Discrete and $U(1)$ symmetries in F-theory

\mathcal{G} eorge \mathcal{L} eontaris

Ioannina University

GREEC

A Introductory remarks
A Rational points on Elliptic curves
A F-theory and Elliptic Fibration
a F-GUTs with discrete symmetries
^ Mordell-Weil $U(1)$ and GUTs
Δ Concluding Remarks

\mathcal{A}

Properties of Ordinary GUTs

interesting features

Δ Gauge coupling unification
\triangle Assembling of SM fermions in a few irreps.
\triangle Charge Quantisation

A fermion mass hierarchy and mixing not predicted
© Yukawa Lagrangian poorly constrained

- Baryon number non-conservation
... Solution requires new insights ...
Discrete and $U(1)$ symmetry extensions
Δ These appear naturally in $\mathcal{F}-\mathcal{T} \mathcal{H} \mathcal{O} \mathcal{R} \mathcal{V}$ constructions Δ

New Ingredients from F-theory

* Discrete and $U(1)$ symmetries:
- necessary tools to suppress or eliminate undesired superpotential terms
* Fluxes:
- ... truncate GUT irreps, eliminate coloured Higgs triplets, induce chirality...
* "Internal" Geometry :
- ... determines SM arbitrary parameters from a handful of topological properties

\mathcal{B}

Rational Points on Elliptic Curves

Rational Points (R.P.) on Conics

- Choose one R.P. on conic - taken here to be $(-1,0)$.
- Project all others on a line (here axis y):

$$
x=\frac{1-t^{2}}{1+t^{2}} \quad y=\frac{2 t}{1+t^{2}}
$$

R.P. on line 1-1 with R.P. on circle
\star Real Rational Elliptic Curves
Δ General cubic equation with rational coefficients $f(x, y)=0$:

$$
f=a_{1} x^{3}+a_{2} x^{2} y+a_{3} x y^{2}+a_{4} y^{3}+a_{5} x^{2}+a_{6} x y+a_{7} y^{2}+a_{8} x+a_{9} y+a_{10}
$$

Δ rational points on elliptic curve? Non-trivial to find but:
They obey a group law!

The Group Law on Elliptic Curves

The addition law: $P+Q$ (left).
($P, Q=$ rational $\rightarrow P+Q$ rational.)
The opposite element $P+(-P)=\mathcal{O}$ (right)

Mordell Theorem

\Downarrow
The Rational Points on Elliptic Curve constitute a finitely generated Abelian Group \Downarrow
Mordell - Weil Group

Any cubic equation with a rational point can be written in:
\star Weierstrass form:

$$
y^{2}=x^{3}+f x+g
$$

Two important quantities characterising elliptic curves:

1. The Discriminant:

$$
\Delta=4 f^{3}+27 g^{2}
$$

... classifies the curves with respect to its singularities
2. The j-invariant function:

$$
j=4 \frac{(24 f)^{3}}{4 f^{3}+27 g^{2}}
$$

... takes the same value for equivalent elliptic curves

The role of the Discriminant
$\triangle \mathcal{A}$: Non-singular curves: $\Delta \neq 0$.

$\triangle \mathcal{B}$: Singular cases: Discriminant: $\Delta=0$

$$
\begin{aligned}
& y^{2}=(x-a)^{2}(x+b) \\
& y^{2}=x^{3}
\end{aligned}
$$

Singular curves $(\Delta=0)$:
double root (left), cusp (right)

Weierstrass form ... x-symmetric curve:

Addition on Weierstrass form: The zero element \mathcal{O} is at infinity.
\star Weierstrass equation with complex coefficients

Real
 Complex

Complex coefficients: \rightarrow topology of torus.
Non-singular curve $(\Delta \neq 0)$ "upgrades" to normal torus
Singular curve $(\Delta=0)$ corresponds to torus with a pinched radius.

F-theory and Elliptic Fibration

\star F-theory

(Vafa 1996)

Geometrisation of Type II-B superstring

II-B: closed string spectrum obtained by combining left and right moving open strings with NS and R-boundary conditions:

$$
\left(N S_{+}, N S_{+}\right),\left(R_{-}, R_{-}\right),\left(N S_{+}, R_{-}\right),\left(R_{-}, N S_{+}\right)
$$

Bosonic spectrum:

$\left(N S_{+}, N S_{+}\right)$: graviton, dilaton and 2-form KB-field:

$$
g_{\mu \nu}, \phi, B_{\mu \nu} \rightarrow B_{2}
$$

$\left(R_{-}, R_{-}\right)$: scalar, 2- and 4-index fields (p-form potentials)

$$
C_{0}, C_{\mu \nu}, C_{\kappa \lambda \mu \nu} \rightarrow C_{p}, p=0,2,4
$$

Definitions (F-theory bosonic part)

1. String coupling: $g_{I I B}=e^{-\phi}$
2. Combining the two scalars C_{0}, ϕ to one modulus:

$$
\begin{gathered}
\tau=C_{0}+i e^{-\phi} \rightarrow C_{0}+\frac{i}{g_{I I B}} \\
\text { IIB - action (see e.g. Denef, 0803:1194): } \\
S_{I I B} \propto \int d^{10} x \sqrt{-g} R-\frac{1}{2} \int \frac{1}{(\operatorname{Im} \tau)^{2}} d \tau \wedge * d \bar{\tau} \\
+\frac{1}{\operatorname{Im} \tau} G_{3} \wedge * \bar{G}_{3}+\frac{1}{2} \tilde{F}_{5} \wedge * \tilde{F}_{5}+C_{4} \wedge H_{3} \wedge F_{3}
\end{gathered}
$$

