Helical black holes with higher derivative corrections

Michael Haack
Arnold Sommerfeld Center (Munich)

Nafplio, July 9, 2015
Work in progress with Daniel Brattan, Abhiram Kidambi and Amos Yarom

Motivation

- 5D RN black holes in AdS unstable to helical phase if CS-term in
$S=\int d^{5} x \sqrt{-g}\left[(R+12)-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}\right]-\frac{2}{3} \alpha \int F \wedge F \wedge A$
large enough, i.e. $\alpha>\alpha_{c} \approx 0.2896 \quad$ [Nakamura, Ooguri, Park]
- 5D minimal gauged $\mathcal{N}=2$ SUGRA:

$$
\alpha_{s}=\frac{1}{2 \sqrt{3}} \approx 0.2887<\alpha_{c}
$$

But $\frac{\alpha_{c}-\alpha_{s}}{\alpha_{c}} \approx 0.003$

- Could higher derivative corrections to α_{s} and α_{c} lead to $\alpha_{s}>\alpha_{c}$, i.e. an instability?
- New BH solutions in string theory with helical structure of horizon?
- Potential applications in AdS/CFT?
[Related work: Takeuchi; Ooguri, Park]
- Minimal 5D SUGRA relevant:

> For any supersymmetric solution of $D=10$ or $D=11$ supergravity that consists of a warped product of $d+1$ dimensional anti-de-Sitter space with a Riemannian manifold $M, \operatorname{AdS_{d+1}\times w}$, there is a consistent Kaluza-Klein truncation on M to a gauged supergravity theory in $d+1$ dimensions for which the fields are dual to those in the superconformal current multiplet of the d-dimensional dual SCFT. [Gauntlett, Varela]

Overview

- Review instability without higher derivative corrections
[Nakamura, Ooguri, Park; Donos, Gauntlett]
- Review higher derivative corrections to 5D minimal $\mathcal{N}=2$ gauged SUGRA and RN black hole
[Myers, Paulos, Sinha]
- Instability with higher derivative corrections
- Outlook

Instability without higher derivative corrections

- Instability most likely to occur at $T=0$
\Rightarrow consider extremal RN
- Near horizon geometry $A d S_{2} \times \mathbb{R}^{3}$
\Rightarrow look for modes with $m_{A d S_{2}}^{2}<m_{B F}^{2}=-\frac{1}{4 r_{2}^{2}}$
$r_{2}: A d S_{2}$-radius
- Ansatz:

$$
d s^{2}=\frac{-d t^{2}+d r^{2}}{12 r^{2}}+d \vec{x}^{2}+Q^{2} d t^{2}+2 Q \omega_{2} d t
$$

with

$$
\omega_{2}=\cos \left(k x_{1}\right) d x_{2}-\sin \left(k x_{1}\right) d x_{3}
$$

- Killing vectors: $\partial_{x_{2}}, \partial_{x_{3}}$

$$
\partial_{x_{1}}-k\left(x_{2} \partial_{x_{3}}-x_{3} \partial_{x_{2}}\right)
$$

$$
A=\frac{E}{12 r} d t+b \omega_{2} \quad \text { with } E=2 \sqrt{6}
$$

- To linear order in b, Q (enough to analyze onset of instability):

$$
\begin{aligned}
& \left(\square_{A d S_{2}}-k^{2}\right) \psi+E \square_{A d S_{2}} b=0 \\
& \left(\square_{A d S_{2}}-k^{2}\right) b-4 \alpha E k b+E \psi=0
\end{aligned}
$$

with $\quad \psi=-12 r^{2} Q^{\prime}$

- Strategy: (1) Determine effective mass $m^{2}(k, \alpha)$
(2) Determine $k_{0}(\alpha)$ minimizing $m^{2}(k, \alpha)$ for fixed $\alpha \Rightarrow m_{\text {min }}^{2}(\alpha)=m^{2}\left(k_{0}(\alpha), \alpha\right)$
(3) Find α_{c} for which $m_{\min }^{2}(\alpha)<m_{B F}^{2}$ for $\alpha>\alpha_{c}$

Concretely:

$$
\begin{gathered}
\text { (1) } \operatorname{det}\left(\begin{array}{ll}
m^{2}-k^{2} & E m^{2} \\
E & m^{2}-k^{2}-4 \alpha E k
\end{array}\right)=0 \\
\Rightarrow m^{2}=\frac{1}{2}\left(2 k^{2}+E^{2}+4 \alpha E k-E \sqrt{E^{2}+8 \alpha E k+4 k^{2}\left(1+4 \alpha^{2}\right)}\right) \\
\text { (2) } k_{0}=E \frac{2 \alpha+4 \alpha^{3}+\alpha \sqrt{1+4 \alpha^{2}+16 \alpha^{4}}}{1+4 \alpha^{2}} \\
\text { (3) } \alpha_{c}=0.2896 \\
m_{B F}^{2} \\
m_{\min }^{2}
\end{gathered}
$$

