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Motivation
5D RN black holes in AdS unstable to helical phase if  
CS-term in 
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5D minimal gauged             SUGRA:N = 2
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[Nakamura, Ooguri, Park]
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Could higher derivative corrections to      and      lead 
to               , i.e. an instability?

↵s ↵c

↵s > ↵c

[Related work: Takeuchi; Ooguri, Park]

New BH solutions in string theory with helical structure of 
horizon?
Potential applications in AdS/CFT?

Minimal 5D SUGRA relevant:
We would like to view these examples as special cases of the following conjecture:

For any supersymmetric solution of D = 10 or D = 11 supergravity

that consists of a warped product of d + 1 dimensional anti-de-Sitter

space with a Riemannian manifold M , AdSd+1×w M , there is a consistent

Kaluza-Klein truncation on M to a gauged supergravity theory in d + 1-

dimensions for which the fields are dual to those in the superconformal

current multiplet of the d-dimensional dual SCFT.

Equivalently, one can characterise the fields of the gauged supergravity as those that

contain the d + 1-dimensional graviton and fill out an irreducible representation of

the superisometry algebra of the D = 10 or D = 11 supergravity solution. This

conjecture is essentially a restricted version of one that appeared long ago in [9], for

which general arguments supporting it were put forward in [10].

For example the AdS5 ×S5 solution of type IIB, which has superisometry algebra

SU(2, 2|4), is dual to N = 4 superYang-Mills theory in d = 4. The superconformal

current multiplet of the latter theory includes the energy momentum tensor, SO(6)

R-symmetry currents, along with scalars and fermions. These are dual to the metric,

SO(6) gauge fields along with scalar and fermion fields, and are precisely the fields

of the maximally supersymmetric SO(6) gauged supergravity in five-dimensions.

As we have phrased the conjecture above, it is natural to try and prove the

conjecture directly from the SCFT point of view. For the case of AdS3 solutions,

an argument has been made by [11, 12], but this needs to be modified for higher

dimension AdS solutions. While we think that this is an interesting avenue to pursue,

in this paper we will verify the conjecture for a number of cases by constructing an

explicit consistent KK reduction ansatz. By this we mean an explicit ansatz for the

higher-dimensional fields that is built from the fields of the lower-dimensional theory

with the property that it solves the equations of motion of the higher-dimensional

theory provided that the equations of the lower-dimensional theory are satisfied. This

approach has the advantage that it allows one to uplift an explicit solution of the

lower-dimensional gauged supergravity to obtain an explicit solution2 of D = 10 or

D = 11 supergravity.

Often, for simplicity, such explicit KK reduction ansätze are constructed for the

bosonic fields only. This is thought to provide very strong evidence that the ansatz

can be extended to the fermionic fields also. In fact an argument was constructed in

2Note that since the uplifting formulae are local, in general, even if the lower-dimensional solution

is free from singularities one still needs to check that the higher dimensional solution is also.
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[Gauntlett, Varela]



Overview

Review instability without higher derivative corrections
[Nakamura, Ooguri, Park; Donos, Gauntlett]

Review higher derivative corrections to 5D minimal  
           gauged SUGRA and RN black hole N = 2

[Myers, Paulos, Sinha]

Instability with higher derivative corrections

Outlook



Instability without higher 
derivative corrections

Instability most likely to occur at T = 0

) consider extremal RN

Near horizon geometry AdS2 ⇥ R3

) look for modes with m2
AdS2

< m2
BF = � 1

4r22

r2 : AdS2 -radius



Ansatz:
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[Donos, Gauntlett; cf. also Nakamura, Ooguri, Park]
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To linear order in         (enough to analyze onset of  
instability):

b,Q

with  = �12r2Q0
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↵c coincides with value obtained by looking for 
normalizable fluctuations in full geometry 

[Nakamura, Ooguri, Park]

For ↵ > ↵c instability appears for range of      k
e.g. ↵

↵c
⇡ 1.47

[Donos, Gauntlett]

Solution with particular         minimizes free energy at  
fixed    

k(T )
T

[Taken from:  
Donos, Gauntlett]
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Figure 1: The curve denotes the critical temperature at which the AdS-RN black

brane becomes unstable and also where the new branches of helical black holes, given

in figure 2, appear. The plot is for � = 1.7 and µ = 1.

