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A

Properties of Ordinary GUT's



Gauge coupling unification
Assembling of SM fermions in a few irreps.
Charge Quantisation
% deficiencies
A fermion mass hierarchy and mixing not predicted
A Yukawa Lagrangian poorly constrained
A Baryon number non-conservation

... Solution requires new insights ...

Discrete and U (1) symmetry extensions

A These appear naturally in constructions A



New Ingredients from F-theory

Discrete and U (1) symmetries:

® necessary tools to suppress or eliminate undesired superpotential terms
Fluxes :

® ... truncate GUT irreps, eliminate Higgs triplets, induce chirality...
“Internal” Geometry :

® ... determines SM arbitrary parameters from a handful of properties



Rational Points on Elliptic Curves



Rational Points (R.P.) on Conics

(x.y)
t
(- | 0)!

e Choose one R.P. on conic - taken here to be (—1, 0).

e Project all others on a line (here axis v):

1 —¢2 21
€T = —
112 711

R.P. on line 1-1 with R.P. on circle



% Real Rational Elliptic Curves

General cubic equation with rational coefficients f(z,y) = 0:

f=a12° + az®y + azzy® + asy® + asx® + agwy + ary® + agr + agy + aio

rational points on elliptic curve? Non-trivial to find but:

They obey a group law!



The Group Law on Elliptic Curves

The addition law: P + () (left).
(P, ) = rational — P + () rational.)
The opposite element P + (—P) = O (right)



Mordell Theorem

4

The Rational Points on Elliptic Curve constitute a finitely generated Abelian Group

4

Mordell - Weil Group

10



Any cubic equation with a rational point can be written in:

Y Weierstrass form:
y2 — 34 fx+g

Two important quantities characterising elliptic curves:

1. The Discriminant;

A =41 4 274*
... classifies the curves with respect to its singularities

2. The j-invariant function:

(241)°

413 + 2742

... takes the same value for equivalent elliptic curves
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The role of the Discriminant

A: Non-singular curves: A # 0.

i 1 i /"
1 | r p 1
I - | i / 1

examples of non-singular curves (A # 0) :

1 real root (left), 3 real roots (right).
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[3: Singular cases: Discriminant: A = 0
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Singular curves (A = 0):
double root (left), cusp (right)
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% Weierstrass form ... x- symmetric curve :

0
P*Q
0
P
C P+0Q

Addition on Weierstrass form: The zero element O is at infinity.
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% Weierstrass equation with complex coefficients

Real Complex

e

Complex coefficients:— topology of torus.
Non-singular curve (A # 0) “upgrades” to normal torus

Singular curve (A = 0) corresponds to torus with a pinched radius.
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F-theory and Elliptic Fibration

16



% F-theory %
(Vafa 1996)

Geometrisation of Type |I-B superstring

lI-B: closed string spectrum obtained by combining left and right moving open strings with NS and

R-boundary conditions:

 (NS.,R_), (R_,NS,)

Bosonic spectrum:

. graviton, dilaton and 2-form KB-field:

Juv, o, Bw/ — By
: scalar, 2- and 4-index fields (p-form potentials)

CO) C,UJ/7 CFL)\,UJ/ — Cpa p=0,2,4
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Definitions (£'-theory bosonic part)
1. String coupling: g,,, = e ¢

2. Combining the two scalars (', ¢ to one modulus:

1
T:C0+7:6_¢—>Co‘|‘—

gIIB

lIB - action (see e.g. Denef, 0803:1194):

1 1
Srig o /leZC\/—gR— —/ dr N\ *xdT
2 )] (Imr)?
1 — 1 -~ ~
-+ —Gg/\*G3+—F5/\*F5—|—C4/\H3/\F3
Im7 2

Property:.

Invariant under S L(2, Z) S-duality:

aT-+b
T = ct+d
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FIBRATION
F-theory R>1 x X
— X, elliptically fibered CY 4-fold over B3

4

atorus 7 = Cy + 1/ g, at each point of B3

CY 4-fold : Red points: pinched torus = 7-branes | B3

19



described by WWeierstral £ quation

vt o= a7+ f(2) ew’ + g(2)w”
For each point of B3, the above equation describes a torus
1. x,vy, z homogeneous coordinates
2. f(2), g(z) — 8" and 12"" degree polynomials.

