Helical black holes with higher derivative corrections

Michael Haack Arnold Sommerfeld Center (Munich)

Nafplio, July 9, 2015

Work in progress with Daniel Brattan, Abhiram Kidambi and Amos Yarom

Motivation

 5D RN black holes in AdS unstable to helical phase if CS-term in

$$S = \int d^5 x \sqrt{-g} [(R+12) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}] - \frac{2}{3} \alpha \int F \wedge F \wedge A$$

large enough, i.e. $\alpha > \alpha_c \approx 0.2896$ [Nakamura, Ooguri, Park]

• 5D minimal gauged $\mathcal{N} = 2$ SUGRA:

$$\alpha_s = \frac{1}{2\sqrt{3}} \approx 0.2887 < \alpha_c$$

• But $\frac{\alpha_c - \alpha_s}{\alpha_c} \approx 0.003$

- Could higher derivative corrections to α_s and α_c lead to $\alpha_s > \alpha_c$, i.e. an instability?
- New BH solutions in string theory with helical structure of horizon?
- Potential applications in AdS/CFT?

[Related work: Takeuchi; Ooguri, Park]

Minimal 5D SUGRA relevant:

For any supersymmetric solution of D = 10 or D = 11 supergravity that consists of a warped product of d + 1 dimensional anti-de-Sitter space with a Riemannian manifold M, $AdS_{d+1} \times_w M$, there is a consistent Kaluza-Klein truncation on M to a gauged supergravity theory in d + 1dimensions for which the fields are dual to those in the superconformal current multiplet of the d-dimensional dual SCFT. [Gauntlett, Varela]

Overview

- Review instability without higher derivative corrections
 [Nakamura, Ooguri, Park; Donos, Gauntlett]
- Review higher derivative corrections to 5D minimal $\mathcal{N}=2$ gauged SUGRA and RN black hole [Myers, Paulos, Sinha]
- Instability with higher derivative corrections
- Outlook

Instability without higher derivative corrections

• Instability most likely to occur at T = 0 \Rightarrow consider extremal RN

• Near horizon geometry $AdS_2 \times \mathbb{R}^3$ \Rightarrow look for modes with $m^2_{AdS_2} < m^2_{BF} = -\frac{1}{4r_2^2}$ $r_2 : AdS_2$ -radius

Ansatz: [Donos, Gauntlett; cf. also Nakamura, Ooguri, Park]

$$ds^{2} = \frac{-dt^{2} + dr^{2}}{12r^{2}} + d\vec{x}^{2} + Q^{2}dt^{2} + 2Q\omega_{2}dt$$

with

 $\omega_2 = \cos(kx_1)dx_2 - \sin(kx_1)dx_3$

• Killing vectors: $\partial_{x_2}, \ \partial_{x_3}$ $\partial_{x_1} - k(x_2 \partial_{x_3} - x_3 \partial_{x_2})$

•
$$A = rac{E}{12r}dt + b\omega_2$$
 with $E = 2\sqrt{6}$
near horizon electrical field

To linear order in b, Q (enough to analyze onset of instability):

 $(\Box_{AdS_2} - k^2)\psi + E \Box_{AdS_2}b = 0$ $(\Box_{AdS_2} - k^2)b - 4\alpha Ekb + E\psi = 0$

with $\psi = -12r^2Q'$

• Strategy: (1) Determine effective mass $m^2(k, \alpha)$

(2) Determine $k_0(\alpha)$ minimizing $m^2(k, \alpha)$ for fixed $\alpha \Rightarrow m_{\min}^2(\alpha) = m^2(k_0(\alpha), \alpha)$

(3) Find α_c for which $m_{\min}^2(\alpha) < m_{BF}^2$ for $\alpha > \alpha_c$

Concretely:

(1) det
$$\begin{pmatrix} m^2 - k^2 & Em^2 \\ E & m^2 - k^2 - 4\alpha Ek \end{pmatrix} = 0$$

$$\Rightarrow m^{2} = \frac{1}{2} \left(2k^{2} + E^{2} + 4\alpha Ek - E\sqrt{E^{2} + 8\alpha Ek + 4k^{2}(1 + 4\alpha^{2})} \right)$$

(2)
$$k_0 = E \frac{2\alpha + 4\alpha^3 + \alpha\sqrt{1 + 4\alpha^2 + 16\alpha^4}}{1 + 4\alpha^2}$$

 m_{BF}^{0}

(3) $\alpha_c = 0.2896$

• α_c coincides with value obtained by looking for normalizable fluctuations in full geometry

[Nakamura, Ooguri, Park]

• For $\alpha > \alpha_c$ instability appears for range of ke.g. $\frac{\alpha}{\alpha_c} \approx 1.47$

0.9

05

[Taken from: Donos, Gauntlett]

• Solution with particular k(T) minimizes free energy at fixed T

1.7

2.1

1.3

2.5

29

[Donos, Gauntlett]

Higher derivative terms

 Most general form up to 4 derivatives (modulo field redefinitions and partial integration) [Myers, Paulos, Sinha]

$$S = S_0 + \int d^5 x \sqrt{-g} \left[c_1 R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} + c_2 R_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma} + c_3 (F^2)^2 + c_4 F^4 + c_5 \epsilon^{\mu\nu\rho\sigma\tau} A_\mu R_{\nu\rho\alpha\beta} R_{\sigma\tau}^{\alpha\beta} \right]$$

• If A dual to $\mathcal{N} = 1$ R-symmetry current:

$$c_2 = -\frac{c_1}{2}$$
, $c_3 = \frac{c_1}{24}$, $c_4 = -\frac{5c_1}{24}$, $c_5 = \frac{c_1}{2\sqrt{3}}$, $\alpha_s = \frac{1 - 288c_1}{2\sqrt{3}}$