Property:
Invariant under $S L(2, Z)$ S-duality:

$$
\tau \rightarrow \frac{a \tau+b}{c \tau+d}
$$

$$
\begin{gathered}
\operatorname{FIBR} \mathcal{A T I O \mathcal { N }} \\
\text { F-theory } \mathcal{R}^{3,1} \times \mathcal{X} \\
\rightrightarrows \mathcal{X}, \text { elliptically fibered } \mathbf{C Y} \text { 4-fold over } B_{3} \leftleftarrows
\end{gathered}
$$

Δ a torus $\tau=C_{0}+\imath / g_{s}$ at each point of B_{3}

CY 4-fold: Red points: pinched torus $\Rightarrow 7$-branes $\perp B_{3}$

Elliptic Fibration

described by \mathcal{W} eierstraß \mathcal{E} quation

$$
y^{2}=x^{3}+f(z) x w^{4}+g(z) w^{6}
$$

For each point of B_{3}, the above equation describes a torus

1. x, y, z homogeneous coordinates
2. $f(z), g(z) \rightarrow 8^{t h}$ and $12^{t h}$ degree polynomials.
3. Discriminant

$$
\Delta(z)=4 f^{3}+27 g^{2}
$$

Fiber singularities at

$$
\Delta(z)=0 \rightarrow 24 \text { roots } z_{i}
$$

\Downarrow
j-invariant function can be written in terms of modulus τ

$$
\begin{align*}
j(\tau) & =4 \frac{(24 f)^{3}}{\Delta} \tag{1}\\
& \propto e^{-2 \pi i \tau}+744+\mathcal{O}\left(e^{2 \pi i \tau}\right) \tag{2}\\
\Delta & =\prod_{i=1}^{24}\left(z-z_{i}\right) \tag{3}
\end{align*}
$$

Solving

$$
\tau \approx \frac{1}{2 \pi i} \log \left(z-z_{i}\right)
$$

Circling around z_{i} :

$$
\tau \rightarrow \tau+1 \Rightarrow C_{0} \rightarrow C_{0}+1
$$

$\rightarrow \tau, C_{0}$ undergo Monodromy.

At $z=z_{i} \exists$ source of RR-flux which is interpreted as a:

$$
D 7 \text {-brane at } z=z_{i}
$$

Figure 1: Moving around $z_{i}, \log (z) \rightarrow \log |z|+i(2 \pi+\theta)$ and $\tau \rightarrow \tau+1$

Kodaira classification:

- Type of Manifold singularity is specified by the vanishing order of $f(w), g(w)$ polynomials
- Singularities are classified in terms of $\mathcal{A D} \mathcal{E}$ Lie groups.

Interpretation of geometric singularities

$$
\begin{array}{|c}
\qquad Y_{4} \text {-Singularities } \rightleftarrows \text { gauge symmetries } \\
\hline
\end{array}
$$

$$
\text { Groups } \rightarrow\left\{\begin{array}{c}
S U(n) \\
S O(m) \\
\mathcal{E}_{n}
\end{array}\right.
$$

Tate's Algorithm

$$
y^{2}+a_{1} x y z+a_{3} y z^{3}=x^{3}+a_{2} x^{2} z^{2}+a_{4} x z^{4}+a_{6} z^{6}
$$

Table: Classification of Elliptic Singularities w.r.t. vanishing order of Tate's form coefficients a_{i} :

Group	a_{1}	a_{2}	a_{3}	a_{4}	a_{6}	Δ
$S U(2 n)$	0	1	n	n	$2 n$	$2 n$
$S U(2 n+1)$	0	1	n	$n+1$	$2 n+1$	$2 n+1$
$S U(5)$	0	1	2	3	5	5
$S O(10)$	1	1	2	3	5	7
\mathcal{E}_{6}	1	2	3	3	5	8
\mathcal{E}_{7}	1	2	3	3	5	9
\mathcal{E}_{8}	1	2	3	4	5	10

\mathcal{D}

F-theory Model Building

Basic ingredient in F-theory:

$$
D 7 \text { - brane }
$$

GUTs are associated to 7-branes wrapping certain classes of 'internal' $\mathbf{2}$-complex dim. surface $\mathbf{S} \subset B_{3}$
© Gauge symmetry:

$$
\mathcal{E}_{8} \rightarrow \mathbf{G}_{\mathrm{GUT}} \times \mathcal{C}
$$

$\Delta G_{G U T}=S U(5), S O(10), \ldots$
convenient description in the context of spectral cover
$\star \mathcal{C}$ Commutant $\ldots \rightrightarrows$ monodromies:

$$
U(1)^{n} \text {, or discrete symmetry } S_{n}, A_{n}, D_{n}, Z_{n}
$$

... acting as family or discrete symmetries (for interesting low energy implications see:) Karozas, King, GKL, Meadowcroft 1505.000937

Example: $S U(5)$: Matter along intersections with other 7-branes

$\lambda_{t, b}$-Yukawas at intersections and gauge symmetry enhancements (Heckman et al 0811.2417; Font et al 0907.4895; GG Ross, GKL, 1009.6000); (Cecotti et al 0910.0477; Camara et al, 1110,2206; Aparicio et al, 1104.2609,...)