3. Discriminant

A(z) =4 f° +274°

Fiber singularities at
A(z) =0 — 24 roots z;

4
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7-invariant function can be written in terms of modulus 7

3

j(r) = 4 (24Af> W
x e T L 744 4+ O(e2™T) )

24
A = H(z — ) 3)

i=1

Solving
1
TS log(z — ;)

Circling around z;:
T—o74+1 =Cy—Cy+1

— 7, Cp undergo Monodromy.

21



At z = z; dsource of RR-flux which is interpreted as a:

D7-brane at z = z;

D7

Figure 1: Moving around z;, log(z) — log |z| +i(2r +6)and 7 — 7 + 1

22



e Type of Manifold singularity is specified by the vanishing order of f(w), g(w) polynomials
e Singularities are classified in terms of A D £ Lie groups.

Interpretation of geometric singularities

4

C'Y,-Singularities < gauge symmetries

/

SU (n)
— ¢ SO(m)
gn
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Tate’s Algorithm

y2 —|—a1:13y2+a3y23 :$3—|—a2x2z2—|—a4xz4—|—a6z

6

Table: Classification of Elliptic Singularities w.r.t. vanishing order of Tate’s form coefficients a;:

Group a1 | as | as a4 ag A
SU (2n) 0| 1| n n 2n 2n
SU2n+1)| 0 | 1 | n +1 | 2n+1]| 2n+1
SU(5) 0| 1 | 2 3 5 5
SO(10) 1| 1] 2 3 5 7
Ee 1 12| 3 3 5 8
Eq 1] 2|3 3 5 9
Es 1 2 3 4 5 10
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F-theory Model Building

25



Basic ingredient in F-theory:
D7 - brane

GUTs are associated to 7-branes wrapping certain classes of ‘internal’ 2-complex dim. surface S C Bj

A Gauge symmetry:
88 — GGUT X C
A Goyr = SU<5>, SO(lO),

convenient description in the context of spectral cover

C Commutant ... monodromies:

U(1)"™, or discrete symmetry S,,, 4,,, Dy, Z,

... acting as family or discrete symmetries (for interesting low energy implications see:)
Karozas, King, GKL, Meadowcroft 1505.000937
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Example: SU (5) : Matter along intersections with other 7-branes

SU(5) bulk

S0(12)

)\t,b-Yukawas at intersections and gauge symmetry enhancements
( Heckman et al 0811.2417; Font et al 0907.4895; GG Ross, GKL, 1009.6000);
( Cecotti et al 0910.0477; Camara et al, 1110,2206; Aparicio et al, 1104.2609,...)
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Fluxes

SU (5)-Chirality

_ n(3,1)_; —n(3,1) 1 = M5
#5 — #5 = 3 E @)
n(1,2);1 —n(l,2)_1 = Ms
( TL(S, 2)—|—1/6 — n(g, 2)—1/6 = MlO
#10 — #10 = ¢ n(3, 1)_o/3—=n(3,1)42/3 = Mg (5)
. n(lal)—l-l _n(lvl)—l — MlO
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Hypercharge flux

SU (5) breaking and Splitting of representations

_ , _;—n(B,l) 1 = M5
#5 — #5 = g i (6)
n1,2)+%—n(1,2)_% = Ms+ N
( _
n(3,2)116 —n(3,2)—16 = Mo
#10 —#10 = ¢ n(3,1) g3 —n(3,1) 123 = Mg — N (7)
. n(lal)—l-l _n(lvl)—l — MlO"i_N
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R-parity:a specific example 1505.000937
eliminated by Y-flux
10 — (9, u’,e) — (—,uc, e

parity violating term 1055 — \ p,, u€ d€ d° —

S

Figure 2: Feynman box graph for oscillations (Goity&Sher PLB 346(1995)69)
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A gpul

| | |
1000

1400
M:(GeV)

Figure 3: \gp,, bounds for: Blue: Mz = Mz; = 0.8 TeV, Dashed: My = Mz =1T¢eV,

My = Mz;=12TeV. (MBL = MI;R = 500GeV, T = 10%sec.).
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Mordell-Weil U (1) and £ GUT
Antoniadis & GKL 1404.6720
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% A new class of Abelian Symmetries associated to Rational Sections of elliptic curves

Mordell-Weil group ... finitely generated:

ZOLS-- - BLEG

r

Abelian group: Rank -  (unknown)

Torsion part: G — :

T n=1,2...,10,12
Ti X Zo k=2,4,6,8

— ... models with new U (1)’s and Discrete Symmetries from Mordell-Weil
(Cvetic et al 1210.6094,1307.6425; Mayhofer et al, 1211.6742; Borchmann et al 1307.2902; Krippendorf et
al, 1401.7844)
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Simplest (and perhaps most viable) Case:
Rank-1 Mordell-Well

To construct a model with Mordell-Weil U (1)’s, one starts with a line bundle.

e Let point P associated to holomorphic section

e point () associated to rational section

* M = O(P + Q) deg-2 line bundle.

Riemann-Roch theorem for genus-1 curves:

# of global sections = to its degree 1" (M) = d —
Sections required: [u ;v :w| =[1:1:2] —
[P(1,1,2)-weighted projective space

... described by the equation: (see Morrison & Park 1208.2695)

w? + anviw = u(bou3 + byulv + bouv? + bg’U3)

34



Need to obtain Standard form of Weierstrass model... to read off the non-Abelian singularity part

Birational Map

Vo= 129 8)
biu? — a3 (bou? + )
b
w = idaid - (©)

biu? — a3 (bou? + )  as

u = z (10)

35



These lead to the Weierstral3 equation in Tate’s form

b
y? + 2—3xyz + brasyz® =
az

2
Ay

b2
x>+ (b — —3> 1222

—boaszz* — boas (bg —

36



but now Tate’s coefficients are not all independent !

b b3
y? + 2—3$yz + brasyz® = x°+ (bg — —;’) 222
b2
— Tzt — (bg — —3
Ay
... comparing with standard general Tate’s form:
y2 + 1 TYz + agyz3 = x° + 04231222 — 0443524 — a626

Observation:

Og — (a(¥yg

37



Implications on the non-abelian structure

Assume local expansion of Tate’s coefficients

o = ag,o + o1l + -

Vanishing orders for SU (2n):

ay = a1+
a4 p— a4’n€n _|— . o e
Qg = 046,2n§2n +oee

Qg = Qaly — a2,1a4,n§”+1 = a6,2n§2n = n=1
...from SU (n) series, compatible are Only for:

SU(2), and SU(3)

38



... extending the analysis to exceptional groups...

Viable non-Abelian GUTs with U (1) prp1

and the vanishing order of the coefficients aa ~ a2 ,,§"", b ~ b "

Group as by b7 by b3

39



If:

... Tate’s form exhibits a /3 symmetry:

y2 + o1 xyz + a3y23 = 3

Final Model

86 X U(l)Mw/Zg

40



Remarks
Spectral Cover:

Models with gauge symmetry

Gour X € Fg

Non-abelian discrete symmetries naturally incorporated
% Sn, An, U(l) *

Mordell-Weil:

... gauge symmetries with one abelian Mordell-Weil:
56 X U(l)Mw, 57 X U(l)MW

.. extra U (1) 5y might have interesting implications to Model building ...

Torsion group: possible explanation of discrete symmetries...

41



STRING PHENO 2016

15th conference in the
String Phenomenology Conference series

http://stringpheno201 6.physics.u‘oi.gr

e-mail: stringpheno2016@conf.uoi.gr
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Additional Material

43



lIB - action leading to equs of motion:
(see for example Denef 0803.1194)

1 1
S[[B X /dlofx/—gR—§/

(Tm7)? dr N *dT
mr

1 — 1 ~ ~
+ ——G3 AxGs+ —F5 AN xF5 +Cy N H3 N\ F3
ImT7 2

Properties:

1. Invariant under S L(2, Z) S-duality:
artb H d c H

T — ——= and —
d
ert F b a F

2. This is the analogue of a 12-d. theory compactified on torus with modulus 7 with F3, Hg

components of some 12-d. F4 reduced along the 1-cycles of torus 7.
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Topological Properties of Weierstral3 Equation

Scalings :
= N,y = Ny, f(2) = N f(2), 9(z) = \g(2)

WE : Ay = X% + f(2)x +g(2))
Chern classes associated to bundle structure

c1 — 15t Chern class of the Tangent Bundle to SqyT
—t — 15% Chern class of the Normal Bundle to ScuT
Then:
z—|z] = —t

If:[x] =2(c1 —t); |y =3(c1 —1t); [bpl =n—ker = (6—k)ey —t

WE transforms as: | 6 (¢; — t) |. For example:

(boxz®] = {(6 —2)c; —t} +{2(ci —t)} =3t = 6(c; — 1)
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e Type of Manifold singularity is specified by the vanishing order of f(z), g(z) polynomials
e Singularities are classified in terms of A D £ Lie groups.