- α_{c} coincides with value obtained by looking for normalizable fluctuations in full geometry
[Nakamura, Ooguri, Park]
- For $\alpha>\alpha_{c}$ instability appears for range of k e.g. $\frac{\alpha}{\alpha_{c}} \approx 1.47$

- Solution with particular $k(T)$ minimizes free energy at fixed T

Higher derivative terms

- Most general form up to 4 derivatives (modulo field redefinitions and partial integration) [Myers, Paulos, Sinha]

$$
\begin{aligned}
S=S_{0}+ & \int d^{5} x \sqrt{-g}\left[c_{1} R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}+c_{2} R_{\mu \nu \rho \sigma} F^{\mu \nu} F^{\rho \sigma}\right. \\
& \left.+c_{3}\left(F^{2}\right)^{2}+c_{4} F^{4}+c_{5} \epsilon^{\mu \nu \rho \sigma \tau} A_{\mu} R_{\nu \rho \alpha \beta} R_{\sigma \tau}{ }^{\alpha \beta}\right]
\end{aligned}
$$

- $c_{1}=\frac{1}{8} \frac{c-a}{c}$

$$
\begin{array}{r}
T_{a}^{a}=\frac{c}{16 \pi^{2}} W_{a b c d} V^{a b c d}-\frac{a}{16 \pi^{2}}\left(R_{a b c d} R^{a b c d}-4 R_{a b} R^{a b}+R^{\mathcal{B}}\right) \\
\text { Weyl-tensor Euler density }
\end{array}
$$

- If A dual to $\mathcal{N}=1$ R-symmetry current:

$$
c_{2}=-\frac{c_{1}}{2}, \quad c_{3}=\frac{c_{1}}{24}, \quad c_{4}=-\frac{5 c_{1}}{24}, \quad c_{5}=\frac{c_{1}}{2 \sqrt{3}}, \quad \alpha_{s}=\frac{1-288 c_{1}}{2 \sqrt{3}}
$$

- Leave c_{i} arbitrary for moment, but for sensible derivative expansion need $\forall_{i}: c_{i} \ll 1$
\Rightarrow supersymmetric case: $c \sim a \gg 1$
- Following above strategy, need to take into account
[Myers, Paulos, Sinha]
\star Correction to condition for extremality:

$$
\frac{q^{2}}{r_{0}^{6}}=2\left[1-48\left(c_{1}-2\left(2 c_{3}+c_{4}\right)\right)\right]
$$

\star Correction to $A d S_{2}$-radius: $r_{2}^{2}=\frac{1}{12}+\left(4 c_{2}+16 c_{3}+8 c_{4}\right)$

$$
\Rightarrow m_{B F}^{2}=-\frac{1}{4 r_{2}^{2}}=-\left(3-144 c_{2}-576 c_{3}-288 c_{4}\right)
$$

Ansatz:

$$
\begin{aligned}
d s^{2} & =\frac{-d t^{2}+d r^{2}}{\left(12-576 c_{2}-2304 c_{3}-1152 c_{4}\right) r^{2}}+d \vec{x}^{2}+Q^{2} d t^{2}+2 Q d t \omega_{2} \\
A & =\left(\frac{2 \sqrt{6}}{12}-4 \sqrt{6}\left(c_{1}+2 c_{2}+4 c_{3}+2 c_{4}\right)\right) r^{-1} d t+b \omega_{2}
\end{aligned}
$$

Plug this into Einstein \& Maxwell eqs.
$\Rightarrow 4$ th order eqs. for b, Q

- Toy example: $Q^{\prime \prime}+A Q^{\prime}+B Q+c Q^{\prime \prime \prime}=0$

Define: $\psi=Q+c Q^{\prime}$
$\Rightarrow \psi^{\prime \prime}+A \psi^{\prime}+B \psi=-c Q^{\prime \prime \prime}+c \not Q^{\prime \prime \prime}+A c Q^{\prime \prime}+B c Q^{\prime}$
$\Rightarrow(1-c A) \psi^{\prime \prime}+(A-c B) \psi^{\prime}+B \psi=0\left(+\mathcal{O}\left(c^{2}\right)\right)$

- Toy example: $Q^{\prime \prime}+A Q^{\prime}+B Q+c Q^{\prime \prime \prime}=0$

Define: $\psi=Q+c Q^{\prime}$

$$
\begin{aligned}
& \Rightarrow \psi^{\prime \prime}+A \psi^{\prime}+B \psi=-c Q^{\prime \prime \prime}+c Q^{\prime \prime \prime}+A c Q^{\prime \prime}+B c Q^{\prime} \\
& \Rightarrow(1-c A) \psi^{\prime \prime}+(A-c B) \psi^{\prime}+B \psi=0\left(+\mathcal{O}\left(c^{2}\right)\right)
\end{aligned}
$$