Fluxes

$S U(5)$-Chirality

$$
\begin{align*}
& \# 5-\# \overline{5}=\left\{\begin{array}{l}
n(3,1)_{-\frac{1}{3}}-n(\overline{3}, 1)_{+\frac{1}{3}}=M_{5} \\
n(1,2)_{+\frac{1}{2}}-n(1,2)_{-\frac{1}{2}}=M_{5}
\end{array}\right. \tag{4}\\
& \# 10-\# \overline{10}= \begin{cases}n(3,2)_{+1 / 6}-n(\overline{3}, 2)_{-1 / 6} & =M_{10} \\
n(\overline{3}, 1)_{-2 / 3}-n(3,1)_{+2 / 3} & =M_{10} \\
n(1,1)_{+1}-n(1,1)_{-1} & =M_{10}\end{cases} \tag{5}
\end{align*}
$$

Hypercharge flux
$S U(5)$ breaking and Splitting of representations

$$
\begin{gather*}
\# 5-\# \overline{5}=\left\{\begin{array}{l}
n(3,1)_{-\frac{1}{3}}-n(\overline{3}, 1)_{+\frac{1}{3}}=M_{5} \\
n(1,2)_{+\frac{1}{2}}-n(1,2)_{-\frac{1}{2}}=M_{5}+N
\end{array}\right. \tag{6}\\
\# 10-\# \overline{10}=\left\{\begin{array}{l}
n(3,2)_{+1 / 6}-n(\overline{3}, 2)_{-1 / 6}=M_{10} \\
n(\overline{3}, 1)_{-2 / 3}-n(3,1)_{+2 / 3}=M_{10}-N \\
n(1,1)_{+1}-n(1,1)_{-1}
\end{array}\right) M_{10}+N . \tag{7}
\end{gather*}
$$

$\not \subset$-parity:a specific example 1505.000937

$$
\begin{aligned}
& \text { eliminated by } Y \text {-flux } \\
& 10 \rightarrow\left(\not \subset, u^{c}, e^{c}\right) \rightarrow\left(-, u^{c}, e^{c}\right)
\end{aligned}
$$

parity violating term $10 \overline{5} \overline{5} \rightarrow \lambda_{d b u} u^{c} d^{c} d^{c}$ only! \rightarrow Neutron-antineutron oscillations

Figure 2: Feynman box graph for $n-\bar{n}$ oscillations (Goity\&Sher PLB 346(1995)69)

Figure 3: $\lambda_{d b u}$ bounds for: Blue: $M_{\tilde{u}}=M_{\tilde{c}}=0.8 \mathrm{TeV}$, Dashed: $M_{\tilde{u}}=M_{\tilde{c}}=1 \mathrm{TeV}$, Dotted: $M_{\tilde{u}}=M_{\tilde{c}}=1.2 \mathrm{TeV} .\left(M_{\tilde{b}_{L}}=M_{\tilde{b}_{R}}=500 \mathrm{GeV}, \tau=10^{8}\right.$ sec. $)$.

Mordell-Weil $U(1)$ and \mathcal{E}_{6} GUT
 Antoniadis \& GKL 1404.6720

\star A new class of Abelian Symmetries associated to Rational Sections of elliptic curves
Mordell-Weil group ... finitely generated:

$$
\underbrace{\mathbb{Z} \oplus \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}}_{r} \oplus \mathcal{G}
$$

Abelian group: Rank - r (unknown) Torsion part: $\mathcal{G} \rightarrow$:

$$
\mathcal{G}= \begin{cases}\mathbb{Z}_{n} & n=1,2, \ldots, 10,12 \\ \mathbb{Z}_{k} \times \mathbb{Z}_{2} & k=2,4,6,8\end{cases}
$$

\rightarrow... models with new $U(1)$'s and Discrete Symmetries from Mordell-Weil
(Cvetic et al 1210.6094,1307.6425; Mayhofer et al, 1211.6742; Borchmann et al 1307.2902; Krippendorf et al, 1401.7844)

Simplest (and perhaps most viable) Case:
 Rank-1 Mordell-Weil

To construct a model with Mordell-Weil $U(1)$'s, one starts with a line bundle.

- Let point P associated to holomorphic section
- point Q associated to rational section
$\star M=\mathcal{O}(P+Q)$ deg-2 line bundle.
Riemann-Roch theorem for genus-1 curves:
$\#$ of global sections $=$ to its degree $h^{0}(M)=d \rightarrow$
Sections required: $[u: v: w]=[1: 1: 2] \rightarrow$

$$
\mathbb{P}_{(1,1,2) \text {-weighted projective space }}
$$

... described by the equation: (see Morrison \& Park 1208.2695)

$$
w^{2}+a_{2} v^{2} w=u\left(b_{0} u^{3}+b_{1} u^{2} v+b_{2} u v^{2}+b_{3} v^{3}\right)
$$

Need to obtain Standard form of Weierstrass model... to read off the non-Abelian singularity part
Birational Map

$$
\begin{align*}
v & =\frac{a_{2} y}{b_{3}^{2} u^{2}-a_{2}^{2}\left(b_{2} u^{2}+x\right)} \tag{8}\\
w & =\frac{b_{3} u y}{b_{3}^{2} u^{2}-a_{2}^{2}\left(b_{2} u^{2}+x\right)}-\frac{x}{a_{2}} \tag{9}\\
u & =z \tag{10}
\end{align*}
$$

These lead to the Weierstraß equation in Tate's form

$$
\begin{aligned}
y^{2}+2 \frac{b_{3}}{a_{2}} x y z \pm b_{1} a_{2} y z^{3}= & x^{3} \pm\left(b_{2}-\frac{b_{3}^{2}}{a_{2}^{2}}\right) x^{2} z^{2} \\
& -b_{0} a_{2}^{2} x z^{4}-b_{0} a_{2}^{2}\left(b_{2}-\frac{b_{3}^{2}}{a_{2}^{2}}\right) z^{6}
\end{aligned}
$$

but now Tate's coefficients are not all independent!

$$
\begin{aligned}
y^{2}+2 \frac{b_{3}}{a_{2}} x y z \pm b_{1} a_{2} y z^{3}= & x^{3} \pm\left(b_{2}-\frac{b_{3}^{2}}{a_{2}^{2}}\right) x^{2} z^{2} \\
& -b_{0} a_{2}^{2} x z^{4}-b_{0} a_{2}^{2}\left(b_{2}-\frac{b_{3}^{2}}{a_{2}^{2}}\right) z^{6}
\end{aligned}
$$