We will now set � = 1.7, and hence �/�c ⇡ 1.47, but we have checked that several

other values lead to qualitatively similar results. For this value the linearised analysis

of [6], which we summarise in appendix B, leads to the curve presented in figure 1

which denotes, for a given value of k, the temperature at which the AdS-RN black

brane becomes unstable. Hence for k in the range 0.47 . k . 3.05 we expect to be

able to find the new black hole solutions.

The new helical black hole solutions are obtained by solving the equations of

motion numerically for the ansatz (2.4) with boundary conditions at the asymptotic

AdS5 boundary given in (2.9), and at the black hole horizon given in (2.10). We

use the scaling symmetries (2.6) to set f0 = µ = 1. As mentioned earlier a simple

parameter count indicates that we expect, generically, a two-parameter family of

solutions which we take to be labelled by temperature T and wave-number k. In

practise we fix a specific value of k and then construct a one parameter family of

solutions labelled by the temperature T . We considered twenty di↵erent values of k,

in the range 0.6  k  1.8 (focussing on the peak of the curve in figure 1), and we

have displayed our results in figures 2 - 4.

Figure 2 shows the two-parameter family of solutions and their free energy w. We

first note that the boundary of the surface projected onto the (k, T ) plane reproduces

the curve of critical temperatures as a function of k where the AdS-RN black brane

becomes unstable given in figure 1. We next note that for any fixed temperature the

helical black holes have less free energy than the AdS-RN black hole for any value

of k. Thus, from figure 2 we deduce that there is a second order phase transition at

T = Tc ⇡ 0.0627 at k = kc ⇡ 1.32 with the system moving from a homogeneous and

isotropic phase to a spatially modulated helical phase. As the temperature is lowered

we need to find the value of k for which the black hole has the lowest free energy. This

10



Higher derivative terms
Most general form up to 4 derivatives (modulo field 
redefinitions and partial integration) [Myers, Paulos, Sinha]
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Leave     arbitrary for moment, but for sensible derivative 
expansion need

ci
8i : ci ⌧ 1

) supersymmetric case: c ⇠ a � 1

Following above strategy, need to take into account
[Myers, Paulos, Sinha]

Correction to condition for extremality:
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Ansatz: 
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Plug this into Einstein & Maxwell eqs.

) 4th order eqs. for b,Q



Toy example: Q00 +AQ0 +BQ+ cQ000 = 0

Define:  = Q+ cQ0

)  00 +A 0 +B = �cQ000 + cQ000 +AcQ00 +BcQ0

) (1� cA) 00 + (A� cB) 0 +B = 0(+O(c2))



Toy example: Q00 +AQ0 +BQ+ cQ000 = 0

Define:  = Q+ cQ0

)  00 +A 0 +B = �cQ000 + cQ000 +AcQ00 +BcQ0

) (1� cA) 00 + (A� cB) 0 +B = 0(+O(c2))

In our case, define

 = �12r2Q0 � c12304r
3Q00 � c1576r

4Q000 � c296
p
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8i : ai(k,↵, cj) constants linear in cj



Result: 

↵c = ↵(0)
c + 11.82c1 + 37.06c2 + 183.67c3 + 55.00c4 � 12.61c5

i.e. in supersymmetric case:
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c � 14.16c1

1

8

c� a

c



Result: 

↵c = ↵(0)
c + 11.82c1 + 37.06c2 + 183.67c3 + 55.00c4 � 12.61c5

i.e. in supersymmetric case:
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But ↵s also decreases with positive c1
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Analysis in full background
Reminder: 

[Taken from:  
Donos, Gauntlett]

Higher derivative corrections (still                   ):
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Figure 1: The curve denotes the critical temperature at which the AdS-RN black

brane becomes unstable and also where the new branches of helical black holes, given

in figure 2, appear. The plot is for � = 1.7 and µ = 1.