Interpretation of geometric singularities

4

C'Y,-Singularities < gauge symmetries

gauge symmetries — <

46



ord(f(2)) | ordg(z)) | ord(A(z)) | fibertype | Singularity
0 0 n I, Ap_q

> 1 1 2 17 none

1 > 2 3 111 Aq

> 2 2 4 A% As

2 >3 n + 6 rx Dy

> 2 3 n+ 6 I D,y

> 3 4 8 IvV* Es

3 > 9 9 111~ Eq

> 4 5 10 17" Es

respect to 2.

47

Table 1: Kodaira’s classification of Elliptic Singularities with respect to the vanishing order of f, g, A with




Tate’s form

Useful algorithm for local description:
Procedure: (see Katz et al 1106:3854) Expand f, g

F2) =3 far" 9(2) = 3 g™

Then
A=4[fo+ fiz+- ) +27[g0 + qrz+ -

Demand z/A =
1
fo=—3 1 go=o

while YV & obtains Tate’s I form:

v =2t +tr? + (it fozr+ )2+ (G1 + Gaz + - 0)2

48



Tate’s Form

y2—|—a1:1:y—|—a3y:x3—|—a2:1:2—|—a4x—|—a6

The algorithm  (Partial results)

Group a1 | as | as a4 ag A
SU (2n) 0| 1 | n n 2n 2n
SU2n+1) | 0o | 1 | n |n+1l|2n+1|2n+1
SU(5) o | 1 | 2 3 5 5
SO(10) 1] 1| 2 3 5 7
Ee 123 3 5 8
Er 1| 2|3 3 5 9
Es 1 12| 3 4 5 10
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Model Building
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Basic ingredient in F-theory:
DT - brane

GUTs are associated to 7-branes wrapping certain classes ? of ‘internal’ 2-complex dim. surface S
(called a ‘divisor' S C Bj)

2del Pezzo, Enrique, Hirtzebruch
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A The precise gauge group is determined by the singular fibers over the surface S.
A Elliptic Fibration: Highest singularity is £3

A Gauge symmetry: (in principle) Any Eg subgroup G O SM:

58 — GGUT X Cspectral cover

Spectral Cover useful local properties of Gyt

A Sensible choice: Ggyr = SU(H)

(a single condition ¢1 (L) - ¢1(£) = —2 ensures absence of exotics )

52



GUT example in this talk: SU(5)

SM representations are accommodated as follows:

SU (5) Chiral and Higgs Representations:

10 —- Q4 u“+e°
5 — d°4+¢
545 — (T+hy)+ (T + hg)

Yukawa Couplings:

10-10-5 = 1m0y (11)

10-5:-5 — my (12)

In top Yukawa-coupling 10’s have to be the same!

53



... back in F-theory:

Matter is localised along intersections with other 7-branes...

Matter curve

remember that when 7-branes intersect S, A = 0, therefore along a matter curve > gauge symmetry is

enhanced
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Yukawa couplings are formed at triple intersections...

Triple Intersection

Now more 2 branes intersect, singularity increases and gauge symmetry is further enhanced. In

particular:

M 10-5-5 € SO(12)
A 10-10-5 € Eg

955



Symmetry enhancements for SU (5).

. —0—0—0—0 su®
&

—0—0—4=0 O

SU(5) p

0 o—o I o SO(10)
SU(6) 053
0—0—0——0—0 o —>» 0—0——20 O S0O(12)

SO(10) 1010 5 I
o—eo I o 0 — "5 0—0 o—eo F

56



Gs = SU(5): Singularity enhancement:

Matter curves accommodating 5 are associated with SU (6)
S:=S5n0Ss = SU(5) — SU(6)
adsy, =35 — 240+ 1g+55+5 ¢
Matter curves accommodating 10 are associated with SO(10)
Yio=5NS,y = SUB)— SO(10)
adso,, =45 — 249+ 19+ 104+ 10_4
AV Further enhancement in triple intersections—»
SO(10)=FE; = FEg—
SU6) = S0O(12) —

S7



Matter is localised along intersections with other 7-branes...