... comparing with standard general Tate's form:

$$
y^{2}+\alpha_{1} x y z+\alpha_{3} y z^{3}=x^{3}+\alpha_{2} x^{2} z^{2}-\alpha_{4} x z^{4}-\alpha_{6} z^{6}
$$

Observation:

$$
\alpha_{6}=\alpha_{2} \alpha_{4}
$$

Implications on the non-abelian structure
Assume local expansion of Tate's coefficients

$$
\alpha_{k}=a_{k, 0}+\alpha_{k, 1} \xi+\cdots
$$

Vanishing orders for $S U(2 n)$:

$$
\begin{gathered}
\alpha_{2}=a_{2,1} \xi+\cdots \\
\alpha_{4}=\alpha_{4, n} \xi^{n}+\cdots \\
\alpha_{6}=\alpha_{6,2 n} \xi^{2 n}+\cdots \\
\alpha_{6}=\alpha_{2} \alpha_{4} \rightarrow \alpha_{2,1} \alpha_{4, n} \xi^{n+1}=\alpha_{6,2 n} \xi^{2 n} \Rightarrow n=1
\end{gathered}
$$

...from $S U(n)$ series, compatible are Only for:

$$
S U(2), \text { and } S U(3)
$$

... extending the analysis to exceptional groups...
Viable non-Abelian GUTs with $U(1)_{M W}$
and the vanishing order of the coefficients $a_{2} \sim a_{2, m} \xi^{m}, b_{k} \sim b_{k, n} \xi^{n}$

Group	a_{2}	b_{0}	b_{1}	b_{2}	b_{3}
\mathcal{E}_{6}	1	1	1	2	2
	0	3	1	2	1
\mathcal{E}_{7}	1	1	2	2	2
	0	3	3	2	1

\mathcal{E}_{6} model: Symmetry Explorations

If:

$$
b_{0}=0 ; b_{2}=\frac{b_{3}^{2}}{a_{2}^{2}}
$$

... Tate's form exhibits a Z_{3} symmetry:

$$
y^{2}+\alpha_{1} x y z+\alpha_{3} y z^{3}=x^{3}
$$

Final Model

$$
\mathcal{E}_{6} \times U(1)_{M W} / Z_{3}
$$

Remarks

Spectral Cover:

- Models with gauge symmetry

$$
G_{G U T} \times G_{\text {family }} \in E_{8}
$$

- Non-abelian discrete symmetries naturally incorporated

$$
G_{\text {family }} \rightarrow S_{n}, A_{n}, U(1) \cdots
$$

Mordell-Weil:

- ... gauge symmetries with one abelian Mordell-Weil:

$$
\mathcal{E}_{6} \times U(1)_{M W}, \mathcal{E}_{7} \times U(1)_{M W}
$$

- ... extra $U(1)_{M W}$ might have interesting implications to Model building ...
- Torsion group: possible explanation of discrete symmetries...

STRING PHENO 2016

15th conference in the
String Phenomenology Conference series

- loannina, Greece, June 20-24
http://stringpheno2016.physics.uoi.gr
e-mail: stringpheno2016@conf.uoi.gr

Additional Material

IIB - action leading to equs of motion:
(see for example Denef 0803.1194)

$$
\begin{aligned}
S_{I I B} & \propto \int d^{10} x \sqrt{-g} R-\frac{1}{2} \int \frac{1}{(\operatorname{Im} \tau)^{2}} d \tau \wedge * d \bar{\tau} \\
& +\frac{1}{\operatorname{Im} \tau} G_{3} \wedge * \bar{G}_{3}+\frac{1}{2} \tilde{F}_{5} \wedge * \tilde{F}_{5}+C_{4} \wedge H_{3} \wedge F_{3}
\end{aligned}
$$

Properties:

1. Invariant under $S L(2, Z)$ S-duality:

$$
\tau \rightarrow \frac{a \tau+b}{c \tau+d} \text { and }\binom{H}{F} \rightarrow\left(\begin{array}{cc}
d & c \\
b & a
\end{array}\right)\binom{H}{F}
$$

2. This is the analogue of a 12-d. theory compactified on torus with modulus τ with F_{3}, H_{3} components of some 12-d. \hat{F}_{4} reduced along the 1-cycles of torus τ.

Topological Properties of Weierstraß Equation

\triangle Scalings :

$$
x \rightarrow \lambda^{2} x, y \rightarrow \lambda^{3} y, f(z) \rightarrow \lambda^{4} f(z), g(z) \rightarrow \lambda^{6} g(z)
$$

$\Rightarrow \mathcal{W E}$:

$$
\lambda^{6} y^{2}=\lambda^{6}\left(x^{3}+f(z) x+g(z)\right)
$$

Chern classes associated to bundle structure
$\Delta c_{1} \rightarrow 1^{\text {st }}$ Chern class of the Tangent Bundle to $S_{G U T}$
$\Delta-t \rightarrow 1^{\text {st }}$ Chern class of the Normal Bundle to $S_{G U T}$
Then:
$z \rightarrow[z]=-t$

$$
\text { If }:[x]=2\left(c_{1}-t\right) ; \quad[y]=3\left(c_{1}-t\right) ; \quad\left[b_{k}\right]=\eta-k c_{1}=(6-k) c_{1}-t
$$

$\mathcal{W E}$ transforms as: $6\left(c_{1}-t\right)$. For example:

$$
\left[b_{2} x z^{3}\right]=\left\{(6-2) c_{1}-t\right\}+\left\{2\left(c_{1}-t\right)\right\}-3 t=6\left(c_{1}-t\right)
$$

Kodaira classification:

- Type of Manifold singularity is specified by the vanishing order of $f(z), g(z)$ polynomials
- Singularities are classified in terms of $\mathcal{A D} \mathcal{E}$ Lie groups.