We will now set � = 1.7, and hence �/�c ⇡ 1.47, but we have checked that several

other values lead to qualitatively similar results. For this value the linearised analysis

of [6], which we summarise in appendix B, leads to the curve presented in figure 1

which denotes, for a given value of k, the temperature at which the AdS-RN black

brane becomes unstable. Hence for k in the range 0.47 . k . 3.05 we expect to be

able to find the new black hole solutions.

The new helical black hole solutions are obtained by solving the equations of

motion numerically for the ansatz (2.4) with boundary conditions at the asymptotic

AdS5 boundary given in (2.9), and at the black hole horizon given in (2.10). We

use the scaling symmetries (2.6) to set f0 = µ = 1. As mentioned earlier a simple

parameter count indicates that we expect, generically, a two-parameter family of

solutions which we take to be labelled by temperature T and wave-number k. In

practise we fix a specific value of k and then construct a one parameter family of

solutions labelled by the temperature T . We considered twenty di↵erent values of k,

in the range 0.6  k  1.8 (focussing on the peak of the curve in figure 1), and we

have displayed our results in figures 2 - 4.

Figure 2 shows the two-parameter family of solutions and their free energy w. We

first note that the boundary of the surface projected onto the (k, T ) plane reproduces

the curve of critical temperatures as a function of k where the AdS-RN black brane

becomes unstable given in figure 1. We next note that for any fixed temperature the

helical black holes have less free energy than the AdS-RN black hole for any value

of k. Thus, from figure 2 we deduce that there is a second order phase transition at

T = Tc ⇡ 0.0627 at k = kc ⇡ 1.32 with the system moving from a homogeneous and

isotropic phase to a spatially modulated helical phase. As the temperature is lowered

we need to find the value of k for which the black hole has the lowest free energy. This
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Violations of the KSS bound:
⌘

s
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✓
1� c� a

c
+ . . .

◆

[Brigante, Liu, Myers, Shenker, Yaida; Buchel, Myers, Sinha]

Mixed current-gravitational anomaly:

DaJ
a =

c� a

24⇡2
RabcdR̃

abcd

[Anselmi, Freedman, 
Grisaru, Johansen]

Superconformal indices at high T = ��1

[Di Pietro, Komargodski]
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Single-trace higher spin gap in large     SCFTN

[Camanho, Edelstein, Maldacena, Zhiboedov]

����
a� c

c

���� <
1

�2
gap

dim. of lightest higher spin 
 single-trace operator

In CFTs with          , universal term in entanglement  
entropy can become negative for certain higher 
genus entangling surfaces

a > c

[Perlmutter, Rangamani, Rota]
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Results on 
In            SCFT:N = 1 [Hofmann, Maldacena]

1

2
 a

c
 3

2

with a

c
=

3

2
for free theory with only vector multiplets.

However, 

„Normal“ large Nc CFTs (with SU(Nc), SO(Nc), Sp(Nc)

gauge group) have c > a

Non-Lagrangian theories arising as IR limit of world- 
volume theories of     M5-branes wrapping Riemann 
surface with           can have 

N
g > 1 a� c > 0

[Buchel, Myers, Sinha]

[Gaiotto; Gaiotto, Maldacena]
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Conclusion
Higher derivative corrections to minimal 5D gauged 

N = 1
SUGRA could make R-charged RN black holes 

unstable if dual            CFT has  
N = 2

a > c

Outlook:

Confirm near horizon result by fluctuations in full 
geometry

↵ ! 1 limit should be tractable analytically
[Ovdat, Yarom]
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