- Leave c_i arbitrary for moment, but for sensible derivative expansion need $\forall_i: c_i \ll 1$
 - \Rightarrow supersymmetric case: $c \sim a \gg 1$

$$\frac{q}{r_0^6} = 2[1 - 48(c_1 - 2(2c_3 + c_4))]$$

★ Correction to AdS_2 -radius: $r_2^2 = \frac{1}{12} + (4c_2 + 16c_3 + 8c_4)$

$$\Rightarrow m_{BF}^2 = -\frac{1}{4r_2^2} = -(3 - 144c_2 - 576c_3 - 288c_4)$$

Ansatz:

$$ds^{2} = \frac{-dt^{2} + dr^{2}}{(12 - 576c_{2} - 2304c_{3} - 1152c_{4})r^{2}} + d\vec{x}^{2} + Q^{2}dt^{2} + 2Qdt\omega_{2}$$

$$A = \left(\frac{2\sqrt{6}}{12} - 4\sqrt{6}(c_1 + 2c_2 + 4c_3 + 2c_4)\right)r^{-1}dt + b\omega_2$$

Plug this into Einstein & Maxwell eqs.

 \Rightarrow 4th order eqs. for b, Q

• Toy example: Q'' + AQ' + BQ + cQ''' = 0

Define: $\psi = Q + cQ'$

 $\Rightarrow \psi'' + A\psi' + B\psi = -cQ''' + cQ''' + AcQ'' + BcQ'$

 $\Rightarrow (1 - cA)\psi'' + (A - cB)\psi' + B\psi = 0(+\mathcal{O}(c^2))$

• Toy example: Q'' + AQ' + BQ + cQ''' = 0

Define: $\psi = Q + cQ'$

 $\Rightarrow \psi'' + A\psi' + B\psi = -cQ''' + cQ''' + AcQ'' + BcQ'$

 $\Rightarrow (1 - cA)\psi'' + (A - cB)\psi' + B\psi = 0(+\mathcal{O}(c^2))$

In our case, define $\psi = -12r^2Q' - c_12304r^3Q'' - c_1576r^4Q''' - c_296\sqrt{6}r^2b''$

 $\Rightarrow (1+a_1) \Box_{AdS_2} \psi + (-k^2 + a_2) \psi + (2\sqrt{6} + a_3) \Box_{AdS_2} b + a_4 b = 0$ $(1+a_5) \Box_{AdS_2} b + (-k^2 - 8\sqrt{6}k\alpha + a_6)b + a_7 \Box_{AdS_2} \psi + (2\sqrt{6} + a_8)\psi = 0$ $\forall_i : a_i(k, \alpha, c_j) \text{ constants linear in } c_j$ Result:

 $\alpha_c = \alpha_c^{(0)} + 11.82c_1 + 37.06c_2 + 183.67c_3 + 55.00c_4 - 12.61c_5$

i.e. in supersymmetric case:

Result:

 $\alpha_c = \alpha_c^{(0)} + 11.82c_1 + 37.06c_2 + 183.67c_3 + 55.00c_4 - 12.61c_5$

i.e. in supersymmetric case:

But α_s also decreases with positive c_1

Analysis in full background

[Taken from: Donos, Gauntlett]

• Higher derivative corrections (still $\alpha \approx 1.47 \alpha_c$):

c - a

- Violations of the KSS bound: $\frac{\eta}{s} = \frac{1}{4\pi} \left(1 \frac{c-a}{c} + ... \right)$ [Brigante, Liu, Myers, Shenker, Yaida; Buchel, Myers, Sinha]
- Mixed current-gravitational anomaly: $D_a J^a = rac{c-a}{24\pi^2} R_{abcd} \tilde{R}^{abcd}$
- [Anselmi, Freedman, Grisaru, Johansen]

• Superconformal indices at high $T = \beta^{-1}$

$$\sum (-1)^{F} e^{-\beta(\Delta + \frac{1}{2}R)} \approx e^{-\frac{16\pi^{2}}{3\beta}(a-c)}$$

[Di Pietro, Komargodski]

Single-trace higher spin gap in large N SCFT

[Camanho, Edelstein, Maldacena, Zhiboedov]

In CFTs with a > c, universal term in entanglement entropy can become negative for certain higher genus entangling surfaces

[Perlmutter, Rangamani, Rota]

Results on c - a

• In $\mathcal{N} = 1$ SCFT: $\frac{1}{2} \le \frac{a}{c} \le \frac{3}{2}$

[Hofmann, Maldacena]

with $\frac{a}{c} = \frac{3}{2}$ for free theory with only vector multiplets. However, $\frac{a-c}{c} = \frac{1}{2} \not\ll 1$

- "Normal" large N_c CFTs (with $SU(N_c), SO(N_c), Sp(N_c)$ gauge group) have c > a [Buchel, Myers, Sinha]
- Non-Lagrangian theories arising as IR limit of worldvolume theories of N M5-branes wrapping Riemann surface with g > 1 can have a - c > 0[Gaiotto; Gaiotto, Maldacena]

Conclusion

• Higher derivative corrections to minimal 5D gauged $\mathcal{N}=2$ SUGRA could make R-charged RN black holes unstable if dual $\mathcal{N}=1$ CFT has a>c

- Outlook:
 - Confirm near horizon result by fluctuations in full geometry
 - $\star \alpha \rightarrow \infty$ limit should be tractable analytically [Ovdat, Yarom]

ευχαριστώ πολύ!