Interpretation of geometric singularities

$$
\begin{gathered}
\Downarrow \\
C Y_{4} \text {-Singularities } \rightleftarrows \text { gauge symmetries } \\
\hline
\end{gathered}
$$

$$
\text { gauge symmetries } \rightarrow\left\{\begin{array}{c}
S U(n) \\
S O(m) \\
\mathcal{E}_{n}
\end{array}\right.
$$

$\operatorname{ord}(f(z))$	$\operatorname{ord} g(z))$	$\operatorname{ord}(\Delta(z))$	fiber type	Singularity
0	0	n	I_{n}	A_{n-1}
≥ 1	1	2	$I I$	none
1	≥ 2	3	$I I I$	A_{1}
≥ 2	2	4	$I V$	A_{2}
2	≥ 3	$n+6$	I_{n}^{*}	D_{n+4}
≥ 2	3	$n+6$	I_{n}^{*}	D_{n+4}
≥ 3	4	8	$I V^{*}$	\mathcal{E}_{6}
3	≥ 5	9	$I I I^{*}$	\mathcal{E}_{7}
≥ 4	5	10	$I I^{*}$	\mathcal{E}_{8}

Table 1: Kodaira's classification of Elliptic Singularities with respect to the vanishing order of f, g, Δ with respect to z.

Tate's form

Useful algorithm for local description:
Procedure: (see Katz et al 1106:3854) Expand f, g

$$
f(z)=\sum_{n} f_{n} z^{n}, g(z)=\sum_{m} g_{m} z^{m}
$$

Then

$$
\left.\Delta=4\left[f_{0}+f_{1} z+\cdots\right)\right]^{3}+27\left[g_{0}+g_{1} z+\cdots\right]^{2}
$$

Demand $z / \Delta \Rightarrow$

$$
f_{0}=-\frac{1}{3} t^{2}, \quad g_{0}=\frac{2}{27} t^{3}
$$

while $\mathcal{W E}$ obtains Tate's $\mathbf{I}_{\mathbf{1}}$ form:

$$
y^{2}=x^{3}+t x^{2}+\left(f_{1}+f_{2} z+\cdots\right) z x+\left(\tilde{g}_{1}+\tilde{g}_{2} z+\cdots\right) z
$$

Tate's Form

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

The algorithm (Partial results)

Group	a_{1}	a_{2}	a_{3}	a_{4}	a_{6}	Δ
$S U(2 n)$	0	1	n	n	$2 n$	$2 n$
$S U(2 n+1)$	0	1	n	$n+1$	$2 n+1$	$2 n+1$
$S U(5)$	0	1	2	3	5	5
$S O(10)$	1	1	2	3	5	7
\mathcal{E}_{6}	1	2	3	3	5	8
\mathcal{E}_{7}	1	2	3	3	5	9
\mathcal{E}_{8}	1	2	3	4	5	10

[^0]
Basic ingredient in F-theory:

D7-brane

GUTs are associated to 7-branes wrapping certain classes ${ }^{\text {a }}$ of 'internal' 2-complex dim. surface S (called a 'divisor' $S \subset B_{3}$)

[^1]Δ The precise gauge group is determined by the singular fibers over the surface S .
Δ Elliptic Fibration: Highest singularity is \mathcal{E}_{8}
© Gauge symmetry: (in principle) Any \mathcal{E}_{8} subgroup $G \supset S M$:
$$
\mathcal{E}_{8} \rightarrow \mathbf{G}_{\mathrm{GUT}} \times \mathcal{C}_{\text {spectral cover }}
$$

* Spectral Cover \rightrightarrows useful local properties of $G_{G U T}$
Δ Sensible choice: $G_{G U T}=S U(5)$
(a single condition $c_{1}(\mathcal{L}) \cdot c_{1}(\mathcal{L})=-2$ ensures absence of exotics)

GUT example in this talk: $\mathrm{SU}(5)$

$\Delta \mathrm{SM}$ representations are accommodated as follows:
$\triangle S U(5)$ Chiral and Higgs Representations:

$$
\begin{aligned}
10 & \rightarrow Q+u^{c}+e^{c} \\
\overline{5} & \rightarrow d^{c}+\ell \\
5+\overline{5} & \rightarrow\left(T+h_{u}\right)+\left(\bar{T}+h_{d}\right)
\end{aligned}
$$

\triangle Yukawa Couplings:

$$
\begin{align*}
10 \cdot 10 \cdot 5 & \rightarrow m_{t o p} \tag{11}\\
10 \cdot \overline{5} \cdot \overline{5} & \rightarrow m_{b} \tag{12}
\end{align*}
$$

In top Yukawa-coupling 10's have to be the same!
... back in F-theory:
Matter is localised along intersections with other 7-branes...

Matter curve

remember that when 7-branes intersect $S, \Delta=0$, therefore along a matter curve Σ gauge symmetry is enhanced

Yukawa couplings are formed at triple intersections...
Triple Intersection

Now more 2 branes intersect, singularity increases and gauge symmetry is further enhanced. In particular:

$$
\begin{gathered}
\lambda_{b} 10 \cdot \overline{5} \cdot \overline{5} \in \mathbf{S O}(\mathbf{1 2}) \\
\lambda_{t} 10 \cdot 10 \cdot 5 \in \mathbf{E}_{6}
\end{gathered}
$$

Symmetry enhancements for $S U(5)$.