- In our case, define

$$
\begin{aligned}
& \psi=-12 r^{2} Q^{\prime}-c_{1} 2304 r^{3} Q^{\prime \prime}-c_{1} 576 r^{4} Q^{\prime \prime \prime}-c_{2} 96 \sqrt{6} r^{2} b^{\prime \prime} \\
& \Rightarrow\left(1+a_{1}\right) \square_{A d S_{2}} \psi+\left(-k^{2}+a_{2}\right) \psi+\left(2 \sqrt{6}+a_{3}\right) \square_{A d S_{2}} b+a_{4} b=0 \\
& \left(1+a_{5}\right) \square_{A d S_{2}} b+\left(-k^{2}-8 \sqrt{6} k \alpha+a_{6}\right) b+a_{7} \square_{A d S_{2}} \psi+\left(2 \sqrt{6}+a_{8}\right) \psi=0 \\
& \forall_{i}: a_{i}\left(k, \alpha, c_{j}\right) \text { constants linear in } c_{j}
\end{aligned}
$$

Result:

$$
\alpha_{c}=\alpha_{c}^{(0)}+11.82 c_{1}+37.06 c_{2}+183.67 c_{3}+55.00 c_{4}-12.61 c_{5}
$$

i.e. in supersymmetric case:

$$
\alpha_{c}=\alpha_{c}^{(0)}-14.16 c_{1} \frac{1}{8} \frac{c-a}{c}
$$

Result:

$$
\alpha_{c}=\alpha_{c}^{(0)}+11.82 c_{1}+37.06 c_{2}+183.67 c_{3}+55.00 c_{4}-12.61 c_{5}
$$

i.e. in supersymmetric case:

$$
\alpha_{c}=\alpha_{c}^{(0)}-14.16 c_{\mathcal{1}} \backslash \frac{1}{8} \frac{c-a}{c}
$$

But α_{s} also decreases with positive c_{1}

$$
\alpha_{s}=\alpha_{s}^{(0)}\left(1-288 c_{1}\right)
$$

$$
\alpha_{s}=\alpha_{s}^{(0)}\left(1-288 c_{1}\right)
$$

Analysis in full background

- Reminder:
$\left(\frac{\alpha}{\alpha_{c}} \approx 1.47\right)$

- Higher derivative corrections (still $\alpha \approx 1.47 \alpha_{c}$):

$c-a$

- Violations of the KSS bound: $\frac{\eta}{s}=\frac{1}{4 \pi}\left(1-\frac{c-a}{c}+\ldots\right)$
[Brigante, Liu, Myers, Shenker, Yaida; Buchel, Myers, Sinha]
- Mixed current-gravitational anomaly:
[Anselmi, Freedman, Grisaru, Johansen]

$$
D_{a} J^{a}=\frac{c-a}{24 \pi^{2}} R_{a b c d} \tilde{R}^{a b c d}
$$

- Superconformal indices at high $T=\beta^{-1}$

$$
\sum(-1)^{F} e^{-\beta\left(\Delta+\frac{1}{2} R\right)} \approx e^{-\frac{16 \pi^{2}}{3 \beta}(a-c)}
$$

[Di Pietro, Komargodski]

- Single-trace higher spin gap in large N SCFT
[Camanho, Edelstein, Maldacena, Zhiboedov]

$$
\left|\frac{a-c}{c}\right| \lesssim \underbrace{\frac{1}{\Delta_{\text {gap }}^{2}}}_{\begin{array}{c}
\text { dim. of lightest higher spin } \\
\\
\text { single-trace operator }
\end{array}}
$$

- In CFTs with $a>c$, universal term in entanglement entropy can become negative for certain higher genus entangling surfaces
[Perlmutter, Rangamani, Rota]

Results on $c-a$

- $\operatorname{In} \mathcal{N}=1$ SCFT: $\quad \frac{1}{2} \leq \frac{a}{c} \leq \frac{3}{2}$
with $\frac{a}{c}=\frac{3}{2}$ for free theory with only vector multiplets.
However, $\frac{a-c}{c}=\frac{1}{2} \nless 1$
- „Normal" large N_{c} CFTs (with $S U\left(N_{c}\right), S O\left(N_{c}\right), S p\left(N_{c}\right)$ gauge group) have $c>a$
[Buchel, Myers, Sinha]
- Non-Lagrangian theories arising as IR limit of worldvolume theories of N M5-branes wrapping Riemann surface with $g>1$ can have $a-c>0$
[Gaiotto; Gaiotto, Maldacena]

Conclusion

- Higher derivative corrections to minimal 5D gauged $\mathcal{N}=2$ SUGRA could make R-charged RN black holes unstable if dual $\mathcal{N}=1$ CFT has $a>c$
- Outlook:
* Confirm near horizon result by fluctuations in full geometry
$\star \alpha \rightarrow \infty$ limit should be tractable analytically
[Ovdat, Yarom]

عuХарıбтஸ́ тто入ú!