SU(5) bulk

S0(12)

)\t,b-Yukawas at intersections and gauge symmetry enhancements
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% F-Spectrum

10-d Super YM theory :

10dim Gauge Field A
Adjoint fermionsin 16, of SO(9,1)

Under Reduction SO(9,1) — SO(7,1) x U(1)r fields decompose to

/

8dim Gauge Field A
§ scalarsy, p = Ag & 1 Ag

\ fermions W = (54, i%)
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F'-theory described by 8-d YM on R"1 = R31 x S,
SO(7,1) xU(1)g — SO(3,1) x SO(4) x U(1)g

The 8-d spinor ¥ decomposes (O(4) ~ SU(2) x SU(2))

(s+, %) R ((2,1),(2,1), %) o ((1,2),(1,2),_%)

=> globally, NOT well defined!

JNU(1)€U<2), JRNU(l)R — Jr =J+2JR

(s+, %) = {2, 1) @21} e {(1,2) ® (12 ® 19)}

preserving N/ = 1 SUSY.
(Beasley, Heckmann, Vafa, 0802.3391)
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e Under twisting, scalars & fermions become forms:

scalars : ¢ =  Qpndz™ ANdzZ"
(
Mo
fermions: = ¢ s = Vam dz™
L Xa = Xamn dz™ N dz"

The above can be organised in A/ = 1 multiplets

(Auan)v (Ama¢m)a (¢12,X12)
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Action

Sr = / diz Tr (X/\E?Aw—l—Qi\wa/\@An/\w
R3:1 xS

b 30 Al ¥l + VBl + e

Variating the action — Equations of motion

Oax — 20V2w A Oan — [, )] = 0
w/\@ﬂﬂ"‘%[%X] = 0

62
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Vv Matter fields are represented by wavefunctions 1);, ¢ on the intersections of 7-branes with S.

o f(z)) exp(—|zL]?)

(Font et al, 1211.6529, Camara et al, 1110.2206, GKL, GG Ross, 1009.6000)
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Yukawa coupling o< integral of overlapping wavefunctions

at the intersection

Aij N/Sw%}%wﬂ

Integral’s main dependence is on local details near the intersection = reliable )\ij-estimation without

knowing global geometry!
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Mechanisms for Fermion mass hierarchy

V If all three families are on the same matter curve, masses to lighter families can be generated by:
1) non-commutative fluxes Cecotti et al, 0910.0477

11) non-perturbative effects, Aparicio et al, 1104.2609

V If families are distributed on different matter curves:
Implementation of Froggatt-Nielsen mechanism (Nucl.Phys. B147 (1979) 277) in F-models:
Dudas and Palti, 0912.0853
GKL and G.G. Ross, 1009.6000
Callaghan, King, GKL, Ross 1109.1399
Callaghan and King, 12106913

Combined mechanism:

Only two families on the same matter curve
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H

The Spectral Cover

66



Recall Weierstrass’ equation for the SU (5) singularity
y? = 2% + bo2® + baxz® 4 byyz? + byx’z + bszy
— spectral cover obtained by defining homogeneous coordinates
z U -V y—s V3
so Weierstrass becomes

O = VO 4 U + bV 2U? + b3V 2U? 4 by VAU + b5 17

U
Introduce Affine parameter : s = —

Then, SU(5) spectra cover linked to the equation:

C5 10 = b085 + b283 + 1)382 -+ b48 -+ b5

Notice that: by =0 — > . s; = 0 (SU(IN) property)
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Origin and Nature of Family Symmetries

In F-theory all matter descends from the £g-adjoint decomposition

We already assumed

58 — SU<5>GUT X SU<5)J_

therefore

248 = (24,1) + (1,24,) + (10,5, ) + (5,10, ) + (5,10, ) + (10,5) 1

SU (5)qu fields reside on matter curves:

Eloti . Nio X 10,51 + Ny X 10_“ (17)

Z5t7j+tj . Ny X gti—i—tj + ng X 5_751._753. (18)

Families on different curves distinguished by roots t;,t; € SU(5)

Chirality generated by fluxes... see depiction next page >
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Example:

SO(10) — SU(5) breaking by U (1) x flux

16 :>101/5 t 5-3/5+ 11




Monodromies

Roots of Spectral Cover equation ) . s; = 0 are identified with SU (5) | Cartan subalgebra:

Qt — diag{t17 t27 t37 t47 t5}

Matter curves characterised by ¢;’s

* Polynomial coefficients depend on ¢;

but: Topological Properties are carried by b, =

t; must be expressed in terms of them:
ti =t;(bg)

Inversion implies brunchcuts !
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EXAMPLE ..Simplest monodromy /5 : :

—aQ:I:\/Z

2&3

aq —|—a23+a332 =0—=812=

Under 6 — 6 + 2m — v A — —+/ A branes interchange locations

S1 <> S Or 11 <+ 19

Two 's related by monodromies , gauge symmetry reduces to:

SU(5) x U(1)* = SU(5) x U(1)*

/1



Implications on Fermion Masses

¥ Monodromy t1 = o = identification of matter curves

2110, = 2310, — 24103

v 37 Family assigned on them
104, - 104, -5 — A+ 103 - 103 - 55 — my

¥ Fermion mass Hierarchy organised by the remaining U (1)’s from underlying g via Singlet vevs (0, ;)
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SU(5) 1 breaking patterns may correspond to any of the possible spittings of

the Spectral Cover:
C5 — C4 X Cl

C5 — CgXCQ

... with the roots respectively forming “finite groups” such as:
Sa, Ay, 24 0 {t1,ta,t3,ta}, {ts5}
S3,Z3 X Z9 ¢ Aty,ta,t3}, {ts,t5}
Zo X Z9 ¢ A{t1,ta}, {t3, ta}, {t5}
{t1.ta), {ts}, {ta), {ts}

(19)
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Examples

Application: The C4 X C; case

Motivation: The neutrino sector

C4 x Cq implies the splitting of the polynomial in two factors

Zbks a,l + a9s + a3s® + ays +a584)(g6 +a,7§)

~~

C4 Cl

Topological properties of a; are fixed in terms of those of by, by equating coefficients of same powers of s
b() — asar, b5 = a10Ge¢, etc...

Moreover:
C1 : associatedto a /(1)
C4 : reduction to (7) continuous SU (4) subgroup, or
(42) to Galois group € Sy (see |. Antoniadis and GKL 1308.1581)
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Properties and Residual Spectral Cover Symmetry

If H € S, the Galois group, final symmetry of the model is:

SU(5)GUT X H X Z/[(l)

~
famaly symmetry

The final subgroup H € S, is linked to specific topological properties of the polynomial coefficients a;.

a,; coefficients determine useful properties of the model, such as

7) symmetries — R-parity

11) Flux restrictions on the matter curves
Fluxes determine useful properties on the matter curves including :

Multiplicities and Chirality of matter/Higgs representations
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Determining the Galois group in C4-spectral cover

In order to find out which is the Galois group, we examine partially symmetric functions of roots ¢;

(Lagrange method)

1.) The Discriminant A
A = §% where § = I_I(tZ —t5)
1<Jg
J is invariant under S -even permutations = A,

/A symmetric — can be expressed in terms of coefficients a; € F
A(t;)) — Alay)
If A = 62, such that (a;) € F, then
H C AyorVy (= Klein group)
It A # 62, (i.e. 6(a;) ¢ F), then

H C SyorDy
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2.) To study possible reductions of Sy, A4 to their subgroups, another partially symmetric function should

be examined:
f(x) = (v —21)(x — 22)(x — 23)
x1 = 1ty +13ty, wo = t1t3 + tats, 3 = tals + t1ly

21,23 are invariant under the three Dihedral groups Dy € Sa.

Combined results of A and f(x) :

A#£52 A=

f () irreducible Sy Ay

f(z) reducible Dy, Z,

77/



The induced restrictions on the coefficients a;

1. Tracelessness condition by = 0 demands
a4 = GpGe, A5 = —agary

2. The requirement that the discriminant is a square A\ = 52 imposes the following relations among a;:

2 2 2 16&1&5 — 204 3
(CLQ as — Q4 &1) = 3

3. Reducibility of the function f(x) is achieved if

f(0) = 4asaza, — a1a4’ — asas® =0

/8