$G_{S}=S U(5):$ Singularity enhancement:
∇ Matter curves accommodating $\overline{5}$ are associated with $S U(6)$

$$
\begin{aligned}
\Sigma_{\overline{5}}=S \cap S_{\overline{5}} & \Rightarrow S U(5) \rightarrow S U(6) \\
\operatorname{ad}_{S U_{6}}=35 & \rightarrow 24_{0}+1_{0}+5_{6}+\overline{5}_{-6}
\end{aligned}
$$

Δ Matter curves accommodating 10 are associated with $S O(10)$

$$
\begin{aligned}
\Sigma_{10}=S \cap S_{10} & \Rightarrow S U(5) \rightarrow S O(10) \\
\operatorname{ad}_{S O_{10}}=45 & \rightarrow 24_{0}+1_{0}+10_{4}+\overline{10}_{-4}
\end{aligned}
$$

Δ Further enhancement in triple intersections \rightarrow Yukawas:

$$
\begin{aligned}
S O(10) \equiv E_{5} & \Rightarrow E_{6} \rightarrow 10 \cdot 10 \cdot 5 \\
S U(6) & \Rightarrow S O(12) \rightarrow 10 \cdot \overline{5} \cdot \overline{5}
\end{aligned}
$$

Matter is localised along intersections with other 7-branes...

$\lambda_{t, b}$-Yukawas at intersections and gauge symmetry enhancements

\star F-Spectrum

10-d Super YM theory :

$$
\left\{\begin{array}{l}
10 \operatorname{dim} \text { Gauge Field } A \\
\text { Adjoint fermions in } 16_{+} \text {of } S O(9,1)
\end{array}\right.
$$

Under Reduction $S O(9,1) \rightarrow S O(7,1) \times U(1)_{R}$ fields decompose to

$$
\left\{\begin{array}{l}
\text { 8dim Gauge Field } A \\
\text { scalars } \varphi, \bar{\varphi}=A_{8} \pm i A_{9} \\
\text { fermions } \Psi_{ \pm}=\left(S_{ \pm}, \pm \frac{1}{2}\right)
\end{array}\right.
$$

F-theory described by 8-d YM Compactified on $R^{7,1}=R^{3,1} \times S$.

$$
S O(7,1) \times U(1)_{R} \rightarrow S O(3,1) \times S O(4) \times U(1)_{R}
$$

The 8-d spinor Ψ_{+}decomposes $(O(4) \sim S U(2) \times S U(2))$

$$
\left(S_{+}, \frac{1}{2}\right) \rightarrow\left((2,1),(2,1), \frac{1}{2}\right) \oplus\left((1,2),(1,2),-\frac{1}{2}\right)
$$

\Rightarrow globally, NOT well defined!

TWIST:

$J \sim U(1) \in U(2), \quad J_{R} \sim U(1)_{R} \rightarrow J_{ \pm}=J \pm 2 J_{R}$

$$
\left(S_{+}, \frac{1}{2}\right) \rightarrow\left\{(2,1) \otimes 2_{1}\right\} \oplus\left\{(1,2) \otimes\left(1_{2} \oplus 1_{0}\right)\right\}
$$

preserving $\mathcal{N}=1$ SUSY.
(Beasley, Heckmann, Vafa, 0802.3391)

- Under twisting, scalars \& fermions become forms:

$$
\begin{aligned}
& \text { scalars: } \varphi=\varphi_{m n} d z^{m} \wedge d z^{n} \\
& \text { fermions : }= \begin{cases}\eta_{\alpha} & (0,0) \\
\psi_{\dot{\alpha}}=\psi_{\dot{\alpha} m} d z^{m} & (1,0) \\
\chi_{\alpha}=\chi_{\dot{\alpha} m n} d z^{m} \wedge d z^{n} & (2,0)\end{cases}
\end{aligned}
$$

The above can be organised in $\mathcal{N}=1$ multiplets

$$
\left(\mathbf{A}_{\mu}, \eta\right),\left(\mathbf{A}_{\overline{\mathbf{m}}}, \psi_{\overline{\mathbf{m}}}\right),\left(\phi_{\mathbf{1 2}}, \chi_{\mathbf{1 2}}\right)
$$

$$
\begin{align*}
& \text { Action } \\
& \mathcal{S}_{\mathcal{F}}=\int_{R^{3,1} \times \mathcal{S}} d^{4} x \operatorname{Tr}\left(\chi \wedge \partial_{A} \psi+2 i \sqrt{2} \omega \wedge \partial_{A} \eta \wedge \psi\right. \tag{13}\\
&+\left.\frac{1}{2} \psi \wedge[\varphi, \psi]+\sqrt{2} \eta[\bar{\varphi}, \chi]+\text { c.c. }\right)
\end{align*}
$$

Variating the action \rightarrow Equations of motion

$$
\begin{align*}
\bar{\partial}_{A} \chi-2 i \sqrt{2} \omega \wedge \partial_{A} \eta-[\varphi, \psi] & =0 \tag{14}\\
\bar{\partial}_{A} \psi-\sqrt{2}[\bar{\varphi}, \eta] & =0 \tag{15}\\
\omega \wedge \partial_{A} \psi+\frac{i}{2}[\bar{\varphi}, \chi] & =0 \tag{16}
\end{align*}
$$

Matter fields are represented by wavefunctions ψ_{i}, ϕ on the intersections of 7-branes with \mathbf{S}.

(Font et al, 1211.6529, Camara et al, 1110.2206, GKL, GG Ross, 1009.6000)

Yukawa coupling \propto integral of overlapping wavefunctions at the intersection

$$
\lambda_{i j} \sim \int_{S} \psi_{U}^{j} \psi_{Q}^{i} \psi_{H}
$$

Integral's main dependence is on local details near the intersection \Rightarrow reliable $\lambda_{i j}$-estimation without knowing global geometry!

