of f, g,∆ with

respect to z.
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Tate’s form

Useful algorithm for local description:

Procedure: (see Katz et al 1106:3854) Expand f, g

f(z) =
∑

n

fnz
n, g(z) =

∑

m

gmz
m

Then

∆ = 4 [f0 + f1z + · · ·)]3 + 27 [g0 + g1z + · · ·]2

Demand z/∆ ⇒
f0 = −1

3
t2, g0 =

2

27
t3

while WE obtains Tate’s I1 form:

y2 = x3 + t x2 + (f1 + f2z + · · ·)z x+ (g̃1 + g̃2z + · · ·)z
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Tate’s Form

y2 + a1x y + a3y = x3 + a2 x
2 + a4x+ a6

The algorithm (Partial results)

Group a1 a2 a3 a4 a6 ∆

SU(2n) 0 1 n n 2n 2n

SU(2n+ 1) 0 1 n n+ 1 2n+ 1 2n+ 1

SU(5) 0 1 2 3 5 5

SO(10) 1 1 2 3 5 7

E6 1 2 3 3 5 8

E7 1 2 3 3 5 9

E8 1 2 3 4 5 10
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Model Building
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Basic ingredient in F-theory:

D7 - brane

GUTs are associated to 7-branes wrapping certain classes a of ‘internal’ 2-complex dim. surface S

(called a ‘divisor’ S ⊂ B3)

adel Pezzo, Enrique, Hirtzebruch
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N The precise gauge group is determined by the singular fibers over the surface S.

N Elliptic Fibration: Highest singularity is E8
N Gauge symmetry: (in principle) Any E8 subgroupG ⊃ SM :

E8 → GGUT × Cspectral cover

⋆ Spectral Cover ⇒ useful local properties of GGUT

N Sensible choice: GGUT = SU(5)

(a single condition c1(L) · c1(L) = −2 ensures absence of exotics )
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GUT example in this talk: SU(5)

N SM representations are accommodated as follows:

N SU(5) Chiral and Higgs Representations:

10 → Q+ uc + ec

5̄ → dc + ℓ

5 + 5̄ → (T + hu) + (T̄ + hd)

N Yukawa Couplings:

10 · 10 · 5 → mtop (11)

10 · 5̄ · 5̄ → mb (12)

In top Yukawa-coupling 10’s have to be the same!
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... back in F-theory:

Matter is localised along intersections with other 7-branes...

remember that when 7-branes intersect S, ∆ = 0, therefore along a matter curve Σ gauge symmetry is

enhanced
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Yukawa couplings are formed at triple intersections...

Now more 2 branes intersect, singularity increases and gauge symmetry is further enhanced. In

particular:

λb 10 · 5̄ · 5̄ ∈ SO(12)

λt 10 · 10 · 5 ∈ E6
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Symmetry enhancements for SU(5).

56



GS = SU(5): Singularity enhancement:

NH Matter curves accommodating 5̄ are associated with SU(6)

Σ5̄ = S ∩ S5̄ ⇒ SU(5) → SU(6)

adSU6
= 35 → 240 + 10 + 56 + 5̄−6

NH Matter curves accommodating 10 are associated with SO(10)

Σ10 = S ∩ S10 ⇒ SU(5) → SO(10)

adSO10
= 45 → 240 + 10 + 104 + 10−4

NH Further enhancement in triple intersections→ Yukawas :

SO(10) ≡ E5 ⇛ E6 → 10 · 10 · 5

SU(6) ⇛ SO(12) → 10 · 5̄ · 5̄
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Matter is localised along intersections with other 7-branes...

λt,b-Yukawas at intersections and gauge symmetry enhancements
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⋆ F-Spectrum

10-d Super YM theory :






10dimGaugeField A

Adjoint fermions in 16+ of SO(9, 1)

Under Reduction SO(9, 1) → SO(7, 1)× U(1)R fields decompose to







8dimGaugeField A

scalarsϕ, ϕ̄ = A8 ± i A9

fermionsΨ± = (S±,± 1
2 )
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F -theory described by 8-d YM Compactified on R7,1 = R3,1 × S.

SO(7, 1)× U(1)R → SO(3, 1)× SO(4)× U(1)R

The 8-d spinor Ψ+ decomposes (O(4) ∼ SU(2)× SU(2))
(

S+,
1

2

)

→
(

(2, 1), (2, 1),
1

2

)

⊕
(

(1, 2), (1, 2),−1

2

)

⇛ globally, NOT well defined!