Mechanisms for Fermion mass hierarchy

V If all three families are on the same matter curve, masses to lighter families can be generated by:
i) non-commutative fluxes Cecotti et al, 0910.0477
ii) non-perturbative effects, Aparicio et al, 1104.2609

V If families are distributed on different matter curves:
Implementation of Froggatt-Nielsen mechanism (Nucl.Phys. B147 (1979) 277) in F-models:
Dudas and Palti, 0912.0853
GKL and G.G. Ross, 1009.6000
Callaghan, King, GKL, Ross 1109.1399
Callaghan and King, 12106913
A Combined mechanism:
Only two families on the same matter curve

\mathcal{H}

The Spectral Cover

Recall Weierstrass' equation for the $S U(5)$ singularity

$$
y^{2}=x^{3}+b_{0} z^{5}+b_{2} x z^{3}+b_{3} y z^{2}+b_{4} x^{2} z+b_{5} x y
$$

\rightarrow spectral cover obtained by defining homogeneous coordinates

$$
z \rightarrow U, x \rightarrow V^{2}, y \rightarrow V^{3}
$$

so Weierstrass becomes

$$
\begin{gathered}
V^{6}=V^{6}+b_{0} U^{5}+b_{2} V^{2} U^{3}+b_{3} V^{3} U^{2}+b_{4} V^{4} U+b_{5} V^{5} \\
\text { Introduce Affine parameter }: s=\frac{U}{V}
\end{gathered}
$$

Then, $S U(5)$ spectra cover linked to the equation:

$$
\mathcal{C}_{5}: 0=b_{0} s^{5}+b_{2} s^{3}+b_{3} s^{2}+b_{4} s+b_{5}
$$

Notice that: $b_{1}=0 \rightarrow \sum_{i} s_{i}=0(S U(N)$ property)

* Origin and Nature of Family Symmetries

In F-theory all matter descends from the \mathcal{E}_{8}-adjoint decomposition
We already assumed

$$
\mathcal{E}_{8} \rightarrow S U(5)_{G U T} \times S U(5)_{\perp}
$$

therefore

$$
248=(24,1)+\left(1,24_{\perp}\right)+\left(10,5_{\perp}\right)+\left(\overline{5}, 10_{\perp}\right)+\left(5, \overline{10}_{\perp}\right)+(\overline{10}, \overline{5})_{\perp}
$$

Interpretation from geometric point of view:
$S U(5)_{G U T}$ fields reside on matter curves:

$$
\begin{align*}
\Sigma_{10_{t_{i}}} & : n_{10} \times 10_{t_{i}}+\bar{n}_{\overline{10}} \times \overline{10}_{-t_{i}} \tag{17}\\
\Sigma_{5_{t_{i}+t_{j}}} & : n_{5} \times \overline{5}_{t_{i}+t_{j}}+\bar{n}_{\overline{5}} \times 5_{-t_{i}-t_{j}} \tag{18}
\end{align*}
$$

Families on different curves distinguished by roots $t_{i}, t_{j} \in S U(5)_{\perp}$
Chirality generated by fluxes... see depiction next page \gg

Example: $S O(10) \rightarrow S U(5)$ breaking by $U(1)_{X}$ flux

$$
16 \Rightarrow 10_{1 / 5}+5_{3 / 3}+1_{1}
$$

Monodromies

Roots of Spectral Cover equation $\sum_{i} s_{i}=0$ are identified with $S U(5) \perp$ Cartan subalgebra:

$$
Q_{t}=\operatorname{diag}\left\{t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right\}
$$

* Matter curves characterised by t_{i} 's
* Polynomial coefficients depend on t_{i}

$$
b_{k}=b_{k}\left(t_{i}\right)
$$

but: Topological Properties are carried by $b_{k} \Rightarrow$
t_{i} must be expressed in terms of them:

$$
t_{i}=t_{i}\left(b_{k}\right)
$$

Inversion implies brunchcuts! \Rightarrow

EXAMPLE ..Simplest monodromy Z_{2} : :

$$
a_{1}+a_{2} s+a_{3} s^{2}=0 \rightarrow s_{1,2}=\frac{-a_{2} \pm \sqrt{\Delta}}{2 a_{3}}
$$

Under $\theta \rightarrow \theta+2 \pi \rightarrow \sqrt{\Delta} \rightarrow-\sqrt{\Delta}$ branes interchange locations

$$
s_{1} \leftrightarrow s_{2} \text { or } t_{1} \leftrightarrow t_{2}
$$

Two $\mathrm{U}(\mathbb{1})$'s related by monodromies, gauge symmetry reduces to:

$$
S U(5) \times U(1)^{4} \rightarrow \mathbf{S U}(\mathbf{5}) \times \mathbf{U}(\mathbf{1})^{3}
$$

Implications on Fermion Masses

∇ Monodromy $t_{1}=t_{2} \Rightarrow$ identification of matter curves

$$
\Sigma_{10_{t_{1}}}=\Sigma_{10_{t_{2}}} \rightarrow \Sigma_{10_{3}}
$$

$3^{r d}$ Family assigned on them

$$
10_{t_{1}} \cdot 10_{t_{2}} \cdot 5_{H} \rightarrow \lambda_{t} 10_{3} \cdot 10_{3} \cdot 5_{H} \rightarrow m_{t}
$$

∇ Fermion mass Hierarchy organised by the remaining $U(1)$'s from underlying \mathcal{E}_{8} via Singlet vevs $\left\langle\theta_{i j}\right\rangle$
$S U(5)_{\perp}$ breaking patterns may correspond to any of the possible spittings of the Spectral Cover:

$$
\begin{aligned}
\mathcal{C}_{5} & \rightarrow \mathcal{C}_{4} \times \mathcal{C}_{1} \\
\mathcal{C}_{5} & \rightarrow \mathcal{C}_{3} \times \mathcal{C}_{2}
\end{aligned}
$$

... with the roots respectively forming "finite groups" such as:

$$
\begin{array}{rll}
\mathcal{S}_{4}, \mathcal{A}_{4}, \mathcal{Z}_{4}: & \left\{t_{1}, t_{2}, t_{3}, t_{4}\right\},\left\{t_{5}\right\} \\
\mathcal{S}_{3}, \mathcal{Z}_{3} \times \mathcal{Z}_{2}: & \left\{t_{1}, t_{2}, t_{3}\right\},\left\{t_{4}, t_{5}\right\} \\
\mathcal{Z}_{2} \times \mathcal{Z}_{2}: & \left\{t_{1}, t_{2}\right\},\left\{t_{3}, t_{4}\right\},\left\{t_{5}\right\} \\
\mathcal{Z}_{2}: & \left\{t_{1}, t_{2}\right\},\left\{t_{3}\right\},\left\{t_{4}\right\},\left\{t_{5}\right\}
\end{array}
$$

$$
\begin{equation*}
\ldots \quad \text {... } \tag{19}
\end{equation*}
$$

Δ Application: The $\mathcal{C}_{4} \times \mathcal{C}_{1}$ case
Δ Motivation: The neutrino sector
$\Delta \mathcal{C}_{4} \times \mathcal{C}_{1}$ implies the splitting of the polynomial in two factors

$$
\sum b_{k} s^{5-k}=(\underbrace{a_{1}+a_{2} s+a_{3} s^{2}+a_{4} s^{3}+a_{5} s^{4}}_{\mathcal{C}_{4}})(\underbrace{a_{6}+a_{7} s}_{\mathcal{C}_{1}})
$$

Topological properties of a_{i} are fixed in terms of those of b_{k}, by equating coefficients of same powers of s

$$
b_{0}=a_{5} a_{7}, b_{5}=a_{1} a_{6}, \text { etc } \ldots
$$

Moreover:
$\Delta \mathcal{C}_{1}$: associated to a $\mathcal{U}(1)$
$\Delta \mathcal{C}_{4}$: reduction to (i) continuous $S U(4)$ subgroup, or
(ii) to Galois group $\in S_{4}$ (see I. Antoniadis and GKL 1308.1581)

Properties and Residual Spectral Cover Symmetry

Δ If $\mathcal{H} \in S_{4}$ the Galois group, final symmetry of the model is:

Δ The final subgroup $\mathcal{H} \in S_{4}$ is linked to specific topological properties of the polynomial coefficients a_{i}.
Δa_{i} coefficients determine useful properties of the model, such as
i) Geometric symmetries $\rightarrow \mathcal{R}$-parity
ii) Flux restrictions on the matter curves

A Fluxes determine useful properties on the matter curves including:
Multiplicities and Chirality of matter/Higgs representations

Determining the Galois group in \mathcal{C}_{4}-spectral cover

In order to find out which is the Galois group, we examine partially symmetric functions of roots t_{i} (Lagrange method)
1.) The Discriminant Δ

$$
\Delta=\delta^{2} \text { where } \delta=\prod_{i<j}\left(t_{i}-t_{j}\right)
$$

δ is invariant under S_{4}-even permutations $\Rightarrow \mathcal{A}_{4}$
Δ symmetric \rightarrow can be expressed in terms of coefficients $a_{i} \in \mathcal{F}$

$$
\Delta\left(t_{i}\right) \rightarrow \Delta\left(a_{i}\right)
$$

If $\Delta=\delta^{2}$, such that $\delta\left(a_{i}\right) \in \mathcal{F}$, then

$$
\mathcal{H} \subseteq \mathcal{A}_{4} \text { or } V_{4} \quad(=\text { Klein group })
$$

If $\Delta \neq \delta^{2}$, (i.e. $\delta\left(a_{i}\right) \notin \mathcal{F}$), then

$$
\mathcal{H} \subseteq \mathcal{S}_{4} \text { or } \mathcal{D}_{4}
$$

2.) To study possible reductions of S_{4}, A_{4} to their subgroups, another partially symmetric function should be examined:

$$
\begin{gathered}
f(x)=\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) \\
x_{1}=t_{1} t_{2}+t_{3} t_{4}, \quad x_{2}=t_{1} t_{3}+t_{2} t_{4}, \quad x_{3}=t_{2} t_{3}+t_{1} t_{4}
\end{gathered}
$$

$x_{1,2,3}$ are invariant under the three Dihedral groups $D_{4} \in S_{4}$.
Combined results of Δ and $f(x)$:

	$\Delta \neq \delta^{2}$	$\Delta=\delta^{2}$
$f(x)$ irreducible	S_{4}	A_{4}
$f(x)$ reducible	D_{4}, Z_{4}	V_{4}

The induced restrictions on the coefficients a_{i}

1. Tracelessness condition $b_{1}=0$ demands

$$
a_{4}=a_{0} a_{6}, \quad a_{5}=-a_{0} a_{7}
$$

2. The requirement that the discriminant is a square $\Delta=\delta^{2}$ imposes the following relations among a_{i} :

$$
\left(a_{2}^{2} a_{5}-a_{4}^{2} a_{1}\right)^{2}=\left(\frac{16 a_{1} a_{5}-a_{2} a_{4}}{3}\right)^{3}
$$

3. Reducibility of the function $f(x)$ is achieved if

$$
f(0)=4 a_{5} a_{3} a_{1}-a_{1} a_{4}^{2}-a_{5} a_{2}^{2}=0
$$

[^0]: Model Building

[^1]: ${ }^{\text {a }}$ del Pezzo, Enrique, Hirtzebruch