TWIST:

J ∼ U(1) ∈ U(2), JR ∼ U(1)R → J± = J ± 2JR

⇒ (

S+,
1

2

)

→ {(2, 1)⊗ 21} ⊕ {(1, 2)⊗ (12 ⊕ 10)}

preserving N = 1 SUSY.

(Beasley, Heckmann, Vafa, 0802.3391)

60



• Under twisting, scalars & fermions become forms:

scalars : ϕ = ϕmn dz
m ∧ dzn

fermions : =







ηα (0, 0)

ψα̇ = ψα̇m dzm (1, 0)

χα = χα̇mn dz
m ∧ dzn (2, 0)

The above can be organised in N = 1 multiplets

(Aµ, η), (Am̄, ψm̄), (φ12, χ12)
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Action

SF =

∫

R3,1×S

d4xTr
(

χ ∧ ∂Aψ + 2i
√
2ω ∧ ∂Aη ∧ ψ (13)

+
1

2
ψ ∧ [ϕ, ψ] +

√
2η[ϕ̄, χ] + c.c.

)

Variating the action → Equations of motion

∂̄Aχ− 2i
√
2ω ∧ ∂Aη − [ϕ, ψ] = 0 (14)

∂̄Aψ −
√
2[ϕ̄, η] = 0 (15)

ω ∧ ∂Aψ +
i

2
[ϕ̄, χ] = 0 (16)
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NH Matter fields are represented by wavefunctions ψi, φ on the intersections of 7-branes with S.

y

y

f

S

z
z

S

z

1

1 1

2

2 2

q

q

q

q

q

`

`

`

q  z  + q  z=

ψ ∝ f(z‖) exp(−|z⊥|2)

(Font et al, 1211.6529, Camara et al, 1110.2206, GKL, GG Ross, 1009.6000)
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-2

-1

0

1

2

Re@z1D

-2

-1

0

1

2

Re@z2D

0.0

0.1

0.2

ΨHz1,z2L

Yukawa coupling ∝ integral of overlapping wavefunctions

at the intersection

λij ∼
∫

S

ψj
Uψ

i
QψH

Integral’s main dependence is on local details near the intersection ⇒ reliable λij -estimation without

knowing global geometry!
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Mechanisms for Fermion mass hierarchy

H If all three families are on the same matter curve, masses to lighter families can be generated by:

i) non-commutative fluxes Cecotti et al, 0910.0477

ii) non-perturbative effects, Aparicio et al, 1104.2609

H If families are distributed on different matter curves:

Implementation of Froggatt-Nielsen mechanism (Nucl.Phys. B147 (1979) 277) in F-models:

Dudas and Palti, 0912.0853

GKL and G.G. Ross, 1009.6000

Callaghan, King, GKL, Ross 1109.1399

Callaghan and King, 12106913

NN Combined mechanism:

Only two families on the same matter curve
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H

The Spectral Cover

66



Recall Weierstrass’ equation for the SU(5) singularity

y2 = x3 + b0z
5 + b2xz

3 + b3yz
2 + b4x

2z + b5xy

→ spectral cover obtained by defining homogeneous coordinates

z → U, x→ V 2, y → V 3

so Weierstrass becomes

V 6 = V 6 + b0U
5 + b2V

2U3 + b3V
3U2 + b4V

4U + b5V
5

IntroduceAffine parameter : s =
U

V

Then, SU(5) spectra cover linked to the equation:

C5 : 0 = b0s
5 + b2s

3 + b3s
2 + b4s+ b5

Notice that: b1 = 0 → ∑

i si = 0 (SU(N) property)
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⋆ Origin and Nature of Family Symmetries ⋆

In F-theory all matter descends from the E8-adjoint decomposition

We already assumed

E8 → SU(5)GUT × SU(5)⊥

therefore

248 = (24, 1) + (1, 24⊥) + (10, 5⊥) + (5̄, 10⊥) + (5, 10⊥) + (10, 5̄)⊥

Interpretation from geometric point of view:

SU(5)GUT fields reside on matter curves:

Σ10ti
: n10 × 10ti + n̄1̄0 × 10−ti (17)

Σ5ti+tj
: n5 × 5̄ti+tj + n̄5̄ × 5−ti−tj (18)

Families on different curves distinguished by roots ti, tj ∈ SU(5)⊥

Chirality generated by fluxes... see depiction next page ≫
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Example: SO(10) → SU(5) breaking by U(1)X flux
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Monodromies

Roots of Spectral Cover equation
∑

i si = 0 are identified with SU(5)⊥ Cartan subalgebra:

Qt = diag{t1, t2, t3, t4, t5}
⋆ Matter curves characterised by ti’s
⋆ Polynomial coefficients depend on ti

bk = bk(ti)

but: Topological Properties are carried by bk ⇒
ti must be expressed in terms of them:

ti = ti(bk)

Inversion implies brunchcuts ! ⇒
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EXAMPLE ..Simplest monodromy Z2 : :

a1 + a2s+ a3s
2 = 0 → s1,2 =

−a2 ±
√
∆

2a3

Under θ → θ + 2π →
√
∆ → −

√
∆ branes interchange locations

s1 ↔ s2 or t1 ↔ t2

O

8

Two U(1)’s related by monodromies , gauge symmetry reduces to:

SU(5)× U(1)4 → SU(5)×U(1)3
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NImplications on Fermion Masses H

NH Monodromy t1 = t2 ⇒ identification of matter curves

Σ10t1
= Σ10t2

→ Σ103

NH 3rd Family assigned on them

10t1 · 10t2 · 5H → λt 103 · 103 · 5H → mt

NH Fermion mass Hierarchy organised by the remaining U(1)’s from underlying E8 via Singlet vevs 〈θij〉
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SU(5)⊥ breaking patterns may correspond to any of the possible spittings of

the Spectral Cover:

C5 → C4 × C1
C5 → C3 × C2
· · · · · ·

... with the roots respectively forming “finite groups” such as:

S4,A4,Z4 : {t1, t2, t3, t4}, {t5}

S3,Z3 ×Z2 : {t1, t2, t3}, {t4, t5}

Z2 ×Z2 : {t1, t2}, {t3, t4}, {t5}

Z2 : {t1, t2}, {t3}, {t4}, {t5}

· · · · · · (19)
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⋆ Examples ⋆

N Application: The C4 × C1 case

N Motivation: The neutrino sector

N C4 × C1 implies the splitting of the polynomial in two factors

∑

bks
5−k = (a1 + a2s+ a3s

2 + a4s
3 + a5s

4

︸ ︷︷ ︸

C4

)(a6 + a7s
︸ ︷︷ ︸

C1

)

Topological properties of ai are fixed in terms of those of bk , by equating coefficients of same powers of s

b0 = a5a7, b5 = a1a6, etc...

Moreover:

N C1 : associated to a U(1)
N C4 : reduction to (i) continuous SU(4) subgroup, or

(ii) to Galois group ∈ S4 (see I. Antoniadis and GKL 1308.1581)
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Properties and Residual Spectral Cover Symmetry

N If H ∈ S4 the Galois group, final symmetry of the model is:

SU(5)GUT × H× U(1)
︸ ︷︷ ︸

family symmetry

N The final subgroup H ∈ S4 is linked to specific topological properties of the polynomial coefficients ai.

N ai coefficients determine useful properties of the model, such as

i) Geometric symmetries → R-parity

ii) Flux restrictions on the matter curves

N Fluxes determine useful properties on the matter curves including :

Multiplicities and Chirality of matter/Higgs representations
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Determining the Galois group in C4-spectral cover

In order to find out which is the Galois group, we examine partially symmetric functions of roots ti

(Lagrange method)

1.) The Discriminant ∆

∆ = δ2 where δ =
∏

i<j

(ti − tj)

δ is invariant under S4-even permutations ⇒A4

∆ symmetric → can be expressed in terms of coefficients ai ∈ F

∆(ti) → ∆(ai)

If ∆ = δ2, such that δ(ai) ∈ F , then

H ⊆ A4 orV4 (= Klein group)

If ∆ 6= δ2, (i.e. δ(ai) /∈ F ), then

H ⊆ S4 orD4
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2.) To study possible reductions of S4, A4 to their subgroups, another partially symmetric function should

be examined:

f(x) = (x− x1)(x− x2)(x− x3)

x1 = t1t2 + t3t4, x2 = t1t3 + t2t4, x3 = t2t3 + t1t4

x1,2,3 are invariant under the three Dihedral groups D4 ∈ S4.

Combined results of ∆ and f(x) :

∆ 6= δ2 ∆ = δ2

f(x) irreducible S4 A4

f(x) reducible D4, Z4 V4
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The induced restrictions on the coefficients ai

1. Tracelessness condition b1 = 0 demands

a4 = a0a6, a5 = −a0a7

2. The requirement that the discriminant is a square ∆ = δ2 imposes the following relations among ai:

(
a2

2a5 − a4
2a1

)2
=

(
16a1a5 − a2a4

3

)3

3. Reducibility of the function f(x) is achieved if

f(0) = 4a5a3a1 − a1a4
2 − a5a2

2 = 0
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